CN108069726A - 一种C/C-TiC碳陶复合材料的制备方法 - Google Patents

一种C/C-TiC碳陶复合材料的制备方法 Download PDF

Info

Publication number
CN108069726A
CN108069726A CN201810042929.9A CN201810042929A CN108069726A CN 108069726 A CN108069726 A CN 108069726A CN 201810042929 A CN201810042929 A CN 201810042929A CN 108069726 A CN108069726 A CN 108069726A
Authority
CN
China
Prior art keywords
preparation
porous
carbon fiber
carbon
precast body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810042929.9A
Other languages
English (en)
Other versions
CN108069726B (zh
Inventor
仝永刚
白书欣
梁秀兵
胡永乐
张虹
毛聪
张明军
祝文涛
谢新琪
柳建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201810042929.9A priority Critical patent/CN108069726B/zh
Publication of CN108069726A publication Critical patent/CN108069726A/zh
Application granted granted Critical
Publication of CN108069726B publication Critical patent/CN108069726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0038Surface treatment
    • F16D2250/0046Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种C/C‑TiC碳陶复合材料的制备方法,包括以下步骤:(1)碳纤维预制体的制备和预处理;(2)碳纤维预制体碳纤维表面制备保护涂层;(3)将带有保护涂层的碳纤维预制体增密制得多孔C/C预制体;(4)将多孔C/C预制体高温热处理;(5)钛蒸汽挥发渗入其上方的多孔C/C预制体中,制备得到C/C‑TiC碳陶复合材料。本发明制备方法操作简单,成本低,工艺周期短,实现C/C‑TiC碳陶复合材料的近净成形,制得的C/C‑TiC碳陶复合材料结合强度高,密度低,耐磨损。

Description

一种C/C-TiC碳陶复合材料的制备方法
技术领域
本发明涉及一种碳陶复合材料的制备方法,具体指一种C/C-TiC复合材料及其制备方法与应用。
背景技术
碳化钛陶瓷熔点高、密度小,硬度高于SiC、ZrC等陶瓷,抗磨损性能优异,在耐磨材料、切削刀具、机械抗磨零件等领域具有广泛的应用前景。然而,和几乎所有的陶瓷材料类似,碳化钛陶瓷的脆性大,断裂韧性低,很容易发生灾难性破坏,大大限制了其进一步的推广应用。碳纤维具有十分优异的力学性能,其可作为增韧材料,有效提高陶瓷材料的断裂韧性,克服陶瓷材料的脆性问题。采用碳纤维对碳化钛陶瓷进行增韧,制备出碳纤维增强碳化钛陶瓷,能充分发挥碳化钛陶瓷和碳纤维的优异性能,应用前景广阔。文献“G.M.Song,Q.Li,G.W.Wen,Y.Zhou.Materials Science and Engineering A326(2002)240–24”和“J.Y.Rossignol,J.M.Quenisset,R.Naslain.Composites,18(2)(1987):135-144”公开报道了采用热压烧结法和化学气相渗透法制备碳纤维增强碳化钛陶瓷复合材料,结果表明碳纤维的加入大大提高了TiC陶瓷的断裂韧性。然而,热压烧结法材料制备需要较大的压力和较高的温度,成本高,采用该法也难于制备出形状复杂的构件。化学气相渗透法材料制备周期长,往往需要数百小时增密样品,材料制备成本高。此外,化学气相渗透工艺中材料表面的气孔也容易堵塞,需要加工表面以保证后续增密过程的进行。
在前期研究中,报道了一种钛金属熔体反应熔渗制备C/C-TiC复合材料的工艺(Y.G.Tong,S.X.Bai,K.Chen.Materials Science&Engineering A 556(2012)980–983),该工艺周期短,成本低,可以制备形状复杂构件。然而,该工艺通过钛金属熔体渗入多孔碳预制体与固体碳反应形成碳化钛陶瓷基体,熔体与碳反应速度快,难于有效控制;高温熔体与碳反应时不可避免的会与部分碳纤维发生反应,导致碳纤维强度损伤;反应过程控制不当易导致碳陶复合材料内部残留有少量残余金属,影响碳陶复合材料的性能。因此,开发一种新型的高效率、低成本、能有效控制C/C-TiC复合材料结构和性能的制备工艺已成为推进其广泛应用的关键。
发明内容
本发明的目的是提供一种C/C-TiC碳陶复合材料的制备方法,使得制备周期短、成本低,并且制备得到的C/C-TiC碳陶复合材料密度低、强度高,抗摩擦磨损性能好。
本发明提供的一种C/C-TiC碳陶复合材料的制备方法,包括以下步骤:
(1)碳纤维预制体的制备和预处理;
(2)碳纤维预制体碳纤维表面制备保护涂层;
(3)将带有保护涂层的碳纤维预制体增密制得多孔C/C预制体;
(4)将多孔C/C预制体高温热处理;
(5)金属钛加热,钛蒸汽挥发渗入其上方的多孔C/C预制体中,制备得到C/C-TiC碳陶复合材料。
步骤(1)中碳纤维预制体的制备是对碳纤维或碳纤维布采用针刺、碳布叠层穿刺、三维编织或多维整体编织的方式制备得到纤维体积分数为10%-50%的碳纤维预制体。优选体积分数为20%-35%。
步骤(1)的预处理是将碳纤维预制体在真空度为5.0×10-2Pa-3Pa,温度为1200-1800℃的条件下热处理1-4h。优选预处理条件为,真空度小于0.5Pa,温度1600℃,时间2h。
步骤(2)采用化学气相沉积工艺或者聚合物浸渍裂解工艺或溶胶-凝胶工艺在所述碳纤维预制体中碳纤维表面制备保护涂层,上述制备方法的步骤(2)中,所述涂层为热解碳涂层SiC涂层或BN涂层,厚度为50-500nm。优选厚度为50-200nm。
步骤(3)采用化学气相沉积工艺或者聚合物浸渍裂解工艺将带有保护涂层的碳纤维预制体增密制得多孔C/C预制体;多孔C/C预制体的密度控制在0.9-1.6g/cm3,孔隙率控制在15%-55%。
优选地,多孔C/C预制体的密度控制在1.2-1.5g/cm3,孔隙率控制在20%-35%。
当采用聚合物浸渍裂解工艺增密时,浸渍所用聚合物为酚醛树脂、呋喃树脂或者沥青。
本发明的上述制备方法中,步骤(4)多孔C/C预制体高温热处理的方法是在真空或惰性气氛下,对多孔C/C预制体在1600-2200℃下热处理1-4h。优选地,对多孔C/C预制体在2000℃下热处理2h。
步骤(5)所述钛蒸汽是将金属钛在真空条件下加热产生的,加热条件为:真空度为5.0×10-2-10Pa,温度为1600-2200℃,时间为1-8h。
优选地,步骤(5)的反应条件为:真空度为小于5Pa,温度为1800-2000℃,时间为2-4h。
步骤(5)所述金属钛纯度>99%;金属钛在多孔C/C预制体的下方,二者间隔距离为5-30mm。优选地,二者间隔距离为20mm。
上述制备方法制备得到的C/C-TiC碳陶复合材料属于本发明的保护范围。
本发明提供了上述制备方法制得的C/C-TiC碳陶复合材料在刹车制动系统中的应用。所述刹车系统是指航空航天、高铁、汽车、军工领域的刹车系统。
本发明的优点在于:
(1)工艺周期短,效率高,所制备碳陶复合材料成本低;
(2)通过所述气相渗透反应工艺可实现C/C-TiC碳陶复合材料的近净成形;
(3)与现有技术的钛熔体反应熔渗工艺相比,本发明制备方法中,钛蒸汽反应渗透工艺通过控制反应温度,真空度和反应时间等参数可以有效控制钛的渗入量和其与多孔C/C预制体的反应速度和程度,工艺可控性强,制备的复合材料力学性能好。与同条件采用熔体反应熔渗工艺(Y.G.Tong,S.X.Bai,K.Chen.Materials Science&Engineering A 556(2012)980–983)制备的C/C-TiC复合材料相比,强度提高20%,断裂韧性提高25%以上
(4)所述工艺通过合理的工艺控制可使渗入的钛与C/C多孔体内部的碳完全反应或者大部分反应形成TiC陶瓷基体,能够有效减少或消除所制备C/C-TiC碳陶复合材料内残余未反应金属的问题。
(5)本发明方法制备C/C-TiC碳陶复合材料时,钛金属熔体与多孔C/C预制体不直接接触,克服了钛金属熔体反应熔渗制备C/C-TiC碳陶复合材料时所制备复合材料表面与坩埚内残余金属粘接在一起难于分离的问题,可以实现材料的净近成型
附图说明
图1为实施例1制得的C/C-TiC碳陶复合材料的XRD图。
图2为实施例1制得的C/C-TiC碳陶复合材料截面的扫描电镜图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
若未特别说明,本申请实施例所述的原料均为市售。
实施例1
以连续碳纤维为原料,采用无纬布叠层穿刺工艺制备得到碳纤维预制体,碳纤维预制体的纤维体积分数为35%。将碳纤维预制体在真空度8.0×10-2Pa下加热到1500℃热处理保温1h,去除纤维表面的胶黏剂。采用化学气相沉积工艺在热处理后的碳纤维预制体的碳纤维表面制备热解碳保护涂层,热解碳保护层的厚度为60nm。采用化学气相渗透工艺继续在多孔碳纤维预制体内部沉积用于后续反应的基体热解碳,增密多孔碳纤维预制体得到多孔C/C复合材料预制体,多孔C/C复合材料预制体的密度控制在1.36g/cm3,孔隙率为32%。将多孔C/C复合材料预制体在氩气气氛中加热到1900℃高温热处理保温1h,提高基体碳的石墨化程度和反应活性。
将纯度为99.5%的金属钛置于石墨坩埚底部,前述所制备的多孔C/C复合材料预制体置于金属钛上方,二者间隔10mm,在0.3Pa的真空条件下加热到1800℃,使钛蒸汽挥发渗入其上方的多孔C/C复合材料预制体中,气相钛蒸汽与多孔C/C预制体内部的热解碳反应形成TiC陶瓷基体,保温4h制备得到C/C-TiC复合材料。
本实施例制备得到的C/C-TiC复合材料的XRD图谱如图1所示,图1中出现TiC的典型衍射峰,说明复合材料中反应形成了TiC相。图2为所制备C/C-TiC复合材料截面的扫描电镜图,从图中可以看出复合材料微观致密完整,多孔C/C复合材料预制体内部的孔隙被气相渗透反应形成的碳化钛所填充。排水法测得本实施例制备的C/C-TiC碳陶复合材料的密度为2.45g/cm3,开孔隙率为8%。采用三点弯曲法和缺口实验法测试了所述方法制备的C/C-TiC碳陶复合材料的强度和断裂韧性为267MPa和16MPa m1/2,复合材料的断裂模式为假塑性断裂。与同条件采用熔体反应熔渗工艺(参见Y.G.Tong,S.X.Bai,K.Chen.MaterialsScience&Engineering A 556(2012)980–983)制备的C/C-TiC复合材料相比,强度提高31%,断裂韧性提高44%。
实施例2
以连续碳纤维为原料,采用无纬布叠层穿刺工艺制备得到碳纤维预制体,碳纤维预制体的纤维体积分数为30%。将碳纤维预制体在真空度6.0×10-2Pa下加热到1600℃热处理保温2h,去除纤维表面的胶黏剂。采用化学气相沉积工艺在热处理后的碳纤维预制体的碳纤维表面制备热解碳保护涂层,热解碳保护层的厚度为100nm。以酚醛树脂为先驱体,采用先驱体浸渍裂解工艺在多孔碳纤维预制内部制备用于后续反应的基体裂解碳,增密多孔碳纤维预制体得到多孔C/C复合材料预制体,多孔C/C复合材料预制体的密度控制在1.51g/cm3,孔隙率为22%。将多孔C/C复合材料预制体在氩气气氛中加热到1900℃高温热处理保温2h,提高基体碳的石墨化程度和反应活性。
将纯度为99.8%的金属钛置于石墨坩埚底部,前述所制备的多孔C/C复合材料预制体置于金属钛上方,二者间隔15mm,在0.08Pa的真空条件下加热到1750℃,使钛蒸汽挥发渗入其上方的多孔C/C预制体中,气相钛蒸汽与多孔C/C预制体内部的热解碳反应形成TiC陶瓷基体,保温2h制备得到本发明所述C/C-TiC复合材料。本实施例制备得到的C/C-TiC复合材料的XRD图谱出现TiC的典型衍射峰,说明复合材料中反应形成了TiC相。本实施例制备C/C-TiC复合材料截面的扫描电镜图显示复合材料微观致密完整,在多孔C/C复合材料预制体内部的孔隙被气相渗透反应形成的碳化钛所填充。排水法测得本实施例制备的C/C-TiC碳陶复合材料的密度为2.05g/cm3,开孔隙率为6%。采用三点弯曲法和缺口实验法测试了所述方法制备的C/C-TiC碳陶复合材料的强度和断裂韧性为256MPa和14MPa m1/2,复合材料的断裂模式为假塑性断裂。与同条件采用熔体反应熔渗工艺制备的C/C-TiC复合材料相比,强度提高25%,断裂韧性提高26%。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种C/C-TiC碳陶复合材料的制备方法,包括以下步骤:
(1)碳纤维预制体的制备和预处理;
(2)碳纤维预制体碳纤维表面制备保护涂层;
(3)将带有保护涂层的碳纤维预制体增密制得多孔C/C预制体;
(4)将多孔C/C预制体高温热处理;
(5)金属钛加热,钛蒸汽挥发渗入其上方的多孔C/C预制体中,制备得到C/C-TiC碳陶复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中碳纤维预制体的制备是对碳纤维或碳纤维布采用针刺、碳布叠层穿刺、三维编织或多维整体编织的方式制备得到纤维体积分数为10%-50%的碳纤维预制体。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)的预处理是将碳纤维预制体在真空度为5.0×10-2Pa-3Pa,温度为1200-1800℃的条件下热处理1-4h。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述涂层为热解碳涂层SiC涂层或BN涂层,厚度为50-500nm。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)采用化学气相沉积工艺或者聚合物浸渍裂解工艺将带有保护涂层的碳纤维预制体增密制得多孔C/C预制体;多孔C/C预制体的密度控制在0.9-1.6g/cm3,孔隙率控制在15-55%。
6.根据权利要求1所述的制备方法,其特征在于,步骤(4)多孔C/C预制体高温热处理的方法是在真空或惰性气氛下,对多孔C/C预制体在1600-2200℃下热处理1-4h。
7.根据权利要求1-6任一所述的制备方法,其特征在于,步骤(5)所述钛蒸汽是将金属钛在真空条件下加热产生的,加热条件为:真空度为5.0×10-2-10Pa,温度为1600-2200℃,时间为1-8h。
8.根据权利要求1-6任一所述的制备方法,其特征在于,步骤(5)所述金属钛纯度>99%;金属钛在多孔C/C预制体的下方,二者间隔距离为5-30mm。
9.权利要求1-8任一所述的制备方法制备得到的C/C-TiC碳陶复合材料。
10.权利要求9所述的碳陶复合材料在刹车制动系统中的应用。
CN201810042929.9A 2018-01-17 2018-01-17 一种C/C-TiC碳陶复合材料的制备方法 Active CN108069726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810042929.9A CN108069726B (zh) 2018-01-17 2018-01-17 一种C/C-TiC碳陶复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810042929.9A CN108069726B (zh) 2018-01-17 2018-01-17 一种C/C-TiC碳陶复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108069726A true CN108069726A (zh) 2018-05-25
CN108069726B CN108069726B (zh) 2021-05-14

Family

ID=62156507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810042929.9A Active CN108069726B (zh) 2018-01-17 2018-01-17 一种C/C-TiC碳陶复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108069726B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610081A (zh) * 2018-06-27 2018-10-02 河南泛锐复合材料研究院有限公司 一种C/C-Cu复合材料的制备方法
CN108975924A (zh) * 2018-07-30 2018-12-11 中南大学 一种类Z-pins金属棒增强碳陶复合材料的制备方法
CN109851382A (zh) * 2019-04-23 2019-06-07 航天特种材料及工艺技术研究所 一种C/C-TiC陶瓷基复合材料及原位反应法制备该陶瓷基复合材料的方法
CN112830805A (zh) * 2021-01-18 2021-05-25 长沙理工大学 一种碳陶耐磨复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148699A1 (en) * 2005-03-16 2009-06-11 Honeywell International Inc. Carbon fiber containing ceramic particles
CN103342561A (zh) * 2013-06-26 2013-10-09 中国人民解放军国防科学技术大学 基于气相浸渗反应制备的C/ZrC复合材料及其制备方法和工艺用设备
CN105439642A (zh) * 2015-05-05 2016-03-30 中国科学院上海应用物理研究所 一种覆有金属碳化物涂层的碳基材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148699A1 (en) * 2005-03-16 2009-06-11 Honeywell International Inc. Carbon fiber containing ceramic particles
CN103342561A (zh) * 2013-06-26 2013-10-09 中国人民解放军国防科学技术大学 基于气相浸渗反应制备的C/ZrC复合材料及其制备方法和工艺用设备
CN105439642A (zh) * 2015-05-05 2016-03-30 中国科学院上海应用物理研究所 一种覆有金属碳化物涂层的碳基材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊翔等: "C/C-TaC复合材料制备技术研究", 《航天器环境工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610081A (zh) * 2018-06-27 2018-10-02 河南泛锐复合材料研究院有限公司 一种C/C-Cu复合材料的制备方法
CN108610081B (zh) * 2018-06-27 2021-04-09 巩义市泛锐熠辉复合材料有限公司 一种C/C-Cu复合材料的制备方法
CN108975924A (zh) * 2018-07-30 2018-12-11 中南大学 一种类Z-pins金属棒增强碳陶复合材料的制备方法
CN109851382A (zh) * 2019-04-23 2019-06-07 航天特种材料及工艺技术研究所 一种C/C-TiC陶瓷基复合材料及原位反应法制备该陶瓷基复合材料的方法
CN112830805A (zh) * 2021-01-18 2021-05-25 长沙理工大学 一种碳陶耐磨复合材料的制备方法

Also Published As

Publication number Publication date
CN108069726B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN108069726A (zh) 一种C/C-TiC碳陶复合材料的制备方法
JP3096716B1 (ja) 繊維強化炭化ケイ素複合材の製造方法
US6309703B1 (en) Carbon and ceramic matrix composites fabricated by a rapid low-cost process incorporating in-situ polymerization of wetting monomers
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
US6716376B1 (en) Method for producing a fiber composite
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
CN108101566B (zh) Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法
JPS605070A (ja) 複合材料およびその製造法
CN101787504A (zh) 碳/碳-铜复合材料的制备方法
CN108690322B (zh) 一种碳纤维界面的制备方法
CN106947949B (zh) 一种含Al/Cu双涂层的SiC连续纤维及其制备方法和应用
CN101050347A (zh) 一种炭/炭密封材料的制造方法
CN112299865A (zh) 一种改性C/SiC复合材料及其制备方法
CN109320275A (zh) 一种抗氧化SiC纤维增强陶瓷基复合材料的制备方法
KR100689636B1 (ko) 금속실리콘 용융침투 공정에 의한 탄소섬유 강화 탄화규소복합체 제조방법
KR100307509B1 (ko) 세라믹 함유 탄소/탄소 복합재료 및 그의 제조 방법
JP6559473B2 (ja) 炭化珪素系複合体の製造方法
CN112374901B (zh) 一种耐烧蚀改性C/SiC复合材料及其制备方法
CN107815625B (zh) SiC连续纤维增强钛基复合材料的制备方法及产品
JPH0242790B2 (zh)
CN107974645A (zh) 一种航空高强散热复合新材料的制备方法
JP2001181062A (ja) 樹脂含浸炭素繊維強化炭素複合材とその製造方法
JP3853058B2 (ja) 耐酸化性c/c複合材及びその製造方法
JPH08245273A (ja) 炭素繊維強化炭素複合材の製造方法
JPH1112038A (ja) SiC繊維強化SiC複合材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant