CN107973797B - 一种有机纳米格、其纳米聚合物及其制备方法 - Google Patents

一种有机纳米格、其纳米聚合物及其制备方法 Download PDF

Info

Publication number
CN107973797B
CN107973797B CN201711188236.2A CN201711188236A CN107973797B CN 107973797 B CN107973797 B CN 107973797B CN 201711188236 A CN201711188236 A CN 201711188236A CN 107973797 B CN107973797 B CN 107973797B
Authority
CN
China
Prior art keywords
nano
polymer
reaction
organic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711188236.2A
Other languages
English (en)
Other versions
CN107973797A (zh
Inventor
解令海
黄维
魏颖
林冬青
冯全友
刘辉
钟春晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201711188236.2A priority Critical patent/CN107973797B/zh
Priority to PCT/CN2018/074317 priority patent/WO2019100582A1/zh
Priority to US16/766,301 priority patent/US11312717B2/en
Priority to SG11202004615YA priority patent/SG11202004615YA/en
Priority to JP2020528335A priority patent/JP6888796B2/ja
Publication of CN107973797A publication Critical patent/CN107973797A/zh
Application granted granted Critical
Publication of CN107973797B publication Critical patent/CN107973797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1644End groups comprising organic end groups comprising other functional groups, e.g. OH groups, NH groups, COOH groups or boronic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/226Oligomers, i.e. up to 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/45Friedel-Crafts-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种有机纳米格、其纳米聚合物及其制备方法,该有机纳米格的通式为(Ⅰ),该纳米聚合物的通式为(Ⅱ),式中R1为烷基链,R2为卤素或光电活性基团,X可以包含N、O、S等杂原子,n为1至10的自然数。本发明将纳米连接策略应用于构筑一维纳米聚合物,这种聚合物以A2B2单体出发通过傅克聚合合环反应形成相应的纳米聚合物。这种方法借助了超分子诱导的方式克服了无法动态可逆纠正的缺陷,极大地抑制了错位交联过程;同时此纳米连接无需热力学控制,可以在很短的时间形成相应的纳米聚合物,无需长时间与苛刻的反应条件,因此有利于大批量生产制备。
Figure DDA0001480512760000011

Description

一种有机纳米格、其纳米聚合物及其制备方法
技术领域
本发明属于有机聚合物半导体材料制备领域,具体涉及一种有机纳米格、其纳米聚合物及其制备方法。
背景技术
纳米尺度分子砌块的连接模式是构筑复杂拓扑聚合物的核心。高效的纳米连接需要满足以下标准:(1)在化学键连接过程中成环结构单一;(2)尽可能抑制无规则的交联过程。其中非共价键与可逆共价键是当今的两大纳米链接模式,这类连接的特点是:键能比较小(10~300KJ/mol)(J.Am.Chem.Soc.2016,138,3255.),能够在成键与断键过程中形成动态可逆的过程,这有助于在发生错位交联时产生矫正的效果,从而形成结构有序的纳米砌块,如共价/超分子有机框架(Science,2017,355,1585.)。然而这类动态可逆的纳米连接仅仅适用于键能较小的情况(如多重氢键、B-O键等)(Science,2005,310,1166.;Science,2007,316,210.)以及少数动态可逆明显的有机反应中(常见的是醛的亲核加成反应)(J.Am.Chem.Soc.2017,139,2421.)。与此相比,对于大部分的C-C键偶联反应而言由于C-C键断裂需要较大的能量(至少350KJ/mol),因而很难建立起有效的动态平衡。这种情况下一旦发生错位连接,很难纠正复原,因此最终导致无规则的交联聚合物的产生。另外,这类动态可逆反应受热力学过程控制,需要较长的反应时间(至少需要三天)与苛刻的反应条件,也不利于纳米聚合物的大量生产。因此探索基于C-C键的高效纳米连接构筑结构稳健的纳米聚合物难度很大。
实际上,除了热力学的动态可逆共价键策略外,借助动力学控制,如非共价键协助诱导共价键的形成也有可能最大程度抑制分子间无序交联并使得成键结构单一化,从而达到高效纳米连接的要求,不过还需要与之相对应的构象结构。
发明内容
鉴于此,本发明在高效纳米连接的背景下提供了一种有机纳米格、其纳米聚合物及其制备方法。与其他有机闭环结构相比,这类有机纳米格结构骨架类似于平行四边形,如图1所示,其中的一对顶点具有可延伸拓展特性。将其通过一定的聚合反应即可形成结构规整的刚性聚合物。构筑有机纳米格的方法是以具有恰当几何构型的前驱体类芴叔醇出发,通过傅克合环反应制得(作为纳米连接的基本模型),这种合成方法产率高、产物种类很少、易分离,具有重要的应用前景及其商业化发展潜力。另一方面,这种纳米连接可以作为构筑一维刚性有机纳米聚合物的关键手段。此连接模式可以克服传统suzuki或者yamamoto聚合反应的位阻负面影响造成的聚合物分子量低的不足,同时具备无过渡金属催化、条件温和、环境友好、原子经济等优势,适合大量制备生产。在此基础上,本发明设计A2B2单体,借助纳米连接,即可灵活制备一维纳米聚合物,为发展复杂拓扑结构的聚合物奠定基础。
本发明的技术方案如下:
一种有机纳米格,其通式为(Ⅰ),是由两种类芴基团组成的中心对称的刚性闭环结构,其中,一种类芴基团属于9-苯基芴衍生物,可延伸出两个连接位点;另一种类芴基团具有类似咔唑的几何构型;
Figure BDA0001480512740000021
式中:R1包括:1)直链型:氢原子、烷烃链、烷氧基链、末端引入卤素原子的烷基链;2)支化型:叔丁基、带有氧原子的支化烷基链;n为1至10的自然数,具体结构如下:
-H-CnH2n+1-OCnH2n+1-CnH2nF-CnH2nCl-CnH2nBr
Figure BDA0001480512740000022
R2为卤素或光电活性基团,所述的光电活性基团包括:苯基、芘、芴、硝基苯、苯氰基、乙基咔唑,其具体结构式如下:
-F-Cl-Br-I
Figure BDA0001480512740000031
Figure BDA0001480512740000032
X可以是N原子、O原子或S原子,其中N原子上可以引入以下结构:
-H-CnH2n+1-CnH2nF-CnH2nCl-CnH2nBr
Figure BDA0001480512740000033
Figure BDA0001480512740000034
为以下结构中的一种:
Figure BDA0001480512740000035
Figure BDA0001480512740000036
为以下结构中的一种:
Figure BDA0001480512740000037
一种纳米聚合物,其通式为(Ⅱ),是由上述的有机纳米格的一部分通过均聚或者与光电基团共聚方式形成的聚合物;
Figure BDA0001480512740000038
式中:n为1至10的自然数;
Figure BDA0001480512740000041
为以下结构中的一种:
Figure BDA0001480512740000042
一种有机纳米格的制备方法:类芴叔醇在酸催化剂中发生叔醇傅克反应,分子间脱水合环,形成相应的有机缺角格,其反应路线为反应式(Ⅲ);
Figure BDA0001480512740000043
一种纳米聚合物的制备方法:以溴代有机纳米格通过C-C键偶联反应获得相应的有机纳米聚合物,其反应路线为反应式(Ⅳ);
Figure BDA0001480512740000044
一种纳米聚合物的制备方法:由A2B2聚合单体直接通过傅克聚合的方式获得有机纳米聚合物,其反应路线为反应式(Ⅴ);
Figure BDA0001480512740000045
Figure BDA0001480512740000051
本发明的一种有机纳米格、其纳米聚合物及其制备方法,重点发展一种高效的纳米连接方式,与其他的纳米砌块/聚合物的连接方式相比具有如下优势:
(1)以超分子协助的方式抑制无序成键产生的交联结构;
(2)采用动力学控制的超分子协助方式,克服传统的动态可逆过程需要的长时间与苛刻的反应条件,容易实现工业化大量生产;
(3)这种纳米连接方式克服传统suzuki或者yamamoto偶联聚合反应受空间位阻影响导致的分子量低的不足,从而有利于制备高分子量的纳米聚合物。
附图说明
图1为有机纳米格1e的单晶结构图;
图2为有机纳米格1e的核磁氢谱;
图3为有机纳米格1f的核磁氢谱
图4为有机纳米格1d/1e(一对同分异构体)的飞行时间质谱图;
图5为有机纳米格2d的核磁氢谱;
图6为有机纳米格2e的核磁氢谱;
图7为有机纳米格2d/2e(一对同分异构体)的飞行时间质谱图;
图8为有机纳米格3d的核磁氢谱;
图9为有机纳米格3e的核磁氢谱;
图10为有机纳米格3f的核磁氢谱;
图11为有机纳米格4d的核磁氢谱;
图12为有机纳米格4e的核磁氢谱;
图13为纳米聚合物聚合反应式Ⅴ(傅克聚合)中反应液的飞行时间质谱图;
图14为各类来源于聚合反应式Ⅴ中的寡聚格及其分子量;
图15为纳米聚合物5d的核磁氢谱;
图16为纳米聚合物5d与其他类似化合物的核磁氢谱比较;
图17为纳米聚合物5d的单个红外光谱;
图18为纳米聚合物5d与其他类似化合物的红外光谱比较;
图19为纳米聚合物5d的GPC测试图;
图20为纳米聚合物5d的GPC测试中的线性拟合曲线图。
具体实施方式
一种有机纳米格,其通式为(Ⅰ),是由两种类芴基团组成的中心对称的刚性闭环结构,其中,一种类芴基团属于9-苯基芴衍生物,可延伸出两个连接位点;另一种类芴基团具有类似咔唑的几何构型;
Figure BDA0001480512740000061
式中:R1包括:1)直链型:氢原子、烷烃链、烷氧基链、末端引入卤素原子的烷基链;2)支化型:叔丁基、带有氧原子的支化烷基链;n为1至10的自然数,具体结构如下:
-H-CnH2n+1-OCnH2n+1-CnH2nF-CnH2nCl-CnH2nBr
Figure BDA0001480512740000062
R2为卤素或光电活性基团,所述光电活性基团包括:苯基、芘、芴、硝基苯、苯氰基、乙基咔唑,其具体结构式如下:
-F-Cl-Br-I
Figure BDA0001480512740000064
Figure BDA0001480512740000065
X可以是N原子、O原子或S原子,其中N原子上可以引入以下结构:
-H-CnH2n+1-CnH2nF-CnH2nCl-CnH2nBr
Figure BDA0001480512740000071
Figure BDA0001480512740000072
为以下结构中的一种:
Figure BDA0001480512740000073
Figure BDA0001480512740000074
为以下结构中的一种:
Figure BDA0001480512740000075
一种纳米聚合物,其通式为(Ⅱ),是由上述的有机纳米格的一部分通过均聚或者与光电基团共聚方式形成的聚合物;
Figure BDA0001480512740000076
式中:n为1至10的自然数;
Figure BDA0001480512740000077
为以下结构中的一种:
Figure BDA0001480512740000078
一种有机纳米格的制备方法:类芴叔醇在酸催化剂中发生叔醇傅克反应,分子间脱水合环,形成相应的有机缺角格,其反应路线为反应式(Ⅲ)。
Figure BDA0001480512740000081
所述纳米聚合物的合成策略:1)一种是以溴代有机纳米格通过C-C键偶联(suzuki)反应获得相应的有机纳米聚合物;2)由A2B2聚合单体直接通过傅克聚合的方式获得有机纳米聚合物。
其两种聚合策略如反应式(Ⅳ)(Ⅴ)。
Figure BDA0001480512740000082
下面结合实施例来进一步描述本发明的技术方案,但这些实施例并非限制本发明的实施方式。本发明具有多种不同的实施方式,并不只限于本说明书中所述内容。本领域的技术人员在不违背本申请发明精神的情况下,所完成的方案应在本发明的范围内。
实施例1:有机纳米格1d与1e的制备
Figure BDA0001480512740000091
1)由1a制备1b
向25mL两口烧瓶中加入镁(210mg,8.8mmol,4.4equiv)和一粒碘加到反应瓶中,密封、抽真空、充氮气。用注射器吸取四氢呋喃(5mL)和对溴甲苯(1370mg,8mmol,4equiv)。然后将少量四氢呋喃和对溴甲苯加到反应瓶中。在搅拌下加热引发,当溶液变成无色时表明引发成功。缓慢将将剩余的四氢呋喃和对溴甲苯在冰水浴中加到反应瓶中,将温度升高至55℃反应一段时间,即可成功制备相应格氏试剂。向另一个反应瓶中加入2-溴氮杂芴酮1a(520mg,2mmol,1equiv),抽真空充氮气三次,并向反应瓶中加入35mL的四氢呋喃。再将之前制备的格氏试剂缓慢加入1a的四氢呋喃溶液中。薄层层析监测原料基本反应完全。用饱和NH4Cl溶液将将其猝灭,然后萃取、旋蒸、柱层析,得到白色粉末固体化合物1b(367mg.1.04mmol,52%).1H NMR(400MHz,CDCl3):δ(ppm)8.44(s,2H),7.78(s,1H),7.67–7.65(d,J=7.7Hz,1H),7.26(s,1H),7.22–7.17(m,3H),7.12–7.10(d,J=7.1Hz,2H),2.32(s,3H).13C NMR(100MHz,CDCl3):δ(ppm)155.9,155.1,151.8,151.0,147.3,145.6,137.9,137.3,135.8,133.0,129.4,125.2,124.3,121.5,79.3,21.1.
2)由1b制备1c
向25mL反应瓶中加入1b(176mg,0.5mmol,1equiv)、乙基咔唑硼酸酯(193mg,0.6mmol,1.2equiv),密封、抽真空、充氮气。在氮气的环境中快速加入四三苯基磷钯(0.06g,0.05mmol,0.1equiv),再次抽真空、充氮气。向反应瓶中加入三叔丁基磷(0.37mL,0.1mmol,0.2equiv,0.1wt%in toluene)、甲苯溶剂(6mL)与0.5M的碳酸钾水溶液(2.4mL,1.2mmol,2.4equiv)。避光,将反应温度升高至110℃,反应6h,薄层层析监测原料基本反应完全,加水猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,并用柱层析进一步分离提纯,得到白色固体粉末1c(150mg.0.32mmol.63%).1H NMR(400MHz,CDCl3):δ(ppm)8.90(s,1H),8.53–8.52(d,J=4.8Hz,1H),8.18(s,1H),8.10–8.08(d,J=7.8Hz,1H),8.00(s,1H),7.74–7.72(d,J=8.1Hz,1H),7.61–7.59(d,J=8.4Hz,1H),7.52–7.43(s,2H),7.39–7.37(d,J=7.8Hz,1H),7.34–7.32(d,J=8.0Hz,2H),7.27–7.23(m,3H),7.20–7.17(dd,J=6.8Hz,5.8Hz,1H),7.13–7.11(d,J=7.8Hz,1H),4.27–4.22(q,J=6.4Hz,1H),2.31(s,3H),1.40–1.37(t,J=7.2Hz,1H).
3)由1c制备1d、1e与1f(有机纳米格)
将1c(46mg,0.1mmol,1equiv)加入到小反应瓶中,再加入5mL的二氯甲烷,搅拌30Min后再快速加入浓硫酸(1mL),薄层层析监测原料基本反应完全,加氢氧化钾水溶液猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,并用柱层析进一步分离提纯,得到淡黄色固体粉末1d、1e与1f。从图4的飞行时间质谱图中可以发现此反应液中产物的分子量为898.27与899.29,可以分别对应1d/1e的本征分子量以及质子化后的分子量,说明此反应体系中只存在二元格产物。
1d:(9mg,0.01mmol.20%)8.95–8.94(d,J=1.8Hz,2H),8.80–8.78(dd,J=4.8,1.3Hz,2H),8.58(d,J=1.6Hz,2H),8.29–8.27(dd,J=9.2,1.6Hz,4H),8.01–7.98(dd,J=7.7,1.3Hz,2H),7.74–7.71(dd,J=8.4,1.6Hz,2H),7.62–7.59(dd,J=8.7,1.8Hz,2H),7.52–7.49(dd,J=8.5Hz,2H),7.38–7.35(m,4H),6.91–6.89(d,J=8.2Hz,4H),6.78–6.75(d,J=8.3Hz,4H),4.43–4.39(m,4H),2.19(s,6H),1,48–1.45(t,J=7.0Hz,6H).
1e:(6.7mg,0.01075mmol.15%)1H NMR(400MHz,CDCl3):δ(ppm)9.14(s,2H),8.76–8.75(d,J=5.8Hz,2H),8.58(d,J=1.5Hz,2H),8.51(s,2H),8.47(s,2H),8.01–7.99(d,J=7.9Hz,2H),7.84–7.82(d,J=6.1Hz,2H),7.43–7.40(dd,J=7.4Hz,4.6Hz,4H),7.34–7.31(d,J=9.5Hz,2H),7.09–7.03(m,8H),6.98(s,2H),4.30(m,4H),2.29(s,3H),2.27(s,3H).此化合物的单晶结构如图1所示(此类化合物骨架中心的孔呈现出正方形,故称为有机纳米格),此核磁氢谱(全谱以及芳香区放大的区域)图详见图2。
1f:(34mg.0.0375mmol.75%).1H NMR(400MHz,CDCl3):δ(ppm)9.00–8.91(2H),8.74–8.66(2H),8.14–8.08(4H),7.93–7.88(4H),7.60–7.52(2H),7.38(4H),7.25–7.15(6H),7.05–7.00(6H),4,29(4H),2.28–2.22(6H),1.24(6H).(注:可能是由于两个氮杂芴同向导致的顺磁性,核磁信号峰没有列分)其核磁氢谱(全谱以及芳香区放大的区域)图详见图3。
实施例2:有机纳米格2d与2e的制备
Figure BDA0001480512740000111
1)由1a制备2b
向25mL两口烧瓶中加入镁(210mg,8.8mmol,4.4equiv)和一粒碘加到反应瓶中,密封、抽真空、充氮气。用注射器吸取四氢呋喃(5mL)和对溴甲苯(1240mg,8mmol,4equiv)。然后将少量四氢呋喃和对溴苯甲醚加到反应瓶中。在搅拌下加热引发,当溶液变成无色时表明引发成功。缓慢将将剩余的四氢呋喃和对溴苯甲醚在冰水浴中加到反应瓶中,将温度升高至55℃反应一段时间,即可成功制备相应格氏试剂。向另一个反应瓶中加入2-溴氮杂芴酮1a(520mg,2mmol,1equiv),抽真空充氮气三次,并向反应瓶中加入35mL的四氢呋喃。再将之前制备的格氏试剂缓慢加入1a的四氢呋喃溶液中。薄层层析监测原料基本反应完全。用饱和NH4Cl溶液将将其猝灭,然后萃取、旋蒸、柱层析,得到白色粉末固体化合物2b(141mg.0.35mmol.71%).1H NMR(400MHz,CDCl3):δ(ppm)8.26–8.25(m,2H),7.76–7.75(d,J=2.0Hz,1H),7.76–7.72(dd,J=7.7Hz,1.3Hz,1H),7.24–7.22(dd,J=8.8Hz,2H),7.13–7.10(dd,J=7.6Hz,4.9Hz,1H),6.81–6.79(d,J=8.8Hz,2H),5.59(s,1H).13C NMR(100MHz,CDCl3):δ(ppm)159.3,155.6,154.9,151.5,150.7,147.6,145.9,135.7,133.0,132.5,126.6,124.2,121.4,114.0,78.9,55.3.
2)由2b制备2c
向25mL反应瓶中加入2b(184mg,0.5mmol,1equiv)、乙基咔唑硼酸酯(193mg,0.6mmol,1.2equiv),密封、抽真空、充氮气。在氮气的环境中快速加入四三苯基磷钯(0.06g,0.05mmol,0.1equiv),再次抽真空、充氮气。向反应瓶中加入三叔丁基磷(0.37mL,0.1mmol,0.2equiv,0.1wt%in toluene)、甲苯溶剂(6mL)与0.5M的碳酸钾水溶液(2.4mL,1.2mmol,2.4equiv)。避光,将反应温度升高至110℃,反应6h,薄层层析监测原料基本反应完全,加水猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,并用柱层析进一步分离提纯,得到白色固体粉末2c(141mg.0.35mmol.71%).1H NMR(400MHz,CDCl3):δ(ppm)8.75(d,J=1.2Hz,1H),8.39–8.38(d,J=4.3Hz,1H),8.07(s,1H),8.02–8.01(d,J=7.6Hz,1H),7.94(d,J=1.5Hz,1H),7.68–7.66(d,J=7.5Hz,1H),7.53–7.51(d,J=7.9Hz,1H),7.47–7.45(d,J=8.0Hz,1H),7.37–7.32(m,3H),7.23–7.20(t,J=7.4Hz,1H),7.19–7.17(d,J=8.3Hz,1H),7.08–7.05(dd,J=7.6Hz,4.9Hz,1H),6.82–6.80(d,J=8.6Hz,2H),4.11–4.08(m,2H),3.74(s,3H),1.37–1.31(m,3H).
3)由2c制备2d与2e(有机纳米格)
将2c(48mg,0.1mmol,1equiv)加入到小反应瓶中,再加入5mL的二氯甲烷,搅拌30min后再快速加入浓硫酸(1mL),薄层层析监测原料基本反应完全,加氢氧化钾水溶液猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,并用柱层析进一步分离提纯,得到淡黄色固体粉末2d与2e。从图7的飞行时间质谱图中可以发现此反应液中基本上也只存在二元格产物。
2d:(9mg,0.01mmol.20%)1H NMR(400MHz,CDCl3):δ(ppm)9.14(s,2H),8.76–8.75(d,J=5.8Hz,2H),8.58(d,J=1.5Hz,2H),8.51(s,2H),8.47(s,2H),8.01–7.99(d,J=7.9Hz,2H),7.84–7.82(d,J=6.1Hz,2H),7.43–7.40(dd,J=7.4Hz,4.6Hz,4H),7.34–7.31(d,J=9.5Hz,2H),7.09–7.03(m,8H),6.98(s,2H),4.30(m,4H),2.29(s,3H),2.27(s,3H).其核磁氢谱(全谱以及芳香区放大的区域)图详见图5。
2e:(34mg.0.0375mmol.75%).1H NMR(400MHz,CDCl3):δ(ppm)9.00–8.91(2H),8.74–8.66(2H),8.14–8.08(4H),7.93–7.88(4H),7.60–7.52(2H),7.38(4H),7.25–7.15(6H),7.05–7.00(6H),4,29(4H),2.28–2.22(6H),1.24(6H).(注:可能是由于两个氮杂芴同向导致的顺磁性,核磁信号峰没有列分)此核磁氢谱(全谱以及芳香区放大的区域)图详见图6。
实施例3:有机纳米格3d与3e的制备
Figure BDA0001480512740000131
1)由3a制备3b
向50mL两口烧瓶中加入镁(560mg,23.1mmol,3.3equiv)和一粒碘加到反应瓶中,密封、抽真空、充氮气。用注射器吸取四氢呋喃(12mL)和对溴甲苯(2.50mL,21mmol,3equiv)。然后将少量四氢呋喃和对溴苯甲醚加到反应瓶中。在搅拌下加热引发,当溶液变成无色时表明引发成功。缓慢将将剩余的四氢呋喃和对溴苯甲醚在冰水浴中加到反应瓶中,将温度升高至55℃反应一段时间,即可成功制备相应格氏试剂。向另一个反应瓶中加入2,7-二溴氮杂芴酮3a(2380mg,7mmol,1equiv),抽真空充氮气三次,并向反应瓶中加入100mL的四氢呋喃。再将之前制备的格氏试剂缓慢加入3a的四氢呋喃溶液中。薄层层析监测原料基本反应完全。用饱和NH4Cl溶液将将其猝灭,然后萃取、旋蒸、柱层析,得到白色粉末固体化合物3b(1912mg.4.27mmol.Yield:61%).1H NMR(400MHz,CDCl3):δ(ppm)1H NMR(400MHz,CDCl3):δ(ppm)8.45–8.44(d,J=2.0Hz,2H),7.78–7.77(d,J=2.0Hz,2H),7.25–7.23(d,J=8.8Hz,2H),6.85–6.83(d,J=8.8Hz,2H),4.61(s,1H),3.79(s,3H).13C NMR(100MHz,CDCl3):δ(ppm)159.6,154.3,152.2,147.1,135.8,131.4,126.5,121.9,114.2,78.9,55.3.HRMS:m/z calcd for[M+H+]C18H13O2N2Br2:446.9338;found:446.9336.
2)由3b制备3c
向25mL反应瓶中加入3b(1350mg,3mmol,1equiv)、乙基咔唑硼酸酯(960mg,3mmol,1equiv),密封、抽真空、充氮气。在氮气的环境中快速加入四三苯基磷钯(360mg,0.3mmol,0.1equiv),再次抽真空、充氮气。向反应瓶中加入三叔丁基磷(2.9mL,1.2mmol,0.4equiv,0.1wt%的甲苯溶剂)、甲苯溶剂(6mL)与2M的碳酸钾水溶液(3mL,6mmol,2equiv)。避光,将反应温度升高至110℃,反应6h,薄层层析监测原料基本反应完全,加水猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,并用柱层析进一步分离提纯,得到白色固体粉末3c(710mg.1.26mmol.Yield:42%).1H NMR(400MHz,CDCl3):δ(ppm)1H NMR(400MHz,CDCl3):δ(ppm)8.77(d,J=2.1Hz,1H),8.46(d,J=2.1Hz,1H),7.98(d,J=1.3Hz,1H),7.97–7.95(d,J=7.9Hz,1H),7.90(d,J=1.9Hz,1H),7.79(d,J=1.9Hz,1H),7.50–7.43(m,2H),7.36–7.33(d,J=8.7Hz,2H),7.30–7.28(d,J=8.9Hz,1H),7.22–7.18(t,J=7.4Hz,1H),7.12–7.10(d,J=8.9Hz,1H),6.84–6.82(d,J=8.8Hz,2H),4.91(s,1H),4.03–3.96(m,2H),3.76(s,3H),1.70(s,3H).13C NMR(100MHz,CDCl3):δ(ppm)159.4,155.1,153.7,151.9,150.0,147.5,145.8,140.2,139.6,138.5,135.4,132.4,130.7,127.4,126.7,126.0,124.5,123.4,122.7,121.1,120.5,119.1,118.8,114.0,108.7,108.5,79.1,55.3,37.3,13.7.HRMS:m/z calcd for[M+H+]C32H25O2N3Br1:562.1125;found:562.1124.
3)由3c制备3d、3e与3f(有机纳米格)
将3c(150mg,0.27mol,1equiv)加入到小反应瓶中,再加入0.9mL的二氯甲烷,搅拌30min后再快速加入浓硫酸(0.22mL,4.05mmol,15equiv),薄层层析监测原料基本反应完全,加氢氧化钾水溶液猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,并用柱层析进一步分离提纯,得到淡黄色固体粉末3d、3e与3f。
3d(35mg,0.032mmol.Yield:24%)1H NMR(400MHz,CDCl3):δ(ppm)8.95–8.94(d,J=1.9Hz,2H),8.84(d,J=2.0Hz,2H),8.54(d,J=2.0Hz,2H),8.27–8.26(dd,J=4.2Hz,1.5Hz,4H),8.10–8.09(d,J=2.2Hz,2H),7.74–7.72(dd,J=8.5Hz,1.9Hz,2H),7.57–7.55(dd,J=8.7Hz,1.9Hz,2H),7.53–7.51(d,J=8.4Hz,2H),7.43–7.41(d,J=8.8Hz,2H),6.79–6.77(d,J=8.9Hz,4H),6.65–6.63(d,J=8.9Hz,4H).4.45–4.40(m,4H),3.67(s,6H),1.50–1.46(m,3H).MALDI-TOF-MS:m/z calcd for[M+H+]C64H45O2N6Br2:1087.1965;found:1087.1964.此核磁氢谱(全谱以及芳香区放大的区域)图详见图8。
3e(18mg,0.017mmol.Yield:14%)1H NMR(400MHz,CDCl3):δ(ppm)9.08–9.07(d,J=1.5Hz,2H),8.81(d,J=2.0Hz,2H),8.59(d,J=1.8Hz,2H),8.45(d,J=1.1Hz,2H),8.41(d,J=1.7Hz,2H),8.05–8.04(d,J=2.0Hz,2H),7.78–7.76(dd,J=8.4Hz,1.1Hz,2H),7.43–7.41(dd,J=8.5Hz,1.7Hz,2H),7.38–7.36(d,J=8.3Hz,2H),7.31–7.29(d,J=8.5Hz,2H),7.03–7.01(d,J=8.9Hz,4H),6.98(s,2H),6.78–6.76(d,J=8.9Hz,4H),5.01(s,1H),4.30–4.25(m,4H),3.73(s,6H),1.38–1.36(m,6H).13C NMR(100MHz,CDCl3):δ(ppm)158.9,156.1,154.8,151.2,148.2,147.8,147.0,140.7,139.9,136.9,136.8,136.6,132.0,131.7,129.0,128.2,125.5,125.4,124.9,123.5,123.5,121.3,120.0,118.7,114.2,109.2,108.4,60.7,55.2,37.9,31.9,30.3,22.7,13.8.HRMS:m/z calcd for[M+H+]C64H45O2N6Br2:1087.1965;found:1087.1964.其核磁氢谱(全谱以及芳香区放大的区域)图详见图9。
3f(89mg,0.082mmol.Yield:61%)1H NMR(400MHz,CDCl3):δ(ppm)9.09–9.01(2H),8.73(2H),8.34–7.90(8H),7.58(2H),7.36–7.10(8H),6.99–6.77(6H).4.27(4H),3.74–3.71(6H),1.29–1.24(6H).13C NMR(100MHz,CDCl3):δ(ppm)159.1,155.9,154.3,151.1,149.3,148.6,147.2,140.3,139.7,139.3,138.1,137.5,136.4,135.4,134.0,132.6,131.9,129.1,128.8,127.7,126.3,125.7,124.4,123.5,123.2,122.9,120.5,119.7,119.5,114.3,114.1,109.3,61.1,55.3,46.1,32.0,13.9,8.6.其核磁氢谱(全谱以及芳香区放大的区域)图详见图10。
实施例4:有机纳米格4d与4e的制备
Figure BDA0001480512740000161
将4c(100mg,0.15mol,1equiv)加入到小反应瓶中,再加入0.5mL的二氯甲烷,搅拌30min后再快速加入浓硫酸(0.12mL,2.25mmol,15equiv),薄层层析监测原料基本反应完全,加氢氧化钾水溶液猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,并用柱层析进一步分离提纯,得到淡黄色固体粉末4d与4e。
4d(30mg,0.023mmol.Yield:30%)1H NMR(400MHz,CDCl3):δ(ppm)9.17–9.16(d,J=1.9Hz,2H),8.97(d,J=1.7Hz,2H),8.66–8.65(d,J=1.3Hz,2H),8.42(d,J=1.2Hz,2H),8.33(d,J=1.4Hz,2H),8.32–8.31(d,J=1.9Hz,2H),8.27–8.26(d,J=2.1Hz,2H),8.23–8.21(dd,J=7.5,0.6Hz,2H),7.82–7.75(m,6H),7.55–7.51(m,4H),7.48–7.46(d,J=8.4Hz,2H),7.44–7.42(d,J=9.4Hz,2H),7.32–7.20(m,2H),7.00–6.96(t,J=8.0Hz,2H),6.90–6.88(d,J=8.8Hz,4H),6.68–6.65(d,J=9.0Hz,4H),4.45–4.42(m,8H),3.67(s,6H),1.51–1.48(m,12H).MALDI-TOF-MS:m/z calcd for[M+H+]C92H68O2N8:1317.549;found:1316.909.其核磁氢谱(全谱以及芳香区放大的区域)图详见图11。
4e(10mg,0.008mmol.Yield:10%)1H NMR(400MHz,CDCl3):δ(ppm)9.16(d,J=1.4Hz,2H),9.14(d,J=1.8Hz,2H),8.70(d,J=1.8Hz,2H),8.54–8.53(d,J=1.6Hz,2H),8.48(d,J=1.7Hz,2H),8.40(d,J=1.8Hz,2H),8.22–8.21(m,4H),7.88–7.86(dd,J=8.1,1.3Hz,2H),7.81–7.78(dd,J=8.2,1.5Hz,2H),7.63–7.60(dd,J=8.6,2.2Hz,2H),7.55–7.51(m,4H),7.47–7.44(m,4H),7.34–7.27(m,4H),7.16–7.13(d,J=8.8Hz,4H),6.98(s,2H),6.81–6.78(d,J=8.9Hz,4H),5.00(s,1H),4.47–4.41(q,J=6.5Hz,4H),4.37–4.33(m,4H),3.73(s,6H),1.41–1.37(m,12H).13C NMR(100MHz,CDCl3):δ(ppm),159.0,158.6,155.8,155.7,155.7,149.1,149.0,147.1,146.6,140.4,139.9,139.7,138.1,138.1,137.7,132.8,132.1,132.1,132.0,129.2,129.1,129.1,128.9,128.3,127.5,127.4,126.6,126.2,125.3,125.3,124.5,124.0,123.7,123.3,122.9,122.9,120.6,120.6,119.5,119.5,119.3,119.1,114.2,114.2,113.9,113.9,60.5,58.1,55.3,55.2,37.9,37.7,34.9,34.6,31.5,30.3,30.2,29.7,29.4,28.7,28.2,22.7,14.2,13.9,13.9,8.1.MALDI-TOF-MS:m/z calcd for[M+H+]C92H68O2N8:1317.549;found:1316.957.其核磁氢谱(全谱以及芳香区放大的区域)图详见图12。
实施例5:通过纳米连接的方式制备纳米聚合物
Figure BDA0001480512740000171
将5c(78mg,0.06mol,1equiv)加入到小反应瓶中,再加入4mL的二氯甲烷,再快速加入三氟甲磺酸(0.10mL,1.20mmol,60equiv),1min后加入封端基团。反应1h后,加氢氧化钾水溶液猝灭此反应。用二氯甲烷萃取,收集有机相,旋蒸除溶剂,得到黄色固体5d。此傅克聚合反应(聚合反应式Ⅴ)中反应液通过飞行时间质谱表征(图13),发现此反应液中的分子量930.414、2247.302、3565.167、4882.134可以分别对应单元格、二格寡聚物、三格寡聚物与四格寡聚物,其单元格、二格、三格的分子结构以及其分子量如图14所示。其聚合物结构通过核磁、GPC以及红外光谱进行了表征。其中其单格化合物的核磁如图15所示,此化合物信号峰比较清晰,不是呈现出大的鼓包现象,说明此纳米聚合物是刚性聚合物,很难发生链的弯曲。为了精确确认其构型,我们与类似单体进行核磁叠谱的比较(如图16所示),发现此纳米聚合物大部分信号峰可以与3d和3e相对应,且比例近似于1:1。单一的红外光谱上(如图17所示),可以发现其红外吸收比较强的特征峰有:2961、2924、2855、1261、1101、1028以及802。我们进一步与其他类似化合物进行对比(其红外光谱对比图如图18所示),发现它(5d)与化合物3e的特征峰匹配度非常高,而对不是纳米聚合物的溶解性差的cross-linkpolymer的红外光谱差别很大,从而证明其纳米聚合物的规整结构。图19是此纳米聚合物的GPC测试图,可以发现除了小分子量的寡聚物外,还存在高分子量(大约80000Da)的聚合物。此GPC测试的线性拟合曲线如图20所示,是采用了5点做出质量对数(Log Mn)与停滞时间之间的线拟合关系,其关系式是:y=-0.2062*X+8.04259。

Claims (1)

1.一种纳米聚合物的制备方法,其特征在于,反应路线如下:
Figure FDF0000018085180000011
具体反应步骤如下:
将78mg 0.06mol 1equiv的5c加入到小反应瓶中,再加入4mL的二氯甲烷,再快速加入0.10mL 1.20mmol 60equiv的三氟甲磺酸,1min后加入封端基团;反应1h后,加氢氧化钾水溶液猝灭此反应;用二氯甲烷萃取,收集有机相,旋蒸除溶剂,得到黄色固体5d。
CN201711188236.2A 2017-11-24 2017-11-24 一种有机纳米格、其纳米聚合物及其制备方法 Active CN107973797B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201711188236.2A CN107973797B (zh) 2017-11-24 2017-11-24 一种有机纳米格、其纳米聚合物及其制备方法
PCT/CN2018/074317 WO2019100582A1 (zh) 2017-11-24 2018-01-26 一种有机纳米格、其纳米聚合物及其制备方法
US16/766,301 US11312717B2 (en) 2017-11-24 2018-01-26 Organic nano-grid, nano-polymer thereof and preparation method therefor
SG11202004615YA SG11202004615YA (en) 2017-11-24 2018-01-26 A type of organic nanogrids and their nanopolymers as well as their preparation methods
JP2020528335A JP6888796B2 (ja) 2017-11-24 2018-01-26 有機ナノグリッド、そのナノポリマー及びその製作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711188236.2A CN107973797B (zh) 2017-11-24 2017-11-24 一种有机纳米格、其纳米聚合物及其制备方法

Publications (2)

Publication Number Publication Date
CN107973797A CN107973797A (zh) 2018-05-01
CN107973797B true CN107973797B (zh) 2022-09-30

Family

ID=62011474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711188236.2A Active CN107973797B (zh) 2017-11-24 2017-11-24 一种有机纳米格、其纳米聚合物及其制备方法

Country Status (5)

Country Link
US (1) US11312717B2 (zh)
JP (1) JP6888796B2 (zh)
CN (1) CN107973797B (zh)
SG (1) SG11202004615YA (zh)
WO (1) WO2019100582A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524546B (zh) * 2018-11-14 2020-09-22 南京邮电大学 一种基于纳米格子分子的有机场效应晶体管存储器及其制备方法
CN109516997B (zh) * 2018-11-22 2021-06-22 南京邮电大学 类芴基风车状纳米格及其制备方法和应用
CN109438454B (zh) * 2018-11-28 2021-09-10 南京邮电大学 一种纳米缺角格子及其制备方法与光电应用
CN110078738A (zh) * 2019-05-16 2019-08-02 南京邮电大学 一种具有热活化延迟荧光性质的a-d-a型纳米缺角格子及其制备方法和应用
CN110305299A (zh) * 2019-07-04 2019-10-08 南京邮电大学 基于共聚芴醇的交联聚合物及其制备方法和用途
CN111763212A (zh) * 2020-07-30 2020-10-13 南京邮电大学 一种有机纳米格及其制备方法
CN111825680A (zh) * 2020-08-05 2020-10-27 南京邮电大学 咔唑1,3位傅克合环的环状化合物及其制备方法
CN113321664A (zh) * 2021-06-16 2021-08-31 南京邮电大学 菱形螺二格及菱形螺二格的制备方法
CN113461695A (zh) * 2021-07-13 2021-10-01 南京邮电大学 一种基于微反应器合成手画手格芳烃的方法
CN113461713B (zh) * 2021-07-14 2022-07-22 南京邮电大学 一种cpdt基梯形格分子及其制备方法和应用
CN115417878B (zh) * 2022-09-13 2024-03-15 南京邮电大学 蒽衍生物咔唑大环化合物、其制备方法及碘阴离子的检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348289A (zh) * 2015-10-30 2016-02-24 南京邮电大学 纳米格子与纳米聚合物格子材料及其制备和应用方法
CN106518892A (zh) * 2016-09-20 2017-03-22 南京邮电大学 一种给受体型芴基纳米格子材料、制备方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336483B2 (ja) 2002-09-04 2009-09-30 キヤノン株式会社 ジアザフルオレン化合物及びそれを用いた有機発光素子
DE112004000832T5 (de) 2003-05-12 2006-03-23 Sumitomo Chemical Co. Ltd. Lichtemittierende Polymerzusammensetzung
JP2010100770A (ja) 2008-10-27 2010-05-06 Mitsubishi Gas Chemical Co Inc 熱可塑性樹脂の製造方法、ポリエステル樹脂及びポリカーボネート樹脂、ならびにそれらの用途
KR20130067177A (ko) 2011-12-13 2013-06-21 엘지디스플레이 주식회사 화합물 및 이를 이용한 유기전계발광소자
CN105622901A (zh) * 2016-03-16 2016-06-01 南京邮电大学 打断共轭型聚合物半导体材料及其制备方法和应用
CN106496527A (zh) 2016-09-20 2017-03-15 南京邮电大学 一种芴基给受体型纳米聚合物、制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348289A (zh) * 2015-10-30 2016-02-24 南京邮电大学 纳米格子与纳米聚合物格子材料及其制备和应用方法
CN106518892A (zh) * 2016-09-20 2017-03-22 南京邮电大学 一种给受体型芴基纳米格子材料、制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Robust and Soluble Nanopolymer Based on Molecular Grid-based Nanomonomer;Quanyou Feng等;《Chinese Journal of Polymer Science》;20161203;第35卷(第1期);第87-97页 *
A robust molecular unit nanogrid servicing as network nodes via molecular installing technology;Guangwei Zhang等;《Mater. Chem. Front.》;20160809;第1卷;第455-459页 *

Also Published As

Publication number Publication date
WO2019100582A1 (zh) 2019-05-31
JP2021504364A (ja) 2021-02-15
US20210163482A1 (en) 2021-06-03
CN107973797A (zh) 2018-05-01
JP6888796B2 (ja) 2021-06-16
SG11202004615YA (en) 2020-06-29
US11312717B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
CN107973797B (zh) 一种有机纳米格、其纳米聚合物及其制备方法
CN113174032B (zh) 氟代稠环苯并噻二唑聚合物受体材料、制备方法
CN105037383A (zh) 高纯度蝶烯四酸二酐及其合成方法以及基于蝶烯四酸二酐合成的聚酰亚胺
CN111647140B (zh) 一种聚合咔唑衍生物合镉配合物及其制备方法与用途
CN106750194B (zh) 一类含邻菲罗啉并咪唑衍生物合Cd(Ⅱ)的聚合金属配合物及其制备方法和用途
CN113563314A (zh) 一种菲并咪唑衍生物及其制备方法和应用
CN108707221A (zh) 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用
US9040655B2 (en) Direct CH arylation method using palladium-based catalyst
Zhang et al. Investigation of S uzuki–M iyaura catalyst‐transfer polycondensation of AB‐type fluorene monomer using coordination‐saturated aryl P d (II) halide complexes as initiators
CN106554453B (zh) 一种农用转光膜材料及其制备方法
CN110684134B (zh) 基于吩噻嗪或咔唑的杂环改性双光子聚合引发剂及其制备方法
CN111454435B (zh) 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用
Goto et al. Transition-metal-free and halogen-free controlled synthesis of poly (3-alkylthienylene vinylene) via the Horner–Wadsworth–Emmons condensation reaction
CN114644611A (zh) 一种基于萘稠环的缺电子单体及其聚合物和应用
Nguyen et al. Synthesis and characterization of three‐arm star‐shaped conjugated poly (3‐hexylthiophene) s: impact of the core structure on optical properties
CN110964041B (zh) 一种基于苯并酰亚胺的受体材料及其制备方法和应用
CN102786673B (zh) 一种环状脂肪族聚酯的制备方法
CN107445968B (zh) 一种二吲哚并三并咔唑基多臂结构共轭分子材料及其制备方法与应用
CN110878011A (zh) 一种二苯并[g,p]稠二萘化合物的制备方法
US6569978B2 (en) Anionic polymerization of functionalized styrene derivatives containing carbazole
CN110790760B (zh) 用芳香基团桥接萘二酰亚胺的氟代羟基喹啉基金属有机小分子配合物及其制备方法与应用
CN102701921B (zh) 盘状液晶中间体2-羟基-3,6,7,10,11-五烷氧基苯并菲和直链烷基苯的合成方法
Nguyen et al. Dithienopyrrole-based monomers as an acceptor unit building for synthesis of donor–acceptor conjugated polymers
EP2787019A1 (en) Co-polymer of 2,7-carbazole and dithienyl thiazolothiazole, and method for preparing same and solar battery containing same
RU2694209C2 (ru) Донорно-акцепторные олигомеры на основе трифениламина с п-фторфенилдициановинильными электроноакцепторными заместителями и способ их получения

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant