CN108164547A - 多并稠环共轭大分子及其制备方法和应用 - Google Patents

多并稠环共轭大分子及其制备方法和应用 Download PDF

Info

Publication number
CN108164547A
CN108164547A CN201611115692.XA CN201611115692A CN108164547A CN 108164547 A CN108164547 A CN 108164547A CN 201611115692 A CN201611115692 A CN 201611115692A CN 108164547 A CN108164547 A CN 108164547A
Authority
CN
China
Prior art keywords
formula
group
hexyl
present
independently selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611115692.XA
Other languages
English (en)
Other versions
CN108164547B (zh
Inventor
占肖卫
代水星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201611115692.XA priority Critical patent/CN108164547B/zh
Priority to PCT/CN2017/110174 priority patent/WO2018103496A1/zh
Publication of CN108164547A publication Critical patent/CN108164547A/zh
Application granted granted Critical
Publication of CN108164547B publication Critical patent/CN108164547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明涉及太阳能电池领域,具体地,涉及一种多并稠环共轭大分子及其制备方法和应用。所述多并稠环共轭大分子为下式(1F)所示的化合物和下式(1)所示的化合物中的一种。本发明提供的多并稠环共轭大分子,具有较强的光吸收、较高的电荷传输性能以及合适的电子能级,适合于作为电子给体或电子受体材料应用于制备太阳能电池。

Description

多并稠环共轭大分子及其制备方法和应用
技术领域
本发明涉及太阳能电池领域,具体地,涉及一种多并稠环共轭大分子及其制备方法和应用。
背景技术
近年来,有机太阳能电池发展迅速,由于其具有重量轻、柔性好、加工方式简单、可大面积制备并且成本低等优点,受到学术界和工业界的广泛关注。目前,基于聚合物给体与富勒烯受体共混制备的太阳能电池的光电转换效率已突破11%。这显示出有机太阳能电池的巨大应用前景。聚合物材料由于其较高的摩尔消光系数,较宽的太阳光谱吸收,使得光伏器件的光电转换效率较高。然而,聚合物也有不足之处,比如:不确定的分子结构,多分散性的分子量分布,较难的批次重复性,不易纯化等问题。与聚合物不同,有机稠环小分子和大分子半导体材料由于具有确定的分子结构及分子量,以及具有批次稳定及纯化简单且纯度高等优点,使得有机稠环小分子和大分子太阳能电池研究渐趋于热。
由于富勒烯衍生物拥有足够大的电子亲和力、各向同性的电子传输性能、较匹配的电子能级等优点,使得富勒烯衍生物(PC61BM和PC71BM)成为受体材料里的明星分子,一直占据着主导地位。然而PCBM也存在着诸多缺点,如较弱的可见光吸收、较难的能级调控、复杂繁琐的提纯过程等。因此合成新型的受体材料依然非常有必要。
发明内容
本发明的目的在于提供一种新型的能够用于太阳能电池作为电子给体或电子受体材料的具有较强的光吸收、较高的电荷传输性能以及合适的电子能级的多并稠环共轭大分子及其制备方法和应用。
为了实现上述目的,本发明提供一种多并稠环共轭大分子,该共轭大分子为下式(1F)所示的化合物:
式(1F)
其中,各个基团各自独立地表示1-10个噻吩共轭稠环结构;
各个基团A各自独立地选自下式所示基团中的一种:
其中,R3-R6中的至少一个为F,其他的各自独立地选自H、烷基、烷氧基和烷硫基;其中,各个R1各自独立地选自式所示的基团和式所示的基团;各个R2各自独立地选自式所示的基团;各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O、S和Se;m为0-6的整数;p为0-6的整数;n为0-6的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基、C1-C30的烷硫基和C6-C12的芳基。
本发明还提供了上述多并稠环共轭大分子的制备方法,该方法包括:
在碱性化合物存在下且在有机溶剂中,将下式(2)所示的化合物与式(a)所示的化合物进行脱水缩合反应,得到式(1F)所示的化合物;其中,
式(2)式(a)
本发明还提供了一种多并稠环共轭大分子,该共轭大分子为下式(1)所示的化合物:
式(1)
其中,各个基团各自独立地表示3-10个噻吩共轭稠环结构;
各个基团A'各自独立地选自下式所示基团中的一种:
其中,R3-R6各自独立地选自H、烷基、烷氧基和烷硫基;其中,各个R1各自独立地选自式所示的基团和式所示的基团;各个R2各自独立地选自式所示的基团;各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O、S和Se;m为0-6的整数;p为0-6的整数;n为0-6的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基、C1-C30的烷硫基和C6-C12的芳基。
本发明还提供了上述多并稠环共轭大分子的制备方法,该方法包括:
在碱性化合物存在下且在有机溶剂中,将下式(2)所示的化合物与式(a')所示的化合物进行脱水缩合反应,得到式(1)所示的化合物;其中,
式(2)式(a')
本发明还提供了一种含有上述多并稠环共轭大分子中的一种或多种的光伏材料。
本发明还提供了一种太阳能电池,该太阳能电池包括光捕获的活性层,其中,所述光捕获的活性层中电子给体材料和/或电子受体材料含有上述多并稠环共轭大分子中的一种或多种。
本发明还提供了一种太阳能电池的制备方法,其中,该方法包括将含有上述多并稠环共轭大分子中的一种或多种的电子给体材料和/或电子受体材料用于形成光捕获的活性层。
本发明提供的多并稠环共轭大分子,具有较强的光吸收、较高的电荷传输性能以及合适的电子能级,适合于作为电子给体或电子受体材料应用于制备太阳能电池,特别是能够获得光电转换效率为10-12%的太阳能电池。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明的实施例1所得的式(1F-5-F1)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图2是本发明的实施例1所得的式(1F-5-F1)所示的多并稠环共轭大分子的循环伏安曲线。
图3为本发明的实施例2所得的式(1F-5-F2)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图4为本发明的实施例2所得的式(1F-5-F2)所示的多并稠环共轭大分子的循环伏安曲线。
图5为本发明的实施例3所得的式(1F-5-13)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图6为本发明的实施例3所得的式(1F-5-13)所示的多并稠环共轭大分子的循环伏安曲线。
图7为本发明的实施例4所得的式(1F-7-F1)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图8为本发明的实施例4所得的式(1F-7-F1)所示的多并稠环共轭大分子的循环伏安曲线。
图9为本发明的实施例5所得的式(1F-7-F3)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图10为本发明的实施例5所得的式(1F-7-F3)所示的多并稠环共轭大分子的循环伏安曲线。
图11为本发明的实施例6所得的式(1F-7-15)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图12为本发明的实施例6所得的式(1F-7-15)所示的多并稠环共轭大分子的循环伏安曲线。
图13为本发明的实施例7所得的式(1F-9-F1)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图14为本发明的实施例7所得的式(1F-9-F1)所示的多并稠环共轭大分子的循环伏安曲线。
图15为本发明的实施例8所得的式(1F-9-2)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图16为本发明的实施例8所得的式(1F-9-2)所示的多并稠环共轭大分子的循环伏安曲线。
图17为本发明的实施例9所得的式(1F-9-14)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图18为本发明的实施例9所得的式(1F-9-14)所示的多并稠环共轭大分子的循环伏安曲线。
图19为本发明的实施例10所得的式(1-9-2)所示的多并稠环共轭大分子的紫外-可见吸收光谱,其中,溶液是指以氯仿为溶剂制得的溶液(10-6mol/L),薄膜是指氯仿溶液旋涂成的薄膜(100纳米厚度)。
图20为本发明的实施例10所得的式(1-9-2)所示的多并稠环共轭大分子的循环伏安曲线。
图21为实施例13所得的太阳能电池的I-V曲线。图22为实施例14所得的太阳能电池的I-V曲线。图23为实施例15所得的太阳能电池的I-V曲线。图24为实施例16所得的太阳能电池的I-V曲线。图25为实施例17所得的太阳能电池的I-V曲线。图26为实施例18所得的太阳能电池的I-V曲线。图27为实施例19所得的太阳能电池的I-V曲线。图28为实施例20所得的太阳能电池的I-V曲线。图29为实施例21所得的太阳能电池的I-V曲线。图30为实施例22所得的太阳能电池的I-V曲线。图31为实施例23所得的太阳能电池的I-V曲线。图32为实施例24所得的太阳能电池的I-V曲线。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,各个基团各自独立地选自表示,当各个基团同时且在化合物中多处出现时,它们都是独立地选择,可以是相同的,也可以是不同的,例如,尽管所示的基团中具有两个R7,但是这两个R7是可以独立地进行选择的,可以相同也可以不同。
本发明中,等带有虚线连接键的结构中的虚线指明了连接位点,表示连接键;等带有实线连接键的结构中的未连接任何基团或原子的实线也指明了连接位点,表示连接键。
本发明中,含有该基团表示的是,-F穿插的键的左右两边分别取得F的情况都存在,例如,下式(1F-5-F1)实际上是指两边的A基团均为基团A-2的式(1F-5-5)、两边的A基团均为基团A-3的式(1F-5-8)和两边的A基团一个为基团A-3且另一个为基团A-2的式(1F-5-35)所示的化合物的混合物。
本发明提供一种多并稠环共轭大分子,该共轭大分子为下式(1F)所示的化合物:
式(1F)
其中,各个基团各自独立地表示1-10个噻吩共轭稠环结构;
各个基团A各自独立地选自下式所示基团中的一种:
其中,R3-R6中的至少一个为F,其他的各自独立地选自H、烷基、烷氧基和烷硫基;其中,各个R1各自独立地选自式所示的基团(优选为)和式所示的基团;各个R2各自独立地选自式所示的基团(优选为);各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O、S和Se;m为0-6的整数;p为0-6的整数;n为0-6的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基、C1-C20的烷硫基和C6-C12的芳基。
根据本发明,为了能够获得光吸收更强、电荷传输性能更高以及电子能级更为合适共轭大分子,优选地,各个基团各自独立地表示1-5个噻吩共轭稠环结构;R3-R6中的至少一个为F,其他的各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基和C1-C30的烷硫基;各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O和S;m为0-4的整数;p为0-4的整数;n为0-4的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基、C1-C20的烷硫基和C6-C10的芳基。
更优选地,各个基团各自独立地表示1-4个噻吩共轭稠环结构;R3-R6中的至少一个为F,其他的各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基和C1-C20的烷硫基;各个Z各自独立地选自C和N;各个R7、各个R9和各个R11各自独立地选自H、C1-C6的烷基、C1-C6的烷氧基和C1-C6的烷硫基;各个R8和各个R10和各自独立地选自H、C4-C10的烷基、C4-C10的烷氧基和C4-C10的烷硫基。
更进一步优选地,R3-R6中的至少一个为F,其他的各自独立地选自H、C1-C10的烷基、C1-C10的烷氧基和C1-C10的烷硫基;各个Z各自独立地选自C和N;m为0、1、2或3;p为0、1、2或3;n为0、1、2或3;各个R7、各个R9和各个R11各自独立地选自H、甲基、乙基、正丙基、正丁基、甲氧基、乙氧基、正丙氧基、正丁氧基、甲硫基、乙硫基、正丙硫基和正丁硫基;各个R8和各个R10和各自独立地选自H、正丁基、正戊基、正己基、正辛基、2-乙基己基、正丁氧基、正戊氧基、正己氧基、正辛氧基、2-乙基己氧基、正丁硫基、正戊硫基、正己硫基、正辛硫基和2-乙基己硫基。
其中,n为0,可认为R2表示不存在,那么基团A与式(1F)所示的化合物的稠环单元主体直接连接,形成共轭结构。其中,C1-C10的烷基的具体实例例如可以为:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基、2-乙基己基等。而本发明的其他范围的烷基,也可根据情况从该具体实例中进行选择。其中,C1-C10的烷氧基的具体实例例如可以为:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、叔丁氧基、正戊氧基、正己氧基、正庚氧基、正辛氧基、正壬氧基、正癸氧基、2-乙基己氧基等。而本发明的其他范围的烷氧基,也可根据情况从该具体实例中进行选择。其中,C1-C10的烷硫基的具体实例例如可以为:甲硫基、乙硫基、正丙硫基、异丙硫基、正丁硫基、异丁硫基、叔丁硫基、正戊硫基、正己硫基、正庚硫基、正辛硫基、正壬硫基、正癸硫基、2-乙基己硫基等。其中,C6-C10的芳基的具体实例例如可以为:苯基、苄基、对甲苯基等。
其中,位于化合物(1F)中部共轭结构两边的两个基团应当理解为与化合物(1F)中部共轭结构一起构成共轭结构,其中,其各自独立地表示1-10个噻吩共轭稠环结构,当基团B为1个噻吩共轭稠环结构,实际上两边各有1个噻吩基团与中部共轭结构形成共轭大分子的基本结构。
优选地,该共轭大分子为下式中所示的化合物中的一种:
式(1F-5):(相当于基团B均为1个噻吩共轭稠环结构);式(1F-7):(相当于基团B均为2个噻吩共轭稠环结构);式(1F-9):(相当于基团B均为3个噻吩共轭稠环结构);式(1F-11):(相当于基团B均为4个噻吩共轭稠环结构)。
根据本发明,基团A具有强拉电子效应,基团A位于稠环单元的两端能够使得所得的共轭大分子拥有强的可见光吸收能力、高的电荷传输性能以及合适的电子能级,适合于作为电子给体或电子受体材料应用于制备有机太阳能电池。
优选地,基团A选自以下基团中的一种或多种:
基团A-1为基团A-2为基团A-3为基团A-4为基团A-5为基团A-6为基团A-7为基团A-8为基团A-9为基团A-10为基团A-11为
根据本发明,本发明的多并稠环共轭大分子优选为以下式所示的化合物中的一种:
式(1F-5-1):式(1F-5)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;式(1F-5-2):式(1F-5)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;式(1F-5-3):式(1F-5)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;式(1F-5-4):式(1F-5)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;式(1F-5-5):式(1F-5)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;式(1F-5-6):式(1F-5)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;式(1F-5-7):式(1F-5)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;式(1F-5-8):式(1F-5)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-5-9):式(1F-5)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;式(1F-5-10):式(1F-5)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;式(1F-5-11):式(1F-5)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;式(1F-5-12):式(1F-5)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;式(1F-5-13):式(1F-5)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;式(1F-5-14):式(1F-5)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;式(1F-5-15):式(1F-5)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;式(1F-5-16):式(1F-5)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;式(1F-5-17):式(1F-5)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;式(1F-5-18):式(1F-5)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;式(1F-5-19):式(1F-5)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;式(1F-5-20):式(1F-5)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;式(1F-5-21):式(1F-5)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;式(1F-5-22):式(1F-5)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;式(1F-5-23):式(1F-5)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;式(1F-5-24):式(1F-5)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;式(1F-5-25):式(1F-5)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;式(1F-5-26):式(1F-5)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;式(1F-5-27):式(1F-5)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;式(1F-5-28):式(1F-5)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;式(1F-5-29):式(1F-5)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;式(1F-5-30):式(1F-5)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;式(1F-5-31):式(1F-5)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;式(1F-5-32):式(1F-5)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;式(1F-5-33):式(1F-5)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;式(1F-5-34):式(1F-5)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;式(1F-5-35):式(1F-5)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-5-36):式(1F-5)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-7-1):式(1F-7)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;式(1F-7-2):式(1F-7)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;式(1F-7-3):式(1F-7)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;式(1F-7-4):式(1F-7)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;式(1F-7-5):式(1F-7)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;式(1F-7-6):式(1F-7)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;式(1F-7-7):式(1F-7)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;式(1F-7-8):式(1F-7)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-7-9):式(1F-7)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;式(1F-7-10):式(1F-7)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;式(1F-7-11):式(1F-7)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;式(1F-7-12):(1F-7)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;式(1F-7-13):式(1F-7)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;式(1F-7-14):式(1F-7)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;式(1F-7-15):式(1F-7)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;式(1F-7-16):式(1F-7)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;式(1F-7-17):式(1F-7)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;式(1F-7-18):式(1F-7)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;式(1F-7-19):式(1F-7)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;式(1F-7-20):式(1F-7)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;式(1F-7-21):式(1F-7)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;式(1F-7-22):式(1F-7)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;式(1F-7-23):式(1F-7)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;式(1F-7-24):式(1F-7)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;式(1F-7-25):式(1F-7)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;式(1F-7-26):式(1F-7)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;式(1F-7-27):式(1F-7)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;式(1F-7-28):式(1F-7)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;式(1F-7-29):式(1F-7)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;式(1F-7-30):式(1F-7)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;式(1F-7-31):式(1F-7)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;式(1F-7-32):式(1F-7)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;式(1F-7-33):式(1F-7)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;式(1F-7-34):式(1F-7)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;式(1F-7-35):式(1F-7)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-7-36):式(1F-7)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-9-1):式(1F-9)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;式(1F-9-2):式(1F-9)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;式(1F-9-3):式(1F-9)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;式(1F-9-4):式(1F-9)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;式(1F-9-5):式(1F-9)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;式(1F-9-6):式(1F-9)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;式(1F-9-7):式(1F-9)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;式(1F-9-8):式(1F-9)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-9-9):式(1F-9)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;式(1F-9-10):式(1F-9)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;式(1F-9-11):式(1F-9)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;式(1F-9-12):式(1F-9)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;式(1F-9-13):式(1F-9)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;式(1F-9-14):式(1F-9)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;式(1F-9-15):式(1F-9)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;式(1F-9-16):式(1F-9)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;式(1F-9-17):式(1F-9)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;式(1F-9-18):式(1F-9)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;式(1F-9-19):式(1F-9)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;式(1F-9-20):式(1F-9)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;式(1F-9-21):式(1F-9)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;式(1F-9-22):式(1F-9)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;式(1F-9-23):式(1F-9)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;式(1F-9-24):式(1F-9)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;式(1F-9-25):式(1F-9)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;式(1F-9-26):式(1F-9)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;式(1F-9-27):式(1F-9)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;式(1F-9-28):式(1F-9)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;式(1F-9-29):式(1F-9)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;式(1F-9-30):式(1F-9)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;式(1F-9-31):式(1F-9)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;式(1F-9-32):式(1F-9)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;式(1F-9-33):式(1F-9)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;式(1F-9-34):式(1F-9)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;式(1F-9-35):式(1F-9)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-9-36):式(1F-9)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-11-1):式(1F-11)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;式(1F-11-2):式(1F-11)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;式(1F-11-3):式(1F-11)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;式(1F-11-4):式(1F-11)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;式(1F-11-5):式(1F-11)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;式(1F-11-6):式(1F-11)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;式(1F-11-7):式(1F-11)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;式(1F-11-8):式(1F-11)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-11-9):式(1F-11)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;式(1F-11-10):式(1F-11)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;式(1F-11-11):式(1F-11)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;式(1F-11-12):式(1F-11)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;式(1F-11-13):式(1F-11)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;式(1F-11-14):式(1F-11)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;式(1F-11-15):式(1F-11)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;式(1F-11-16):式(1F-11)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;式(1F-11-17):式(1F-11)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;式(1F-11-18):式(1F-11)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;式(1F-11-19):式(1F-11)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;式(1F-11-20):式(1F-11)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;式(1F-11-21):式(1F-11)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;式(1F-11-22):式(1F-11)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;式(1F-11-23):式(1F-11)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;式(1F-11-24):式(1F-11)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;式(1F-11-25):式(1F-11)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;式(1F-11-26):式(1F-11)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;式(1F-11-27):式(1F-11)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;式(1F-11-28):式(1F-11)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;式(1F-11-29):式(1F-11)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;式(1F-11-30):式(1F-11)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;式(1F-11-31):式(1F-11)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;式(1F-11-32):式(1F-11)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;式(1F-11-33):式(1F-11)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;式(1F-11-34):式(1F-11)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;式(1F-11-35):式(1F-11)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;式(1F-11-36):式(1F-11)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基。
本发明还提供了上述多并稠环共轭大分子的制备方法,该方法包括:
在碱性化合物存在下且在有机溶剂中,将下式(2)所示的化合物与式(a)所示的化合物进行脱水缩合反应,得到式(1F)所示的化合物;其中,
式(2)式(a)
该方法中,基团R1-R6如上文中所描述的,本发明在此不再赘述。
其中,式(2)所示的化合物可以根据上文中的多并稠环共轭大分子的结构进行选择,优选地,式(2)所示的化合物为下式中的一种或多种:
式(2-5)式(2-7)
式(2-9):
式(2-11):
式(2)所示的化合物的具体实例例如可以为下式中的一种或多种:
式(2-5-1):式(2-5)中,Z均为C,R2不存在,R1均为正己基;式(2-5-2):式(2-5)中,Z均为C,R2不存在,R1均为且R10为正己基;式(2-5-3):式(2-5)中,Z均为C,R2不存在,R1均为且R8为正己基;式(2-7-1):式(2-7)中,Z均为C,R2不存在,R1均为正己基;式(2-7-2):式(2-7)中,Z均为C,R2不存在,R1均为且R10为正己基;式(2-7-3):式(2-7)中,Z均为C,R2不存在,R1均为且R8为正己基;式(2-9-1):式(2-9)中,Z均为C,R2不存在,R1均为正己基;式(2-9-2):式(2-9)中,Z均为C,R2不存在,R1均为且R10为正己基;式(2-9-3):式(2-9)中,Z均为C,R2不存在,R1均为且R8为正己基;式(2-11-1):式(2-11)中,Z均为C,R2不存在,R1均为正己基;式(2-11-2):式(2-11)中,Z均为C,R2不存在,R1均为且R10为正己基;式(2-11-3):式(2-11)中,Z均为C,R2不存在,R1均为且R8为正己基。
根据本发明,式(2)所示的化合物可以是市售品,也可以通过本领域常规的方法制得,例如通过丁基锂反应上醛基进行制备(例如采用Adv.Mater.,2015,27,1170–1174;J.Am.Chem.Soc.,2016,138,4955-4961等文献中记载的方法进行制备)。
根据本发明,式(a)所示的化合物可以根据基团A进行适当地选择,例如,式(a)所示的化合物的具体实例可以包括:
式(a-1):式(a-2):式(a-3):式(a-4):式(a-5):式(a-6):式(a-7):式(a-8):式(a-9):式(a-10):式(a-11):
根据本发明,式(a)所示的化合物可以是市售品,也可以通过本领域常规的方法制得,在此不再赘述。
根据本发明,所述式(2)所示的化合物两端连接的醛基能够与式(a)所示的化合物发生脱水缩合,从而形成式(1F)所示的化合物,其中,对所述式(2)所示的化合物与式(a)所示的化合物的用量并无特别的限定,只要能够制得式(1F)所示的化合物即可,优选情况下,式(2)所示的化合物与式(a)所示的化合物的摩尔比为1:2-100,更优选为1:4-10。
根据本发明,该反应在碱性化合物存在下进行,从而可以为反应体系提供碱性环境,所述碱性化合物例如可以为哌啶、吡啶和三乙胺中一种或多种。对碱性化合物的用量并无特别的限定,只要能够提供碱性环境并有助于所述脱水缩合反应的进行即可,例如相对于1mmol式(2)所示的化合物,所述碱性化合物的用量为0.1-1000mmol,更优选为1-50mmol。
根据本发明,所述有机溶剂例如为氯仿和/或二氯甲烷。其中,相对于1mmol式(2)所示的化合物,所述有机溶剂的用量例如可以为20-500mL(优选为40-400mL)。
根据本发明,优选情况下,所述脱水缩合反应的条件包括:温度为20-100℃(例如50-100℃),时间为10min-48h(例如10-20h)。更优选地,所述脱水缩合反应的条件包括:温度为60-80℃,时间为10-15h。
为了能够保证反应的顺利进行,该方法还包括在进行反应之前,将反应体系保持在惰性气氛下,例如可以在将原料都加毕后,向反应体系通入非活泼性气体20-40min以除去空气。所述非活泼性气体例如可以为氩气、氦气、氮气等。
根据本发明,为了能够从反应液中提取出式(1F)所示的化合物,该方法还包括后处理步骤,例如将脱水缩合反应产物与甲醇(相对于100mL反应液总体积,甲醇的用量例如可以为200-1000mL)混合,然后进行固液分离,将所得固相采用硅胶色谱柱(可以采用200-300目的硅胶,洗脱剂可以为体积比为1:0.2-3的石油醚和二氯甲烷混合液)进行层析分离。
本发明还提供了一种多并稠环共轭大分子,该共轭大分子为下式(1)所示的化合物:
式(1)其中,各个基团各自独立表示3-10
个噻吩共轭稠环结构;各个基团A'各自独立地选自下式所示基团中的一种:
其中,R3-R6各自独立地选自H、烷基、烷氧基和烷硫基;其中,各个R1各自独立地选自式所示的基团和式所示的基团;各个R2各自独立地选自式所示的基团;各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O、S和Se;m为0-6的整数;p为0-6的整数;n为0-6的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基、C1-C30的烷硫基和C6-C12的芳基。
根据本发明,所述多并稠环共轭大分子中的基团可以在上文中相应描述中进行选择,为此,本发明在此不再对各个基团再进行描述。
其中,优选地,各个基团各自独立地表示3-5个噻吩共轭稠环结构;R3-R6各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基和C1-C30的烷硫基;各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O和S;m为0-4的整数;p为0-4的整数;n为0-4的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基、C1-C20的烷硫基和C6-C10的芳基。
更优选地,各个基团各自独立地表示3-4个噻吩共轭稠环结构;R3-R6各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基和C1-C20的烷硫基;各个Z各自独立地选自C和N;各个R7、各个R9和各个R11各自独立地选自H、C1-C6的烷基、C1-C6的烷氧基和C1-C6的烷硫基;各个R8和各个R10和各自独立地选自H、C4-C10的烷基、C4-C10的烷氧基和C4-C10的烷硫基。
更进一步优选地,R3-R6各自独立地选自H、C1-C10的烷基、C1-C10的烷氧基和C1-C10的烷硫基;各个Z各自独立地选自C和N;m为0、1、2或3;p为0、1、2或3;n为0、1、2或3;各个R7、各个R9和各个R11各自独立地选自H、甲基、乙基、正丙基、正丁基、甲氧基、乙氧基、正丙氧基、正丁氧基、甲硫基、乙硫基、正丙硫基和正丁硫基;各个R8和各个R10和各自独立地选自H、正丁基、正戊基、正己基、正辛基、2-乙基己基、正丁氧基、正戊氧基、正己氧基、正辛氧基、2-乙基己氧基、正丁硫基、正戊硫基、正己硫基、正辛硫基和2-乙基己硫基。
优选地,该多并稠环共轭大分子为下式中所示的化合物中的一种:
式(1-9):(相当于基团B均为3个噻吩共轭稠环结构);
式(1-11):(相当于基团B均为4个噻吩共轭稠环结构)。优选地,基团A'为基团A'-1
根据本发明,上述多并稠环共轭大分子的具体实例可以为下式中所示的化合物中的一种:
式(1-9-1):式(1-9)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为正己基;式(1-9-2):式(1-9)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R10为正己基;式(1-9-3):式(1-9)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R8为正己基;式(1-11-1):式(1-11)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为正己基;式(1-11-2):式(1-11)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R10为正己基;式(1-11-3):式(1-11)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R8为正己基。
本发明还提供了上述多并稠环共轭大分子的制备方法,该方法包括:
在碱性化合物存在下且在有机溶剂中,将下式(2)所示的化合物与式(a')所示的化合物进行脱水缩合反应,得到式(1)所示的化合物;其中,
式(2)式(a')
该方法中,基团R1-R6如上文中所描述的,本发明在此不再赘述。
其中,式(2)所示的化合物如上文中所描述的,本发明在此不再赘述。
式(a')所示的化合物可以根据基团A'进行适当地选择,例如,式(a')所示的化合物的具体实例可以包括:式(a'-1)
根据本发明,所述式(2)所示的化合物两端连接的醛基能够与式(a')所示的化合物发生脱水缩合,从而形成式(1)所示的化合物,其中,对所述式(2)所示的化合物与式(a')所示的化合物的用量并无特别的限定,只要能够制得式(1)所示的化合物即可,优选情况下,式(2)所示的化合物与式(a')所示的化合物的摩尔比为1:2-100,更优选为1:4-10。
根据本发明,该反应在碱性化合物存在下进行,从而可以为反应体系提供碱性环境,所述碱性化合物的种类和用量可以根据上文中所描述的进行选择。
根据本发明,所述有机溶剂的种类和用量可以根据上文中所描述的进行选择。
根据本发明,优选情况下,所述脱水缩合反应的条件包括:温度为20-100℃(例如50-100℃),时间为10min-48h(例如10-20h)。更优选地,所述脱水缩合反应的条件包括:温度为60-80℃,时间为10-15h。
为了能够保证反应的顺利进行,该方法还包括在进行反应之前,将反应体系保持在惰性气氛下,例如可以在将原料都加毕后,向反应体系通入非活泼性气体20-40min以除去空气。所述非活泼性气体例如可以为氩气、氦气、氮气等。
根据本发明,为了能够从反应液中提取出式(1)所示的化合物,该方法还包括后处理步骤,例如将脱水缩合反应产物与甲醇(相对于100mL反应液总体积,甲醇的用量例如可以为200-1000mL)混合,然后进行固液分离,将所得固相采用硅胶色谱柱(可以采用200-300目的硅胶,洗脱剂可以为体积比为1:0.2-3的石油醚和二氯甲烷混合液)进行层析分离。
本发明还提供了一种含有上述多并稠环共轭大分子中的一种或多种的光伏材料。
根据本发明,对所述光伏材料并无特别的限定,只要含有本发明的上述多并稠环共轭大分子即可,该光伏材料优选是指太阳能电池中的光捕获的活性层中电子给体材料和/或电子受体材料。
例如,可以将电子给体聚合物材料PBnDT-FTAZ与本发明提供的共轭大分子以重量比为0.5-4:1进行组合来作为所述光伏材料,特别是作为太阳能电池的光捕获活性层的光伏材料,其中,本发明提供的共轭大分子则作为电子受体材料。
其中,聚合物材料PBnDT-FTAZ的结构单元分别如下所示:
其中,-C6H13表示正己基,-C4H9表示正丁基。该聚合物材料PBnDT-FTAZ的制备例如可参考文献(例如J.Am.Chem.Soc.2011,133,4625)中的方法进行,本发明在此不再赘述。
本发明还提供了一种太阳能电池,该太阳能电池包括光捕获的活性层,其中,所述光捕获的活性层中电子给体材料和/或电子受体材料含有上述多并稠环共轭大分子中的一种或多种。
根据本发明,本发明对太阳能电池的构造并无特别的限定,只要其光捕获的活性层中电子给体材料和/或电子受体材料含有上述共轭大分子即可,这样就可以有效地提高太阳能电池的光电转换效率。
特别是,本发明的共轭大分子适用于用于有机太阳能电池中,特别作为电子受体材料与其他电子给体材料组合以形成太阳能电池的光捕获的活性层。作为这样的电子给体材料例如可以为聚合物材料PBnDT-FTAZ,如上文中所定义的。
其中,聚合物材料PBnDT-FTAZ可以与本发明提供的共轭大分子以重量比为0.5-4:1进行组合来形成光捕获的活性层。
本发明还提供了一种太阳能电池的制备方法,其中,该方法包括将含有上述多并稠环共轭大分子中的一种或多种的电子给体材料和/或电子受体材料用于形成光捕获的活性层。
根据本发明,对太阳能电池的制备过程并无特别的限定,可以采用本领域常规的方法进行,例如该制备过程可以包括:
在作为阴极的导电玻璃(例如氧化铟锡玻璃,ITO)上涂覆ZnO层作为阴极修饰层(厚度例如可以为20-50nm),干燥后,再在ZnO层上涂覆上聚合物材料PBnDT-FTAZ与本发明提供的共轭大分子的混合物作为活性层,干燥后,再真空蒸镀上氧化钼(厚度例如可以为5-10nm)和Ag(厚度例如可以为50-100nm)作为阳极。
本发明提供的共轭大分子具有较强的可见光吸收峰,例如在600-850nm的波长范围内具有强吸收峰;该共轭大分子热稳定性良好,可耐受310℃左右的温度而不分解;循环伏安法测试结果表明,其HOMO能级和LUMO能级可以与大部分通用的电子给体材料能级匹配,且其具有较好的接受电子或空穴能力,非常利于作为太阳能电池的光伏材料,特别是电子受体和/或电子给体材料,尤其是作为电子受体材料。
本发明提供的太阳能电池,具有较高的短路电流,例如可以达到15mA·cm-2以上,优选可达到20mA·cm-2;较高的开路电压,例如可达到0.8V以上,优选可达到0.9V以上;较高的填充因子,例如可达到65%以上,优选可达到70%以上;较高的光电转换率(PCE),例如可达到8.9%以上,优选可达到12%。
以下将通过实施例对本发明进行详细描述。
以下例子中:1H NMR是采用Bruker公司AVANCE 400型号的核磁共振仪测量的。MS(MALDI)是采用Bruker Daltonics Biflex III MALDI-TOF Analyzer型号的质谱仪进行测量的。紫外-可见吸收光谱是采用Jasco V-570spectrophotometer型号的紫外-可见分光光度计进行测量的。循环伏安曲线是采用CHI660C electrochemical workstation型号的循环伏安测试仪进行测量的。I-V曲线是通过B2912A Precision Source/Measure Unit(Agilent Technologies)测量的,从I-V曲线可以得到短路电流、开路电压、填充因子和光电转换效率等参数。聚合物给体材料PBnDT-FTAZ是通过文献J.Am.Chem.Soc.2011,133,4625中的方法制得。
制备例1
该制备例用于说明式(2-7-2)所示的化合物的制备方法。
如上反应式所示,将式IT所示的化合物(102mg,0.1mmol;购自苏州纳凯科技有限公司)、四氢呋喃(20mL)加入到反应容器中,通氩气,在-78℃下搅拌1h。缓慢滴加正丁基锂(0.19mL,0.3mmol,1.6M),在-78℃下搅拌2h,加入N,N-二甲基甲酰胺(36.6mg,0.5mmol),将反应产物缓慢回到室温(约25℃),搅拌过夜(约12h)。然后加入水(0.2mL)淬灭,使用饱和食盐水和二氯甲烷萃取,用硫酸镁干燥,旋干,得到的沉淀物用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为2:1的石油醚/二氯甲烷)进行层析分离,得到亮黄色固体(91mg,收率为84.6%),即为式(2-7-2)所示的化合物。1H NMR(400MHz,CDCl3):δ9.89(s,2H),7.94(s,2H),7.62(s,2H),7.16(d,J=8.4Hz,8H),7.11(d,J=8.4Hz,8H),2.58(t,J=7.6Hz,8H),1.66(m,8H),1.31(m,24H),0.89(m,12H).MS(MALDI):m/z 1077(M+1).
制备例2
该制备例用于说明式(2-7-3)所示的化合物的制备方法。
如上反应式所示,将式IT-Th所示的化合物(104mg,0.1mmol;购自朔纶有机光电科技(北京)有限公司)、四氢呋喃(20mL)加入到反应容器中,通氩气,在-78℃下搅拌1h。缓慢滴加正丁基锂(0.2mL,0.32mmol,1.6M),在-78℃下搅拌2h,加入N,N-二甲基甲酰胺(32.9mg,0.45mmol),将反应产物缓慢回到室温(约25℃),搅拌过夜(约12h)。然后加入水(0.2mL)淬灭,使用饱和食盐水和二氯甲烷萃取,用硫酸镁干燥,旋干,得到的沉淀物用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1.5:1的石油醚/二氯甲烷)进行层析分离,得到亮黄色固体(65mg,收率为59.1%),即为式(2-7-3)所示的化合物。1H NMR(400MHz,CDCl3):δ9.94(s,2H),7.97(s,2H),7.79(s,2H),6.81(d,J=3.2Hz,4H),6.57(d,J=3.6Hz,4H),2.71(t,J=7.6Hz,8H),1.61(m,8H),1.33(m,24H),0.87(m,12H).MS(MALDI):m/z 1099(M+).
制备例3
该制备例用于说明式(2-9-2)所示的化合物的制备方法。
如上反应式所示,将式IBT所示的化合物(226mg,0.2mmol;购自苏州纳凯科技有限公司)、四氢呋喃(35mL)加入到反应容器中,通氩气,在-78℃下搅拌1h。缓慢滴加正丁基锂(0.4mL,0.64mmol,1.6M),在-78℃下搅拌1.5h,加入N,N-二甲基甲酰胺(65.8mg,0.9mmol),将反应产物缓慢回到室温(约25℃),搅拌过夜(约12h)。然后加入水(0.4mL)淬灭,使用饱和食盐水和二氯甲烷萃取,用硫酸镁干燥,旋干,得到的沉淀物用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1的石油醚/二氯甲烷)进行层析分离,得到橙红色固体(159mg,收率为67%),即为式(2-9-2)所示的化合物。1H NMR(400MHz,CDCl3):δ9.88(s,2H),7.88(s,2H),7.62(s,2H),7.18(d,J=8.1Hz,8H),7.10(d,J=8.1Hz,8H),2.54(t,J=7.8Hz,8H),1.55(m,8H),1.27(m,24H),0.83(t,J=6.6Hz,12H).MS(MALDI):m/z 1187(M+).
制备例4
该制备例用于说明式(2-11-2)所示的化合物的制备方法。
如上反应式所示,将式ITT所示的化合物(186.4mg,0.15mmol;购自苏州纳凯科技有限公司)、四氢呋喃(30mL)加入到反应容器中,通氩气,在-78℃下搅拌1h。缓慢滴加正丁基锂(0.38mL,0.6mmol,1.6M),在-78℃下搅拌1.5h,加入N,N-二甲基甲酰胺(51.2mg,0.7mmol),将反应产物缓慢回到室温(约25℃),搅拌过夜(约12h)。然后加入水(0.4mL)淬灭,使用饱和食盐水和二氯甲烷萃取,用硫酸镁干燥,旋干,得到的沉淀物用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1的石油醚/二氯甲烷)进行层析分离,得到红色固体(106mg,收率为54.4%),即为式(2-11-2)所示的化合物。1H NMR(400MHz,CDCl3):δ9.81(s,2H),7.86(s,2H),7.60(s,2H),7.19(d,J=8.1Hz,8H),7.04(d,J=8.1Hz,8H),2.46(t,J=7.8Hz,8H),1.52(m,8H),1.24(m,24H),0.82(t,J=6.6Hz,12H).MS(MALDI):m/z 1298(M+).
制备例5
该制备例用于说明式(a-2)和(a-3)所示的化合物的制备方法。
如上反应式所示,将5-氟-1,3-茚二酮(820mg,5mmol;购自Ark公司)、丙二腈(660mg,10mmol)、乙醇(30mL)加入到反应容器中,通氩气,在25℃下搅拌30分钟。缓慢加入乙酸钠(492mg,6mmol),在25℃下搅拌2h,加入水(40mL),搅拌1.5h。然后加入浓盐酸调节pH=2,然后用滤纸过滤,用水洗(300mL),得到的沉淀物用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:5的甲醇/三氯甲烷)进行层析分离,得到灰白色固体(610mg,收率为57.5%),即为式(a-2)所示的化合物(占71mol%)和式(a-3)所示的化合物(占29mol%)的混合物。混合物的1H NMR(400MHz,CDCl3):δ8.68(dd,J=8.8Hz,0.28H),7.61(dd,J=8.2Hz,0.72H),8.01(m,0.76H),7.61(m,0.36H),7.55(m,1H),3.76(d,2H).MS(EI):m/z 212(M+).
制备例6
该制备例用于说明式(a-1)所示的化合物的制备方法。
如上反应式所示,将4-氟-1,3-茚二酮(410mg,2.5mmol;购自Ark公司)、丙二腈(330mg,5mmol)、乙醇(20mL)加入到反应容器中,通氩气,在25℃下搅拌30分钟。缓慢加入乙酸钠(246mg,3mmol),在25℃下搅拌2h,加入水(30mL),搅拌1.5h。然后加入浓盐酸调节pH=2,然后用滤纸过滤,用水洗(300mL),得到的沉淀物用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:2的甲醇/三氯甲烷)进行层析分离,得到棕色固体(190mg,收率为35.8%),即为式(a-1)所示的化合物。1H NMR(400MHz,CDCl3):δ8.48(d,J=8.1Hz,1H),7.89(m,1H),7.49(t,J=8.4Hz,1H),3.76(s,2H).MS(EI):m/z 212(M+).
制备例7
该制备例用于说明式(a-5)所示的化合物的制备方法。
如上反应式所示,将5,6-二氟-1,3-茚二酮(201mg,1.1mmol;按照文献Planells,M.;Robertson,N.Eur.J.Org.Chem.2012,2012,4947中的方法合成)、丙二腈(145mg,2.2mmol)、乙醇(20mL)加入到反应容器中,通氩气,在25℃下搅拌30分钟。缓慢加入乙酸钠(107mg,1.3mmol),在25℃下搅拌2h,加入水(30mL),搅拌1.5h。然后加入浓盐酸调节PH=2,然后用滤纸过滤,用水洗(400mL),得到的沉淀物用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1的甲醇/三氯甲烷)进行层析分离,得到棕色固体(115mg,收率为44.6%),即为式(a-5)所示的化合物。1H NMR(400MHz,CDCl3):δ8.46(dd,J=6.4Hz,1H),7.76(t,J=7.6Hz,1H),3.76(s,2H).MS(EI):m/z 230(M+).
实施例1
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-5-2)所示的化合物(96.3mg,0.1mmol;购自苏州纳凯科技有限公司)、上述制备例5所得的式(a-2)和式(a-3)所示的化合物的混合物(84.8mg,0.4mmol)、吡啶(0.6mL,0.72mmol)和氯仿(35mL)加入到反应容器中,通氩气20min,而后在65℃下回流15h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1的石油醚/二氯甲烷)进行层析分离,得到深蓝色固体(87mg,收率为64%),即为式(1F-5-F1)所示的多并稠环共轭大分子,其为式(1F-5-5)、式(1F-5-8)和式(1F-5-35)所示的化合物的混合物。混合物的1HNMR(400MHz,CDCl3):δ8.89(d,2H),8.71(dd,J=4.8Hz,0.6H),8.38(dd,J=8.8Hz,1.4H),7.91(dd,J=5.2Hz,1.4H),7.73(t,J=4.4Hz,4H),7.54(dd,J=2.8Hz,0.6H),7.42(m,2H),7.13(d,J=8.4Hz,16H),2.58(t,J=7.6Hz,8H),1.61(m,8H),1.30(m,24H),0.88(m,12H).MS(MALDI):m/z 1351.8(M+1).
该式(1F-5-F1)所示的上述三种多并稠环共轭大分子的混合物的紫外-可见吸收光谱如图1所示,其中,在600-750nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.42×105M–1·cm–1,薄膜在704nm处吸收最强。
循环伏安曲线如图2所示,其HOMO能级为-5.84eV,LUMO能级为-3.93eV,带隙为1.91eV,表明式(1F-5-F1)所示的上述三种多并稠环共轭大分子的混合物具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例2
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-5-1)所示的化合物(66mg,0.1mmol;购自朔纶有机光电科技(北京)有限公司)、上述制备例5所得的式(a-2)和式(a-3)所示的化合物的混合物(84.8mg,0.4mmol)、吡啶(0.65mL,0.78mmol)和氯仿(30mL)加入到反应容器中,通氩气15min,而后在65℃下回流13h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1.5的石油醚/二氯甲烷)进行层析分离,得到棕色固体(67mg,收率为64%),即为式(1F-5-F2)所示的多并稠环共轭大分子,其为式(1F-5-4)、式(1F-5-7)和式(1F-5-34)所示的化合物的混合物。混合物的1H NMR(400MHz,CDCl3):δ8.98(d,2H),8.74(dd,J=4.4Hz,0.6H),8.40(d,J=8.8Hz,1.4H),7.95(dd,J=6.4Hz,1.4H),7.73(d,2H),7.61(s,2H),7.58(m,0.6H),7.44(t,J=6.4Hz,2H),2.07(m,4H),1.95(m,4H),1.14(m,24H),0.78(m,20H).MS(MALDI):m/z 1047(M+1).
该式(1F-5-F2)所示的上述三种多并稠环共轭大分子的混合物的紫外-可见吸收光谱如图3所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.12×105M–1·cm–1,薄膜在730nm左右处吸收最强。
循环伏安曲线如图4所示,其HOMO能级为-5.72eV,LUMO能级为-3.99eV,带隙为1.73eV,表明式(1F-5-F2)所示的上述三种多并稠环共轭大分子的混合物具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例3
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-5-1)所示的化合物(100mg,0.15mmol;购自朔纶有机光电科技(北京)有限公司)、式(a-5)所示的化合物(138mg,0.6mmol)、吡啶(0.7mL,0.84mmol)和氯仿(35mL)加入到反应容器中,通氩气15min,反应在65℃下回流14h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为3:1的石油醚/二氯甲烷)进行层析分离,得到深褐色固体(93mg,收率为57%),即为式(1F-5-13)所示的多并稠环共轭大分子。1H NMR(400MHz,CDCl3):δ8.98(s,2H),8.57(dd,J=6.4Hz,2H),7.72(m,4H),7.62(s,2H),2.08(m,4H),1.95(m,4H),1.14(m,24H),0.8(m,20H).MS(MALDI):m/z 1084(M+1).
该式(1F-5-13)所示的多并稠环共轭大分子的紫外-可见吸收光谱如图5所示,其中,在600-750nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.4×105M–1·cm–1,薄膜在724nm左右处吸收最强。
循环伏安曲线如图6所示,其HOMO能级为-5.73eV,LUMO能级为-4.06eV,带隙为1.67eV,表明式(1F-5-13)所示的多并稠环共轭大分子具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例4
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-7-2)所示的化合物(110mg,0.1mmol)、上述制备例5所得的式(a-2)和式(a-3)所示的化合物的混合物(84.8mg,0.4mmol)、吡啶(0.7mL,0.84mmol)和氯仿(35mL)加入到反应容器中,通氩气15min,而后在65℃下回流16h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1的石油醚/二氯甲烷)进行层析分离,得到蓝黑色固体(110mg,收率为75%),即为式(1F-7-F1)所示的多并稠环共轭大分子,其为式(1F-7-5)、式(1F-7-8)和式(1F-7-35)所示的化合物的混合物。混合物的1H NMR(400MHz,CDCl3):δ8.60(s,2H),8.71(dd,J=4.0Hz,0.5H),8.36(dd,J=1.6Hz,1.5H),8.23(d,J=7.6Hz,2H),7.92(dd,J=5.2Hz,1.5H),7.64(s,2H),7.55(dd,J=2.8Hz,0.5H),7.41(m,2H),7.21(d,J=8.4Hz,8H),7.14(d,J=8.4Hz,8H),2.57(t,J=8Hz,8H),1.61(m,8H),1.29(m,24H),0.86(t,J=6.4Hz,12H).MS(MALDI):m/z 1463.7(M+1).
该式(1F-7-F1)所示的上述三种多并稠环共轭大分子的混合物的紫外-可见吸收光谱如图7所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.2×105M–1·cm–1,薄膜在734nm左右处吸收最强;薄膜的最大吸收峰比溶液中的红移48nm。
循环伏安曲线如图8所示,其HOMO能级为-5.63eV,LUMO能级为-3.98eV,带隙为1.65eV,表明式(1F-7-F1)所示的上述三种多并稠环共轭大分子的混合物具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例5
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-7-3)所示的化合物(110mg,0.1mmol)、上述制备例5所得的式(a-2)和式(a-3)所示的化合物的混合物(84.8mg,0.4mmol)、吡啶(0.7mL,0.84mmol)和氯仿(30mL)加入到反应容器中,通氩气25min,而后在65℃下回流15h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1的石油醚/二氯甲烷)进行层析分离,得到青绿色固体(75mg,收率为50.4%),即为式(1F-7-F3)所示的多并稠环共轭大分子,其为式(1F-7-6)、式(1F-7-9)和式(1F-7-36)所示的化合物的混合物。混合物的1H NMR(400MHz,CDCl3):δ8.90(s,2H),8.72(dd,J=4.4Hz,0.4H),8.39(d,1.6H),8.27(d,2H),7.94(dd,J=5.2Hz,1.6H),7.82(s,2H),7.58(dd,J=2.4Hz,0.4H),7.42(m,2H),6.88(m,4H),6.61(m,4H),2.72(t,J=2.4Hz,8H),1.64(m,8H),1.27(m,24H),0.83(m,12H).MS(MALDI):m/z 1488(M+1).
该式(1F-7-F3)所示的上述三种多并稠环共轭大分子的混合物的紫外-可见吸收光谱如图9所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为1.79×105M–1·cm–1,薄膜在728nm左右处吸收最强。
循环伏安曲线如图10所示,其HOMO能级为-5.74eV,LUMO能级为-4.01eV,带隙为1.73eV,表明式(1F-7-F3)所示的上述三种多并稠环共轭大分子的混合物具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例6
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-7-3)所示的化合物(165mg,0.15mmol)、式(a-5)所示的化合物(127mg,0.6mmol)、吡啶(0.9mL,1.08mmol)和氯仿(40mL)加入到反应容器中,通氩气30min,而后在65℃下回流16h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为3:1的石油醚/二氯甲烷)进行层析分离,得到深绿色固体(100mg,收率为44%),即为式(1F-7-15)所示的多并稠环共轭大分子。1H NMR(400MHz,CDCl3):δ8.89(s,2H),8.55(t,J=8.8Hz,2H),8.27(s,2H),7.83(d,2H),7.70(t,J=7.6Hz,2H),6.88(m,4H),6.61(m,4H),2.72(t,J=8.0Hz,8H),1.62(m,8H),1.31(m,24H),0.82(m,12H).MS(MALDI):m/z 1523(M+1).
该式(1F-7-15)所示的多并稠环共轭大分子的紫外-可见吸收光谱如图11所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.23×105M–1·cm–1,薄膜在736nm左右处吸收最强。
循环伏安曲线如图12所示,其HOMO能级为-5.75eV,LUMO能级为-4.07eV,带隙为1.68eV,表明式(1F-7-15)所示的多并稠环共轭大分子具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例7
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-9-2)所示的化合物(154mg,0.13mmol)、上述制备例5所得的式(a-2)和式(a-3)所示的化合物的混合物(106mg,0.5mmol)、吡啶(0.9mL,1.08mmol)和氯仿(30mL)加入到反应容器中,通氩气30min,而后在65℃下回流14h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:1的石油醚/二氯甲烷)进行层析分离,得到青绿色固体(100mg,收率为48.8%),即为式(1F-9-F1)所示的多并稠环共轭大分子,其为式(1F-9-5)、式(1F-9-8)和式(1F-9-35)所示的化合物的混合物。混合物的1H NMR(400MHz,CDCl3):δ8.91(d,2H),8.67(dd,J=4.4Hz,0.5H),8.35(d,1.5H),7.96(d,J=10.8Hz,2H),7.90(dd,J=5.2Hz,1.5H),7.64(s,2H),7.53(m,0.5H),7.37(m,2H),7.21(d,J=8.4Hz,8H),7.14(d,J=8Hz,8H),2.59(t,J=8Hz,8H),1.61(m,8H),1.30(m,24H),0.87(m,12H).MS(MALDI):m/z1475.9(M+1).
该式(1F-9-F1)所示的上述三种多并稠环共轭大分子的混合物的紫外-可见吸收光谱如图13所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.11×105M–1·cm–1,薄膜在728nm左右处吸收最强。
循环伏安曲线如图14所示,其HOMO能级为-5.44eV,LUMO能级为-3.98eV,带隙为1.46eV,表明式(1F-9-F1)所示的上述三种多并稠环共轭大分子的混合物具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例8
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-9-2)所示的化合物(120mg,0.1mmol)、式(a-1)所示的化合物(84mg,0.4mmol)、吡啶(0.8mL,0.96mmol)和氯仿(35mL)加入到反应容器中,通氩气25min,而后在65℃下回流14h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:2的石油醚/二氯甲烷)进行层析分离,得到青绿色固体(75mg,收率为47.5%),即为式(1F-9-2)所示的多并稠环共轭大分子。1H NMR(400MHz,CDCl3):δ8.94(s,2H),8.48(d,J=8Hz,2H),7.96(s,2H),7.69(m,2H),7.64(s,2H),7.33(t,J=8.4Hz,2H),7.2(d,J=8.4Hz,8H),7.14(d,J=8.4Hz,8H),2.58(t,J=7.6Hz,8H),1.61(m,8H),1.29(m,24H),0.86(t,J=6.4Hz,12H).MS(MALDI):m/z 1576.1(M+1).
该式(1F-9-2)所示的多并稠环共轭大分子的紫外-可见吸收光谱如图15所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.22×105M–1·cm–1,薄膜在720nm左右处吸收最强。
循环伏安曲线如图16所示,其HOMO能级为-5.46eV,LUMO能级为-3.98eV,带隙为1.48eV,表明式(1F-9-2)所示的多并稠环共轭大分子具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例9
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-9-2)所示的化合物(154mg,0.13mmol)、式(a-5)所示的化合物(116mg,0.55mmol)、吡啶(0.9mL,1.08mmol)和氯仿(35mL)加入到反应容器中,通氩气25min,而后在65℃下回流15h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为2:1的石油醚/二氯甲烷)进行层析分离,得到黑绿色固体(95mg,收率为45.5%),即为式(1F-9-14)所示的多并稠环共轭大分子。1H NMR(400MHz,CDCl3):δ8.91(s,2H),8.53(dd,J=3.6Hz,2H),7.98(s,2H),7.67(m,4H),7.20(d,8H),7.14(d,8H),2.58(t,J=8.0Hz,8H),1.62(m,8H),1.27(m,24H),0.87(m,12H).MS(MALDI):m/z 1612(M+1).
该式(1F-9-14)所示的多并稠环共轭大分子的紫外-可见吸收光谱如图17所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.51×105M–1·cm–1,薄膜在744nm左右处吸收最强。
循环伏安曲线如图18所示,其HOMO能级为-5.49eV,LUMO能级为-4.02eV,带隙为1.47eV,表明式(1F-9-14)所示的多并稠环共轭大分子具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例10
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-9-2)所示的化合物(120mg,0.1mmol)、式(a'-1)所示的化合物(78mg,0.4mmol;购自TCI公司)、吡啶(0.8mL,0.96mmol)和氯仿(30mL)加入到反应容器中,通氩气25min,而后在65℃下回流15h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:2的石油醚/二氯甲烷)进行层析分离,得到青绿色固体(115mg,收率为74.6%),即为式(1-9-2)所示的多并稠环共轭大分子。1H NMR(400MHz,CDCl3):δ8.92(d,J=3.6Hz,2H),8.67(m,2H),7.91(dd,J=6.8Hz,4H),7.69(m,4H),7.64(s,2H),7.21(d,J=8Hz,8H),7.15(d,J=8Hz,8H),2.58(t,J=8Hz,8H),1.62(m,8H),1.30(m,24H),0.86(t,J=6.4Hz,12H).MS(MALDI):m/z1539.4(M+1).
该式(1-9-2)所示的多并稠环共轭大分子的紫外-可见吸收光谱如图19所示,其中,在600-800nm的波长范围内具有强吸收峰,最大摩尔消光系数为2.09×105M–1·cm–1,薄膜在706nm左右处吸收最强;薄膜的最大吸收峰比溶液中的红移14nm。
循环伏安曲线如图20所示,其HOMO能级为-5.41eV,LUMO能级为-3.90eV,带隙为1.51eV,表明式(1-9-2)所示的多并稠环共轭大分子具有较好的电子接受能力,可以与大部分通用的电子给体材料能级匹配。
实施例11
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-11-2)所示的化合物(130mg,0.1mmol)、上述制备例5所得的式(a-2)和式(a-3)所示的化合物的混合物(84mg,0.4mmol)、吡啶(0.7mL,0.84mmol)和氯仿(40mL)加入到反应容器中,通氩气25min,而后在65℃下回流13h。冷却至室温(约25℃)后,将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:2的石油醚/三氯甲烷)进行层析分离,得到深绿色固体(83mg,收率为49%),即为式(1F-11-F1)所示的多并稠环共轭大分子,其为式(1F-11-5)、式(1F-11-8)和式(1F-11-35)所示的化合物的混合物。混合物的1H NMR(400MHz,CDCl3):δ8.93(d,J=6.4Hz,2H),8.72(dd,J=4.4Hz,0.5H),8.41(d,J=8.8Hz,1.5H),8.03(d,J=10.8Hz,2H),7.94(dd,J=5.2Hz,1.5H),7.71(s,2H),7.59(m,0.5H),7.42(m,2H),7.24(d,J=8.4Hz,8H),7.17(d,J=8Hz,8H),2.63(t,J=8Hz,8H),1.67(m,8H),1.33(m,24H),0.89(m,12H).MS(MALDI):m/z 1689(M+1).
实施例12
本实施例用于说明本发明的共轭大分子及其制备方法。
如上反应式所示,将式(2-11-2)所示的化合物(130mg,0.1mmol)、式(a'-1)所示的化合物(78mg,0.4mmol;购自TCI公司)、吡啶(0.8mL,0.96mmol)和氯仿(30mL)加入到反应容器中,通氩气25min,而后在65℃下回流14h。冷却至室温后(约25℃),将反应产物倒入至200mL甲醇中并过滤,得到的沉淀用硅胶色谱柱(采用200-300目的硅胶,洗脱剂为体积比为1:2的石油醚/二氯甲烷)进行层析分离,得到青绿色固体(78mg,收率为47%),即为式(1-11-2)所示的多并稠环共轭大分子。1H NMR(400MHz,CDCl3):δ8.94(s,2H),8.81(m,2H),8.33(dd,J=6.8Hz,4H),7.96(m,4H),7.76(s,2H),7.23(d,J=8Hz,8H),7.18(d,J=8Hz,8H),2.60(t,J=8Hz,8H),1.63(m,8H),1.32(m,24H),0.88(t,J=6.4Hz,12H).MS(MALDI):m/z1653(M+1).
实施例13
本实施例用于说明书本发明的太阳能电池。
将作为阴极的氧化铟锡(ITO)玻璃(购自深圳南玻浮法玻璃有限公司)先用洗洁剂清洗,然后依次用去离子水、丙酮、异丙醇超声清洗,干燥后旋涂一层30nm厚的ZnO阴极修饰层,200℃下干燥30分钟,备用。
1.5mg上述式(1F-5-F1)所示的上述三种多并稠环共轭大分子的混合物与1mg聚合物给体材料PBnDT-FTAZ在0.1mL氯仿中进行混合得到混合液,而后将其旋涂于上述ZnO层上,干燥后即可获得光捕获活性层(有效面积为4mm2)。在活性层上真空(绝对压力为2×10- 5Pa)蒸镀厚度5nm左右MoO3(购自百灵威科技有限公司)和80nm左右的金属Ag作为太阳能电池的阳极。
用配有AM1.5滤光片(SAN-EI ELECTRIC Co.,Ltd.的XES-70S1型号)模拟太阳光源,在100mW/cm2光强下对器件进行光伏性能测试,光强通过标准单晶硅太阳能电池(购自VLSI Standards Inc)校准。所得的I-V曲线使用B2912A Precision Source/Measure Unit(Agilent Technologies)进行测量,通过Labview软件由计算机进行控制。
所得的I-V曲线如图21所示。通过图21所示的I-V曲线可得该太阳能电池的开路电压Voc为0.72V,短路电流Jsc为12.7mA·cm-2,填充因子FF为62%,光电转换效率PCE为5.7%。
实施例14
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-5-F2)所示的三种多并稠环共轭大分子的混合物替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图22所示。通过图22所示的I-V曲线可得该太阳能电池的开路电压Voc为0.74V,短路电流Jsc为15.5mA·cm-2,填充因子FF为66.7%,光电转换效率PCE为7.63%。
实施例15
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-5-13)所示的多并稠环共轭大分子替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图23所示。通过图23所示的I-V曲线可得该太阳能电池的开路电压Voc为0.65V,短路电流Jsc为14.7mA·cm-2,填充因子FF为62.3%,光电转换效率PCE为5.93%。
实施例16
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-7-F1)所示的三种多并稠环共轭大分子的混合物替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图24所示。通过图24所示的I-V曲线可得该太阳能电池的开路电压Voc为0.79V,短路电流Jsc为15.3mA·cm-2,填充因子FF为61.5%,光电转换效率PCE为7.47%。
实施例17
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-7-F3)所示的三种多并稠环共轭大分子的混合物替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图25所示。通过图25所示的I-V曲线可得该太阳能电池的开路电压Voc为0.84V,短路电流Jsc为19.7mA·cm-2,填充因子FF为74%,光电转换效率PCE为12.1%。
实施例18
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-7-15)所示的多并稠环共轭大分子替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图26所示。通过图26所示的I-V曲线可得该太阳能电池的开路电压Voc为0.75V,短路电流Jsc为17.2mA·cm-2,填充因子FF为70%,光电转换效率PCE为9.2%。
实施例19
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-9-F1)所示的三种多并稠环共轭大分子的混合物替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图27所示。通过图27所示的I-V曲线可得该太阳能电池的开路电压Voc为0.90V,短路电流Jsc为17.7mA·cm-2,填充因子FF为67.8%,光电转换效率PCE为10.8%。
实施例20
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-9-2)所示的多并稠环共轭大分子替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图28所示。通过图28所示的I-V曲线可得该太阳能电池的开路电压Voc为0.93V,短路电流Jsc为16.7mA·cm-2,填充因子FF为64.8%,光电转换效率PCE为10.1%。
实施例21
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-9-14)所示的多并稠环共轭大分子替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图29所示。通过图29所示的I-V曲线可得该太阳能电池的开路电压Voc为0.85V,短路电流Jsc为19.68mA·cm-2,填充因子FF为68.5%,光电转换效率PCE为11.5%。
实施例22
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1-9-2)所示的多并稠环共轭大分子替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图30所示。通过图30所示的I-V曲线可得该太阳能电池的开路电压Voc为0.97V,短路电流Jsc为13.4mA·cm-2,填充因子FF为59.5%,光电转换效率PCE为7.69%。
实施例23
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1F-11-F1)所示的三种多并稠环共轭大分子的混合物替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图31所示。通过图31所示的I-V曲线可得该太阳能电池的开路电压Voc为0.91V,短路电流Jsc为17.3mA·cm-2,填充因子FF为71%,光电转换效率PCE为11.2%。
实施例24
本实施例用于说明书本发明的太阳能电池。
根据实施例13所述的方法,不同的是,采用1.5mg的式(1-11-2)所示的多并稠环共轭大分子替代式(1F-5-F1)所示的三种多并稠环共轭大分子的混合物,最终制得太阳能电池并进行测试。
所得的I-V曲线如图32所示。通过图32所示的I-V曲线可得该太阳能电池的开路电压Voc为0.92V,短路电流Jsc为14.5mA·cm-2,填充因子FF为60%,光电转换效率PCE为8%。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (19)

1.一种多并稠环共轭大分子,其特征在于,该共轭大分子为下式(1F)所示的化合物:
式(1F)
其中,各个基团各自独立地表示1-10个噻吩共轭稠环结构;
各个基团A各自独立地选自下式所示基团中的一种:
其中,R3-R6中的至少一个为F,其他的各自独立地选自H、烷基、烷氧基和烷硫基;
其中,各个R1各自独立地选自式所示的基团和式所示的基团;
各个R2各自独立地选自式所示的基团;
各个Z各自独立地选自C、N和Si;
各个X和各个Y各自独立地选自O、S和Se;
m为0-6的整数;
p为0-6的整数;
n为0-6的整数;
各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基、C1-C30的烷硫基和C6-C12的芳基。
2.根据权利要求1所述的多并稠环共轭大分子,其中,各个基团各自独立地表示1-5个噻吩共轭稠环结构;R3-R6中的至少一个为F,其他的各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基和C1-C30的烷硫基;各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O和S;m为0-4的整数;p为0-4的整数;n为0-4的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基、C1-C20的烷硫基和C6-C10的芳基;
优选地,各个基团各自独立地表示1-4个噻吩共轭稠环结构;R3-R6中的至少一个为F,其他的各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基和C1-C20的烷硫基;各个Z各自独立地选自C和N;各个R7、各个R9和各个R11各自独立地选自H、C1-C6的烷基、C1-C6的烷氧基和C1-C6的烷硫基;各个R8和各个R10和各自独立地选自H、C4-C10的烷基、C4-C10的烷氧基和C4-C10的烷硫基;
更优选地,R3-R6中的至少一个为F,其他的各自独立地选自H、C1-C10的烷基、C1-C10的烷氧基和C1-C10的烷硫基;各个Z各自独立地选自C和N;m为0、1、2或3;p为0、1、2或3;n为0、1、2或3;各个R7、各个R9和各个R11各自独立地选自H、甲基、乙基、正丙基、正丁基、甲氧基、乙氧基、正丙氧基、正丁氧基、甲硫基、乙硫基、正丙硫基和正丁硫基;各个R8和各个R10和各自独立地选自H、正丁基、正戊基、正己基、正辛基、2-乙基己基、正丁氧基、正戊氧基、正己氧基、正辛氧基、2-乙基己氧基、正丁硫基、正戊硫基、正己硫基、正辛硫基和2-乙基己硫基。
3.根据权利要求1或2所述的多并稠环共轭大分子,其中,该共轭大分子为下式中所示的化合物中的一种:
式(1F-5):
式(1F-7):
式(1F-9):
式(1F-11):
4.根据权利要求3所述的多并稠环共轭大分子,其中,定义:基团A-1为基团A-2为基团A-3为基团A-4为基团A-5为基团A-6为基团A-7为基团A-8为基团A-9为基团A-10为基团A-11为
该共轭大分子为下式中所示的化合物中的一种:
式(1F-5-1):式(1F-5)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;
式(1F-5-2):式(1F-5)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;
式(1F-5-3):式(1F-5)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;
式(1F-5-4):式(1F-5)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;
式(1F-5-5):式(1F-5)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;
式(1F-5-6):式(1F-5)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;
式(1F-5-7):式(1F-5)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;
式(1F-5-8):式(1F-5)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-5-9):式(1F-5)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-5-10):式(1F-5)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;
式(1F-5-11):式(1F-5)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;
式(1F-5-12):式(1F-5)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;
式(1F-5-13):式(1F-5)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;
式(1F-5-14):式(1F-5)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;
式(1F-5-15):式(1F-5)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;
式(1F-5-16):式(1F-5)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;
式(1F-5-17):式(1F-5)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;
式(1F-5-18):式(1F-5)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;
式(1F-5-19):式(1F-5)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;
式(1F-5-20):式(1F-5)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;
式(1F-5-21):式(1F-5)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;
式(1F-5-22):式(1F-5)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;
式(1F-5-23):式(1F-5)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;
式(1F-5-24):式(1F-5)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;
式(1F-5-25):式(1F-5)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;
式(1F-5-26):式(1F-5)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;
式(1F-5-27):式(1F-5)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;
式(1F-5-28):式(1F-5)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;
式(1F-5-29):式(1F-5)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;
式(1F-5-30):式(1F-5)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;
式(1F-5-31):式(1F-5)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;
式(1F-5-32):式(1F-5)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;
式(1F-5-33):式(1F-5)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;
式(1F-5-34):式(1F-5)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;
式(1F-5-35):式(1F-5)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-5-36):式(1F-5)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-7-1):式(1F-7)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;
式(1F-7-2):式(1F-7)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;
式(1F-7-3):式(1F-7)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;
式(1F-7-4):式(1F-7)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;
式(1F-7-5):式(1F-7)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;
式(1F-7-6):式(1F-7)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;
式(1F-7-7):式(1F-7)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;
式(1F-7-8):式(1F-7)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-7-9):式(1F-7)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-7-10):式(1F-7)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;
式(1F-7-11):式(1F-7)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;
式(1F-7-12):式(1F-7)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;
式(1F-7-13):式(1F-7)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;
式(1F-7-14):式(1F-7)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;
式(1F-7-15):式(1F-7)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;
式(1F-7-16):式(1F-7)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;
式(1F-7-17):式(1F-7)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;
式(1F-7-18):式(1F-7)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;
式(1F-7-19):式(1F-7)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;
式(1F-7-20):式(1F-7)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;
式(1F-7-21):式(1F-7)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;
式(1F-7-22):式(1F-7)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;
式(1F-7-23):式(1F-7)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;
式(1F-7-24):式(1F-7)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;
式(1F-7-25):式(1F-7)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;
式(1F-7-26):式(1F-7)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;
式(1F-7-27):式(1F-7)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;
式(1F-7-28):式(1F-7)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;
式(1F-7-29):式(1F-7)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;
式(1F-7-30):式(1F-7)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;
式(1F-7-31):式(1F-7)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;
式(1F-7-32):式(1F-7)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;
式(1F-7-33):式(1F-7)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;
式(1F-7-34):式(1F-7)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;
式(1F-7-35):式(1F-7)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-7-36):式(1F-7)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-9-1):式(1F-9)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;
式(1F-9-2):式(1F-9)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;
式(1F-9-3):式(1F-9)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;
式(1F-9-4):式(1F-9)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;
式(1F-9-5):式(1F-9)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;
式(1F-9-6):式(1F-9)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;
式(1F-9-7):式(1F-9)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;
式(1F-9-8):式(1F-9)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-9-9):式(1F-9)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-9-10):式(1F-9)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;
式(1F-9-11):式(1F-9)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;
式(1F-9-12):式(1F-9)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;
式(1F-9-13):式(1F-9)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;
式(1F-9-14):式(1F-9)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;
式(1F-9-15):式(1F-9)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;
式(1F-9-16):式(1F-9)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;
式(1F-9-17):式(1F-9)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;
式(1F-9-18):式(1F-9)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;
式(1F-9-19):式(1F-9)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;
式(1F-9-20):式(1F-9)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;
式(1F-9-21):式(1F-9)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;
式(1F-9-22):式(1F-9)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;
式(1F-9-23):式(1F-9)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;
式(1F-9-24):式(1F-9)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;
式(1F-9-25):式(1F-9)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;
式(1F-9-26):式(1F-9)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;
式(1F-9-27):式(1F-9)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;
式(1F-9-28):式(1F-9)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;
式(1F-9-29):式(1F-9)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;
式(1F-9-30):式(1F-9)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;
式(1F-9-31):式(1F-9)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;
式(1F-9-32):式(1F-9)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;
式(1F-9-33):式(1F-9)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;
式(1F-9-34):式(1F-9)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;
式(1F-9-35):式(1F-9)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-9-36):式(1F-9)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-11-1):式(1F-11)中,Z均为C,A均为基团A-1,R2不存在,R1均为正己基;
式(1F-11-2):式(1F-11)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R10为正己基;
式(1F-11-3):式(1F-11)中,Z均为C,A均为基团A-1,R2不存在,R1均为且R8为正己基;
式(1F-11-4):式(1F-11)中,Z均为C,A均为基团A-2,R2不存在,R1均为正己基;
式(1F-11-5):式(1F-11)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R10为正己基;
式(1F-11-6):式(1F-11)中,Z均为C,A均为基团A-2,R2不存在,R1均为且R8为正己基;
式(1F-11-7):式(1F-11)中,Z均为C,A均为基团A-3,R2不存在,R1均为正己基;
式(1F-11-8):式(1F-11)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-11-9):式(1F-11)中,Z均为C,A均为基团A-3,R2不存在,R1均为且R8为正己基;
式(1F-11-10):式(1F-11)中,Z均为C,A均为基团A-4,R2不存在,R1均为正己基;
式(1F-11-11):式(1F-11)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R10为正己基;
式(1F-11-12):式(1F-11)中,Z均为C,A均为基团A-4,R2不存在,R1均为且R8为正己基;
式(1F-11-13):式(1F-11)中,Z均为C,A均为基团A-5,R2不存在,R1均为正己基;
式(1F-11-14):式(1F-11)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R10为正己基;
式(1F-11-15):式(1F-11)中,Z均为C,A均为基团A-5,R2不存在,R1均为且R8为正己基;
式(1F-11-16):式(1F-11)中,Z均为C,A均为基团A-6,R2不存在,R1均为正己基;
式(1F-11-17):式(1F-11)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R10为正己基;
式(1F-11-18):式(1F-11)中,Z均为C,A均为基团A-6,R2不存在,R1均为且R8为正己基;
式(1F-11-19):式(1F-11)中,Z均为C,A均为基团A-7,R2不存在,R1均为正己基;
式(1F-11-20):式(1F-11)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R10为正己基;
式(1F-11-21):式(1F-11)中,Z均为C,A均为基团A-7,R2不存在,R1均为且R8为正己基;
式(1F-11-22):式(1F-11)中,Z均为C,A均为基团A-8,R2不存在,R1均为正己基;
式(1F-11-23):式(1F-11)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R10为正己基;
式(1F-11-24):式(1F-11)中,Z均为C,A均为基团A-8,R2不存在,R1均为且R8为正己基;
式(1F-11-25):式(1F-11)中,Z均为C,A均为基团A-9,R2不存在,R1均为正己基;
式(1F-11-26):式(1F-11)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R10为正己基;
式(1F-11-27):式(1F-11)中,Z均为C,A均为基团A-9,R2不存在,R1均为且R8为正己基;
式(1F-11-28):式(1F-11)中,Z均为C,A均为基团A-10,R2不存在,R1均为正己基;
式(1F-11-29):式(1F-11)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R10为正己基;
式(1F-11-30):式(1F-11)中,Z均为C,A均为基团A-10,R2不存在,R1均为且R8为正己基;
式(1F-11-31):式(1F-11)中,Z均为C,A均为基团A-11,R2不存在,R1均为正己基;
式(1F-11-32):式(1F-11)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R10为正己基;
式(1F-11-33):式(1F-11)中,Z均为C,A均为基团A-11,R2不存在,R1均为且R8为正己基;
式(1F-11-34):式(1F-11)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为正己基;
式(1F-11-35):式(1F-11)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R10为正己基;
式(1F-11-36):式(1F-11)中,Z均为C,一个A为基团A-2,另一个A为基团A-3,R2不存在,R1均为且R8为正己基。
5.权利要求1-4中任意一项所述的多并稠环共轭大分子的制备方法,该方法包括:
在碱性化合物存在下且在有机溶剂中,将下式(2)所示的化合物与式(a)所示的化合物进行脱水缩合反应,得到式(1F)所示的化合物;其中,
式(2)
式(a)
6.根据权利要求5所述的方法,其中,式(2)所示的化合物与式(a)所示的化合物的摩尔比为1:2-100。
7.根据权利要求5或6所述的方法,其中,所述脱水缩合反应的条件包括:温度为20-100℃,时间为10min-48h。
8.根据权利要求5-7中任意一项所述的方法,其中,所述碱性化合物为哌啶、吡啶和三乙胺中一种或多种;优选地,相对于1mmol式(2)所示的化合物,所述碱性化合物的用量为0.1-1000mmol;
优选地,所述有机溶剂为氯仿和/或二氯甲烷。
9.一种多并稠环共轭大分子,其特征在于,该共轭大分子为下式(1)所示的化合物:
式(1)
其中,各个基团各自独立地表示3-10个噻吩共轭稠环结构;
各个基团A'各自独立地选自下式所示基团中的一种:
其中,R3-R6各自独立地选自H、烷基、烷氧基和烷硫基;
其中,各个R1各自独立地选自式所示的基团和式所示的基团;
各个R2各自独立地选自式所示的基团;
各个Z各自独立地选自C、N和Si;
各个X和各个Y各自独立地选自O、S和Se;
m为0-6的整数;
p为0-6的整数;
n为0-6的整数;
各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基、C1-C30的烷硫基和C6-C12的芳基。
10.根据权利要求9所述的多并稠环共轭大分子,其中,各个基团各自独立地表示3-5个噻吩共轭稠环结构;R3-R6各自独立地选自H、C1-C30的烷基、C1-C30的烷氧基和C1-C30的烷硫基;各个Z各自独立地选自C、N和Si;各个X和各个Y各自独立地选自O和S;m为0-4的整数;p为0-4的整数;n为0-4的整数;各个R7、各个R8、各个R9、各个R10和各个R11各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基、C1-C20的烷硫基和C6-C10的芳基;
优选地,各个基团各自独立地表示3-4个噻吩共轭稠环结构;R3-R6各自独立地选自H、C1-C20的烷基、C1-C20的烷氧基和C1-C20的烷硫基;各个Z各自独立地选自C和N;各个R7、各个R9和各个R11各自独立地选自H、C1-C6的烷基、C1-C6的烷氧基和C1-C6的烷硫基;各个R8和各个R10和各自独立地选自H、C4-C10的烷基、C4-C10的烷氧基和C4-C10的烷硫基;
更优选地,R3-R6各自独立地选自H、C1-C10的烷基、C1-C10的烷氧基和C1-C10的烷硫基;各个Z各自独立地选自C和N;m为0、1、2或3;p为0、1、2或3;n为0、1、2或3;各个R7、各个R9和各个R11各自独立地选自H、甲基、乙基、正丙基、正丁基、甲氧基、乙氧基、正丙氧基、正丁氧基、甲硫基、乙硫基、正丙硫基和正丁硫基;各个R8和各个R10和各自独立地选自H、正丁基、正戊基、正己基、正辛基、2-乙基己基、正丁氧基、正戊氧基、正己氧基、正辛氧基、2-乙基己氧基、正丁硫基、正戊硫基、正己硫基、正辛硫基和2-乙基己硫基。
11.根据权利要求9或10所述的多并稠环共轭大分子,其中,该共轭大分子为下式中所示的化合物中的一种:
式(1-9):
式(1-11):
12.根据权利要求11所述的多并稠环共轭大分子,其中,
定义:基团A'-1为
该共轭大分子为下式中所示的化合物中的一种:
式(1-9-1):式(1-9)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为正己基;
式(1-9-2):式(1-9)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R10为正己基;
式(1-9-3):式(1-9)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R8为正己基;
式(1-11-1):式(1-11)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为正己基;
式(1-11-2):式(1-11)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R10为正己基;
式(1-11-3):式(1-11)中,Z均为C,A'均为基团A'-1,R2不存在,R1均为且R8为正己基。
13.权利要求9-12中任意一项所述的多并稠环共轭大分子的制备方法,该方法包括:
在碱性化合物存在下且在有机溶剂中,将下式(2)所示的化合物与式(a')所示的化合物进行脱水缩合反应,得到式(1)所示的化合物;其中,
式(2)
式(a')
14.根据权利要求13所述的方法,其中,式(2)所示的化合物与式(a')所示的化合物的摩尔比为1:2-100。
15.根据权利要求13或14所述的方法,其中,所述脱水缩合反应的条件包括:温度为20-100℃,时间为10min-48h。
16.根据权利要求13-15中任意一项所述的方法,其中,所述碱性化合物为哌啶、吡啶和三乙胺中一种或多种;优选地,相对于1mmol式(2)所示的化合物,所述碱性化合物的用量为0.1-1000mmol;
优选地,所述有机溶剂为氯仿和/或二氯甲烷。
17.一种含有权利要求1-4和9-12中任意一项所述的多并稠环共轭大分子中的一种或多种的光伏材料。
18.一种太阳能电池,该太阳能电池包括光捕获的活性层,其中,所述光捕获的活性层中电子给体材料和/或电子受体材料含有权利要求1-4和9-12中任意一项所述的多并稠环共轭大分子中的一种或多种。
19.一种太阳能电池的制备方法,其中,该方法包括将含有权利要求1-4和9-12中任意一项所述的多并稠环共轭大分子中的一种或多种的电子给体材料和/或电子受体材料用于形成光捕获的活性层。
CN201611115692.XA 2016-12-07 2016-12-07 多并稠环共轭大分子及其制备方法和应用 Active CN108164547B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611115692.XA CN108164547B (zh) 2016-12-07 2016-12-07 多并稠环共轭大分子及其制备方法和应用
PCT/CN2017/110174 WO2018103496A1 (zh) 2016-12-07 2017-11-09 多并稠环共轭大分子及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611115692.XA CN108164547B (zh) 2016-12-07 2016-12-07 多并稠环共轭大分子及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108164547A true CN108164547A (zh) 2018-06-15
CN108164547B CN108164547B (zh) 2020-04-03

Family

ID=62490700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611115692.XA Active CN108164547B (zh) 2016-12-07 2016-12-07 多并稠环共轭大分子及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108164547B (zh)
WO (1) WO2018103496A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423245A (zh) * 2019-08-27 2019-11-08 深圳镨铈新材料科技有限公司 A-d-a共轭分子、制备方法、在有机太阳能电池中的应用、及有机太阳能电池
WO2020062254A1 (en) * 2018-09-30 2020-04-02 Southern University Of Science And Technology Chlorine atoms induced molecular interlocked network in a non-fullerene acceptor
CN111635319A (zh) * 2020-06-30 2020-09-08 长江师范学院 一种具有基于硝基的吸电子基团的化合物、非富勒烯电子受体材料及其制备方法
CN111875617A (zh) * 2019-05-01 2020-11-03 香港科技大学 用于电子和光子应用的非富勒烯受体的噻吩端基
CN112778327A (zh) * 2019-11-11 2021-05-11 北京大学深圳研究生院 一种有机非富勒烯电子受体材料及其制备方法和应用
CN113087720A (zh) * 2021-03-03 2021-07-09 北京大学深圳研究生院 一类基于苯并噻吩并[3,2-b]苯并噻吩的n型有机半导体材料及其制备方法和应用
CN113637023A (zh) * 2021-08-16 2021-11-12 邵阳学院 一种不对称的吲哚衍生物核小分子受体材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864142A (zh) * 2018-07-27 2018-11-23 武汉理工大学 一种itic衍生物的新型合成方法
WO2020085579A1 (ko) * 2018-10-22 2020-04-30 경상대학교산학협력단 신규한 스피로 화합물 및 이를 이용하는 유기 전자 소자
WO2020130133A1 (ja) * 2018-12-20 2020-06-25 三菱ケミカル株式会社 有機フォトダイオード及び赤外線cmosセンサー

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482291A (zh) * 2009-08-05 2012-05-30 剑桥显示技术有限公司 有机半导体
CN105315298A (zh) * 2014-08-04 2016-02-10 中国科学院化学研究所 基于七并稠环单元的a-d-a共轭分子及其制备方法和应用
WO2016171465A2 (ko) * 2015-04-20 2016-10-27 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 태양 전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761805B2 (en) * 2011-07-19 2017-09-12 Merck Patent Gmbh Organic semiconductors
JP2015513572A (ja) * 2012-02-16 2015-05-14 メルク パテント ゲーエムベーハー 有機半導体ポリマー
CN104557968B (zh) * 2013-10-29 2017-04-05 中国科学院化学研究所 基于二噻吩并引达省的a‑d‑a共轭分子及其制备方法和应用
KR101677841B1 (ko) * 2014-04-21 2016-11-18 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
CN106025073B (zh) * 2016-06-14 2019-04-05 苏州大学 一种以三元组分为活性层的有机太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482291A (zh) * 2009-08-05 2012-05-30 剑桥显示技术有限公司 有机半导体
CN105315298A (zh) * 2014-08-04 2016-02-10 中国科学院化学研究所 基于七并稠环单元的a-d-a共轭分子及其制备方法和应用
WO2016171465A2 (ko) * 2015-04-20 2016-10-27 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 태양 전지

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062254A1 (en) * 2018-09-30 2020-04-02 Southern University Of Science And Technology Chlorine atoms induced molecular interlocked network in a non-fullerene acceptor
CN111875617A (zh) * 2019-05-01 2020-11-03 香港科技大学 用于电子和光子应用的非富勒烯受体的噻吩端基
US11535631B2 (en) 2019-05-01 2022-12-27 The Hong Kong University Of Science And Technology Thiophene end groups of non-fullerene acceptors for electronic and photonic applications
CN110423245A (zh) * 2019-08-27 2019-11-08 深圳镨铈新材料科技有限公司 A-d-a共轭分子、制备方法、在有机太阳能电池中的应用、及有机太阳能电池
WO2021037278A1 (zh) * 2019-08-27 2021-03-04 苏州潜寻新能源科技有限公司 A-d-a共轭分子、制备方法、在有机太阳能电池中的应用、及有机太阳能电池
CN110423245B (zh) * 2019-08-27 2021-04-06 苏州潜寻新能源科技有限公司 A-d-a共轭分子、制备方法、在有机太阳能电池中的应用、及有机太阳能电池
CN112778327A (zh) * 2019-11-11 2021-05-11 北京大学深圳研究生院 一种有机非富勒烯电子受体材料及其制备方法和应用
CN112778327B (zh) * 2019-11-11 2022-04-01 北京大学深圳研究生院 一种有机非富勒烯电子受体材料及其制备方法和应用
CN111635319A (zh) * 2020-06-30 2020-09-08 长江师范学院 一种具有基于硝基的吸电子基团的化合物、非富勒烯电子受体材料及其制备方法
CN113087720A (zh) * 2021-03-03 2021-07-09 北京大学深圳研究生院 一类基于苯并噻吩并[3,2-b]苯并噻吩的n型有机半导体材料及其制备方法和应用
CN113637023A (zh) * 2021-08-16 2021-11-12 邵阳学院 一种不对称的吲哚衍生物核小分子受体材料及其制备方法
CN113637023B (zh) * 2021-08-16 2024-02-02 邵阳学院 一种不对称的吲哚衍生物核小分子受体材料及其制备方法

Also Published As

Publication number Publication date
WO2018103496A1 (zh) 2018-06-14
CN108164547B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN108164547A (zh) 多并稠环共轭大分子及其制备方法和应用
CN108794504A (zh) 多并稠环共轭大分子及其制备方法和应用
CN106905344B (zh) 基于七并稠环单元的共轭大分子及其制备方法和在太阳能电池中的应用
WO2021037278A1 (zh) A-d-a共轭分子、制备方法、在有机太阳能电池中的应用、及有机太阳能电池
CN101952918B (zh) 用于光伏器件的支化材料
CN108623614A (zh) 基于多并五元环共轭分子及其制备方法和应用
CN104530105A (zh) 一种苯并噻二唑或苯并二噻吩桥联的双氟化硼络合二吡咯甲川衍生物有机染料及其制备方法
CN107602538A (zh) 一种基于氮杂苯和喹喔琳的有机化合物及其在oled上的应用
CN105017264A (zh) 一种有机小分子光电功能材料及其制备方法
CN109096312A (zh) 一种a-d-a型有机小分子及其制备与应用
CN109970768A (zh) 基于咔唑十一元稠环平面核D(A-Ar)2型有机光电化合物及制备方法和应用
CN108164546A (zh) 吲哚啉-二噻吩并喹喔啉-二苯并[a,c]吩嗪染料及其在染料敏化太阳电池中的应用
CN109134525A (zh) 一种a-d-a型光伏小分子及其制备方法与应用
CN103360397B (zh) 二噻吩基吡咯并吡咯二酮-萘基共轭衍生物及其制备方法和应用
Paek et al. New type of ruthenium sensitizers with a triazole moiety as a bridging group
CN109956955A (zh) 基于苯并三(环戊二烯并双五元芳杂环)的星型d-a结构共轭分子及其制备方法和应用
CN109390469A (zh) 多并稠环共轭大分子在钙钛矿太阳能电池中的应用
Seok et al. Synthesis and Application of New Ru (II) Complexes for Dye-Sensitized Nanocrystalline TiO~ 2 Solar Cells
CN106589325A (zh) 一种含有苯并[c]噌啉的共轭聚合物及其合成方法与应用
CN108690366B (zh) 一种新型的n,n-二乙基苯胺类太阳能染料敏化剂及其制备与应用
CN106832231B (zh) 含1,2,3三唑并异吲哚-5,7(2h,6h)-二酮的共轭聚合物及其制法与应用
CN108148182A (zh) 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用
CN107602545B (zh) 一种由芴链接的共轭三苯胺双锚固纯有机染料及其在染料敏化太阳电池中的应用
CN106977704A (zh) 一种含三唑并异吲哚‑5,7(2h,6h)‑二酮单元的三元共聚物及其制备方法与应用
CN102675349B (zh) 并吡咯二酮-酞菁共轭衍生物及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant