CN107924930B - 绝缘材料、电子器件和成像装置 - Google Patents

绝缘材料、电子器件和成像装置 Download PDF

Info

Publication number
CN107924930B
CN107924930B CN201680047400.5A CN201680047400A CN107924930B CN 107924930 B CN107924930 B CN 107924930B CN 201680047400 A CN201680047400 A CN 201680047400A CN 107924930 B CN107924930 B CN 107924930B
Authority
CN
China
Prior art keywords
electrode
electronic device
oxide
work function
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680047400.5A
Other languages
English (en)
Other versions
CN107924930A (zh
Inventor
森胁俊贵
市村真理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN107924930A publication Critical patent/CN107924930A/zh
Application granted granted Critical
Publication of CN107924930B publication Critical patent/CN107924930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及:绝缘材料;设置有由该绝缘材料形成的绝缘层的电子器件;以及装有该电子器件的成像装置。本发明的目的是提供:能够通过合理的方法或通过低温处理制造的电子器件;装有该电子器件的成像装置;以及绝缘材料。该电子器件设置有:第一电极31;形成在第一电极31上的光发射/光接收层20;和形成在光发射/光接收层20上的第二电极32。光发射/光接收层20和/或第二电极32被由金属氧化物形成的绝缘层40覆盖,该金属氧化物含有作为主组分的氧化锌且含有作为副组分的从由氧化铝、氧化镁、氧化铌、氧化钛、氧化钼和氧化铪组成的组中选出的至少两种材料。

Description

绝缘材料、电子器件和成像装置
技术领域
本发明涉及绝缘材料、电子器件和成像装置,该电子器件包括含有 该绝缘材料的绝缘层,该成像装置中装有该电子器件。
背景技术
包括有诸如图像传感器等光电转换元件的电子器件例如通过堆叠第 一电极、光发射/光接收层(其构成光电转换部)和第二电极而构成。第 二电极是透明电极。电子被一侧的电极捕获而空穴被另一侧的电极捕获, 以读取光电电流。已知的是,在光发射/光接收层例如含有有机材料的情 况下,光发射/光接收层因水分或氧等而劣化。因此,第二电极等被起到 保护层作用的绝缘层覆盖,从而抑制光发射/光接收层劣化(例如,参见 JP 2013-118363A)。
引用列表
专利文献
专利文献1:JP 2013-118363A
发明内容
本发明要解决的技术问题
与此同时,在上述专利文献公开的技术中,绝缘层包括根据气相生 长法而形成氮氧化硅层这一单层或氮氧化硅层(上层)/氧化铝层(下层) 等两层结构。此外,第二电极(对电极)含有金属、金属氧化物、金属 氮化物、金属硼化物、有机导电化合物或它们的混合物等。除此以外, 必须的是,第二电极的形成和绝缘层的形成应根据不同的工艺来实施。 因此,第二电极的形成和绝缘层的形成无法基于一系列工序来实施,使 得电子器件不能通过更合理的方法来制造。此外,绝缘层例如根据诸如 等离子CVD法和ALCVD法等原子层沉积法而形成,这种情况下的成膜 温度是150℃至250℃或100℃至200℃。
因此,本发明的目的是提出一种能够通过更合理的方法或通过更低 温度的工艺制造而成的电子器件、装有该电子器件的成像装置以及绝缘 材料。
技术问题的解决方案
用于实现上文目的的本发明的电子器件包括第一电极、形成在该第 一电极上的光发射/光接收层和形成在该光发射/光接收层上的第二电极, 其中,光发射/光接收层和/或第二电极被含有金属氧化物的绝缘层覆盖, 该金属氧化物含有作为主组分的氧化锌且含有作为副组分的从由氧化 铝、氧化镁、氧化铌、氧化钛、氧化钼和氧化铪组成的组中选出的至少 两种材料。
用于实现上文目的的本发明的成像装置包括本发明的上述的电子器 件。
用于实现上文目的的本发明的绝缘材料含有金属氧化物,该金属氧 化物含有作为主组分的氧化锌且含有作为副组分的从由氧化铝、氧化镁、 氧化铌、氧化钛、氧化钼和氧化铪组成的组中选出的至少两种材料。
本发明的有益效果
在本发明的电子器件和构成本发明的成像装置的电子器件中(以下, 可以被统称为“本发明的电子器件等”)且在本发明的绝缘材料中,规定 了含有作为主组分的氧化锌且含有作为副组分的氧化铝、氧化镁等的材 料,且因此,电子器件能够通过更合理的方法且通过更低温度的工艺来 制造。注意,这里所述的效果仅是示例性的而不是限制性的,且可以存 在额外的效果。
附图说明
图1A和图1B是实施例1的电子器件的在其制造过程中的示意性局 部截面图和实施例1的电子器件的示意性局部截面图,且图1C是实施例 1的电子器件的变型例的示意性局部截面图。
图2是实施例3的电子器件的示意性局部截面图。
图3示出了含有氧化锌的薄膜的X射线衍射结果和实施例1的绝缘 材料的薄膜的X射线衍射结果,该绝缘材料含有包括氧化锌、氧化铝和 氧化镁的三元金属氧化物。
图4是示出了在形成实施例1的绝缘材料的薄膜时获得的薄膜的氧 气分压和内应力之间关系的检验结果的曲线图,该绝缘材料含有包括氧 化锌、氧化铝和氧化镁的三元金属氧化物。
图5是示出了在根据实施例2的溅射法形成第一电极时的第一电极 的氧气引入量(氧气分压)和功函数之间关系的检验结果的曲线图。
图6A和图6B是实施例2和比较例2的电子器件的能量图的概念图, 且图6C和图6D是示出了实施例2和比较例2的电子器件的功函数值差 值和能量图之间相关性的概念图。
图7A和图7B是示出了实施例2的电子器件的内部量子效率和功函 数值差值之间相关性以及暗电流和功函数值差值之间相关性的曲线图。
图8A和图8B是示出了实施例3的电子器件的内部量子效率和功函 数值差值之间相关性以及暗电流和功函数值差值之间相关性的曲线图。
图9A和图9B是示出了在实施例4A的电子器件(其中,第一电极 包括铟铈氧化物)中和在比较例4的电子器件(其中,第一电极包括ITO) 中获得的光电流和暗电流的电流-电压(I-V)曲线的曲线图。
图10示出了对实施例4A和比较例4的电子器件的第一电极的光谱 特性进行示意的曲线图。
图11A是示出了在实施例4A的电子器件中,以第一电极的铈添加 浓度作为参数的情况下,第一电极成膜时的氧气引入量(氧气分压)和 电阻率之间关系的测量结果的曲线图,且图11B是示出了在实施例4C 的电子器件(其中,第一电极包括铟钨氧化物)中,第一电极的钨添加 浓度和电阻率之间关系的测量结果的曲线图。
图12A是示出了当第一电极的钨添加浓度是2原子%时,在实施例 4C的电子器件中,第一电极成膜时的氧气引入量(氧气分压)和光透过 率之间关系的测量结果的曲线图,且图12B是示出了在实施例4D的电 子器件(其中,第一电极包括铟钛氧化物)中,第一电极的钛添加浓度 和电阻率之间关系的测量结果的曲线图。
图13是实施例5的成像装置的概念图。
具体实施方式
将参照附图并根据下面的实施例来说明本发明,但是本发明不限于 这些实施例且这些实施例中的各种数值和材料仅是示例性的。注意,将 以下面的顺序进行说明。
1.本发明的绝缘材料、电子器件和成像装置的总体说明
2.实施例1(本发明的绝缘材料和电子器件)
3.实施例2(实施例1的变型例)
4.实施例3(实施例1的另一变型例)
5.实施例4(实施例1的又一变型例)
6.实施例5(本发明的成像装置)
7.其他
<本发明的绝缘材料、电子器件和成像装置的总体说明>
在本发明的电子器件等或本发明的绝缘材料中,副组分的含量以金 属原子为基准优选5至30原子%。此外,在具有该优选模式的本发明的 电子器件等或本发明的绝缘材料中,副组分优选包括氧化铝和氧化镁。
在具有上述各种优选模式的本发明的电子器件等中,期望的是,第 二电极上的绝缘层的厚度是5×10-8至7×10-7m,优选1.5×10-7至7×10-7m, 更优选3×10-7至7×10-7m。
此外,在具有上述各种优选模式的本发明的电子器件等中,绝缘层 的内应力的绝对值优选不大于50MPa,换言之,压缩应力或拉伸应力优 选不大于50MPa。可替代地,绝缘层的压缩应力优选不大于50MPa。因 此,在将绝缘层的内应力的绝对值抑制为低的情况下,能够抑制绝缘层 的膜应力,且能够抑制对光发射/光接收层的不利影响,例如,由于膜应 力而造成的特性降低、耐久性降低和产量降低等坏影响。
此外,在具有上述各种优选模式的本发明的电子器件等中,绝缘层 优选是透明的和非晶的。
此外,在具有上述各种优选模式的本发明的电子器件等中,对于波 长为400至660nm的光,绝缘层的光透过率优选不小于80%。
此外,在具有上述各种优选模式的本发明的电子器件等中,对于波 长为400至660nm的光,第二电极的光透过率优选不小于75%。此外, 对于波长为400至660nm的光,第一电极的光透过率优选不小于75%。
此外,在具有上述各种优选模式的本发明的电子器件等中,光发射/ 光接收层优选包括有机光电转换材料,且在这种情况下,电子器件可以 是包括光电转换元件的模式。
在本发明的电子器件等中,绝缘层的薄层电阻期望不小于1×105Ω/□。 此外,绝缘层的折射率期望是1.9至2.2,从而能够实现能有效地透过绝 缘层的光的频谱宽度(被称为“透过光频谱宽度”)的扩宽。
在具有上述各种优选模式的本发明的电子器件等中,能够采用这样 的构造:第二电极的功函数的值和第一电极的功函数的值之间的差值(该 差值通过将第二电极的功函数的值减去第一电极的功函数的值而获得) 不小于0.4eV。注意,为了方便,将具有该构造的本发明的电子器件等称 为“第(1-A)构造的电子器件”。由此,能够获得这样的构造:其中, 内电场根据功函数值的差值而产生于光发射/光接收层中,凭此实现内部 量子效率的增强。在第(1-A)构造的电子器件中,第二电极的厚度优选 1×10-8至1×10-7m。
可替代地,在具有上述各种优选模式的本发明的电子器件等中,能 够采用如下构造:
第二电极具有从光发射/光接收层侧的第2B层和第2A层的堆叠结 构,且
第二电极的第2A层的功函数的值低于第二电极的第2B层的功函数 的值。注意,为了方便,将具有该构造的本发明的电子器件等称为“第 (1-B)构造的电子器件”。
在第(1-A)构造的电子器件中,规定了第二电极的功函数的值和第 一电极的功函数的值之间的差值。因此,当将偏置电压施加在第一电极 和第二电极之间时,能够实现内部量子效率的增强,且能够限制暗电流 的产生。此外,在第(1-B)构造的电子器件中,第二电极具有第2A层 和第2B层这样的两层结构,且规定了第2B层和第2A层之间功函数的 差值。因此,能够实现第二电极的功函数的最优化,且进一步促进载流 子的传输(迁移)。此外,在第(1-A)构造的电子器件的制造中,通过 控制根据溅射法的形成时的氧气分压(氧气引入量),能够控制第二电极 的功函数的值。因此,根据功函数值的差值,大的内电场能够产生于光 发射/光接收层中,且能够实现内部量子效率的增强。此外,能够通过简 单的制造工艺来制造能够抑制暗电流的产生的电子器件。在第(1-B)构 造的电子器件的制造中,通过控制根据溅射法的形成时的氧气分压(氧 气引入量),能够控制第二电极的第2A层和第2B层的功函数值,且因 此,能够实现第二电极的功函数的最优化。
在第(1-B)构造的电子器件中,能够采用如下构造:第二电极的第 2A层的功函数的值和第二电极的第2B层的功函数的值之间的差值是0.1 至0.2eV。此外,在该构造中,第一电极的功函数值和第二电极的第2A 层的功函数值之间的差值优选不小于0.4eV。此外,在具有上述优选构造 的第(1-B)构造的电子器件中,能够采用这样的构造:第二电极的厚度 是1×10-8至1×10-7m,且第二电极的第2A层的厚度和第二电极的第2B 层的厚度之间的比是从9/1至1/9。注意,为了降低氧原子或氧分子对光 发射/光接收层的影响,优选的是,第二电极的第2B层的厚度小于第2A 层的厚度。此外,在具有上述优选构造的第(1-B)构造的电子器件中, 优选的是,将第一电极的功函数值和第二电极的第2A层的功函数值之间的差值设定为不小于0.4eV,从而根据功函数值的差值在光发射/光接收 层中产生内电场,且实现内部量子效率的增强。
在第二电极中,可以采用如下构造:其中,氧的含量小于根据化学 计量组成的氧含量。可替代地,可以采用如下构造:第二电极的第2A层 的氧含量低于第二电极的第2B层的氧含量。此外,能够根据氧含量来控 制第二电极的功函数的值。因为氧含量远低于根据化学计量组成的氧含 量或因为缺氧增加,所以减小了功函数的值。
虽然具有上述优选构造的第(1-A)构造的电子器件或第(1-B)构 造的电子器件的第二电极的功函数的值不被特别限制,但是可以采用下 述构造:其中,功函数值例如是4.1至4.5eV。第二电极可以含有透明导 电材料,诸如铟掺杂镓锌氧化物(IGZO,In-GaZnO4)、氧化铝掺杂氧化 锌(AZO)、铟锌氧化物(IZO)、铟镓氧化物(IGO)或镓掺杂氧化锌(GZO) 等,且含有这样的透明导电材料的第二电极的功函数的值例如是4.1至 4.5eV。
在具有优选构造的第(1-A)构造的电子器件或第(1-B)构造的电 子器件中,第一电极可以含有透明导电材料,诸如铟锡氧化物(ITO), 在与第二电极不同的成膜条件下形成的铟锌氧化物(IZO),或氧化锡 (SnO2)等。注意,含有该透明导电材料的第一电极的功函数的值例如 是4.8至5.0eV。
可替代地,在本发明的电子器件等中,第一电极优选包括这样的透 明导电材料:其功函数值是5.2至5.9eV,优选5.5至5.9eV,更优选5.8 至5.9eV。注意,为了方便,将具有该构造的本发明的电子器件等称为“第 (1-C)构造的电子器件”。因此,使用含有其功函数值为5.2至5.9eV的 透明导电材料的第一电极,可以进一步扩大第一电极的功函数值和第二 电极的功函数值之间的差值,以加宽构成第二电极的透明导电材料的材 料选择宽度并且提供具有优秀特性的电子器件。在第(1-C)构造的电子 器件中,构成第一电极的透明导电材料可以包括如下材料:假设铟原子 和金属类原子的总量是100原子%,则通过以0.5至10原子%的量将从 由铈(Ce)、镓(Ga)、钨(W)和钛(Ti)组成的组中选出的至少一种 金属添加至氧化铟而获得该材料。这里,词语“添加”包括混合和掺杂 的概念。此外,第一电极的电阻系数(电阻率)优选不小于1×10-2Ω·cm。 此外,第一电极的薄层电阻优选是3×10至1×103Ω/□。此外,第一电极 的厚度优选是1×10-8至2×10-7m,更优选2×10-8至1×10-7m。
可替代地,在第(1-C)构造的电子器件中,透明导电材料可以包括 通过将铈(Ce)添加至氧化铟而获得的材料<铟铈氧化物(ICO)>,第 一电极可以具有5×10-8至2×10-7m的厚度且具有不小于1×10-3Ω·cm且小 于1×10-2Ω·cm的电阻率。这里,假设铟原子和铈原子的总量是100原子%, 则铈原子的比例优选1至10原子%。
可替代地,在第(1-C)构造的电子器件中,透明导电材料可以包括 通过将镓(Ga)添加至氧化铟而获得的材料<铟镓氧化物(IGO)>,第 一电极可以具有5×10-8至1.5×10-7m的厚度且具有1×10-5至1×10-3Ω·cm 的电阻率。这里,假设铟原子和镓原子的总量是100原子%,则镓原子 的比例优选1至30原子%,期望1至10原子%。
可替代地,在第(1-C)构造的电子器件中,透明导电材料可以包括 通过将钨(W)添加至氧化铟而获得的材料<铟钨氧化物(IWO)>,第 一电极可以具有5×10-8至2×10-7m的厚度且具有1×10-4至1×10-3Ω·cm的 电阻率。这里,假设铟原子和钨原子的总量是100原子%,则钨原子的 比例优选1至7原子%。
可替代地,在第(1-C)构造的电子器件中,透明导电材料可以包括 通过将钛(Ti)添加至氧化铟而获得的材料<铟钛氧化物(ITiO)>,第 一电极可以具有5×10-8至2×10-7m的厚度且具有1×10-4至1×10-3Ω·cm的 电阻率。
这里,假设铟原子和钛原子的总量是100原子%,则钛原子的比例 优选0.5至5原子%。因此,通过规定铈原子、镓原子、钨原子和钛原子 的比例,可以获得期望的电阻率,且可以实现透过光频谱宽度的加宽。
此外,在第(1-C)构造的电子器件中,第二电极的功函数的值优选 不大于5.0eV。作为第二电极的功函数的值的下限,能够是例如提到的 4.1eV。在第(1-C)构造的电子器件中,第二电极可以是含有铟锡氧化 物(ITO)或氧化锡(SnO2)的模式。含有这样的透明导电材料的第二电 极的功函数的值取决于成膜条件,并且例如是4.8至5.0eV。可替代地, 第二电极可以含有诸如铟掺杂镓锌氧化物(IGZO,In-GaZnO4)、氧化铝 掺杂氧化锌(AZO)、铟锌氧化物(IZO)、铟镓氧化物(IGO)或镓掺杂 氧化锌(GZO)等透明导电材料。含有这样的透明导电材料的第二电极 的功函数的值取决于成膜条件,并且例如是4.1至4.5eV。
可替代地,在本发明的电子器件等中,第二电极可以是含有透明的、 导电的非晶氧化物的模式。因为第二电极因此是透明和导电的,所以能 够使入射光可靠地到达光发射/光接收层。此外,因为第二电极包括非晶 氧化物,所以第二电极的内应力减小,使得即使在不形成具有复杂构造 或结构的应力松弛层的情况下,也确保在第二电极的形成时不容易产生 对光发射/光接收层的应力损伤,且也不可能造成包括该成像元件的电子 器件的特性降低。此外,因为第二电极包括非晶氧化物,所以与第二电 极包括晶状透明电极的情况相比,增强了密封性质,从而造成电子器件 的灵敏度不均匀能够被抑制。这里,如上所述,第二电极的功函数优选 不大于4.5eV。在这种情况下,第二电极的功函数的值更优选是4.1至 4.5eV。此外,第二电极的电的电阻率期望不大于1×10-6Ω·cm。可替代地, 第二电极的薄层电阻期望是3×10至1×103Ω/□。此外,期望的是,第二 电极的厚度是1×10-8至1.5×10-7m,优选2×10-8至1×10-7m。此外,第二 电极可以含有以下材料:通过将从由铝、镓、锡和铟组成的组中选出的 至少一种材料添加至从由氧化铟、氧化锡和氧化锌组成的组中选出的至 少一种材料而获得的材料,或通过使用从由铝、镓、锡和铟组成的组中 选出的至少一种材料来掺杂从由氧化铟、氧化锡和氧化锌组成的组中选 出的至少一种材料而获得的材料。可替代地,第二电极可以含有包含Ina (Ga,Al)bZncOd的非晶氧化物,即包含铟(In)、镓(Ga)和/或铝(Al)、 锌(Zn)和氧(O)这样的至少四元化合物。在这种情况下,第二电极 的功函数的值和第一电极的功函数的值之间的差值优选不小于0.4eV。这 里,通过控制根据溅射法的形成时的氧气引入量(氧气分压),能够实现 第二电极的功函数的值的控制。此外,在第二电极包括Ina(Ga,Al)bZncOd的情况下,可以采用这样的构造:
第二电极具有从光发射/光接收层侧的第2B层和第2A层的堆叠结 构,且
第二电极的第2A层的功函数的值低于第二电极的第2B层的功函数 的值。在这种情况下,第二电极的第2A层的功函数值和第二电极的第 2B层的功函数值之间的差值可以是0.1至0.2eV。此外,第一电极的功 函数值和第二电极的第2A层的功函数值之间的差值可以不小于0.4eV。 可替代地,可以采用这样的构造:在第一电极的功函数值和第二电极的第2A层的功函数值之间的差值设定为不小于0.4eV的情况下,内电场根 据功函数值的差值而产生于光发射/光接收层中,从而实现内部量子效率 的增强。这里,通过控制根据溅射法的形成时的氧气引入量(氧气分压), 能够实现第二电极的第2A层和第2B层的功函数值的控制。此外,可以 采用这样的构造:第二电极的厚度是1×10-8至1.5×10-7m,且第二电极的第2A层的厚度和第二电极的第2B层的厚度之间的比是从9/1至1/9。注 意,为了降低氧原子或氧分子对光发射/光接收层的影响,更优选的是, 第二电极的第2B层的厚度小于第2A层的厚度。在因此而具有第2A层 和第2B层这样两层结构的第二电极的情况下和在因此而规定了第2B层 和第2A层之间功函数的差值的情况下,可以实现第二电极的功函数的最 优化,凭此进一步促进载流子的传输(迁移)。
此外,在具有上述各种优选模式或构造的本发明的电子器件等中, 可以采用这样的模式:第一电极的表面粗糙度(算术平均粗糙度)Ra不 大于1nm。在因此而使第一电极的表面粗糙度Ra不大于1nm的情况下, 能够实现其上形成的光发射/光接收层的特性的均匀化以及电子器件的 产量的增强。此外,Rq(均方根粗糙度,Rms)的值优选不大于2nm。 另一方面,优选这样的模式:第二电极的表面粗糙度Ra不大于1.5nm, 且其Rq不大于2.5nm。第二电极的这样的平滑度能够限制第二电极处的 表面散射/反射,且能够降低入射在第二电极上的光的表面反射,凭此可 以限制入射在光发射/光接收层上的光通过第二电极造成的光量损失,并 且可以实现光电转换的光电流特性的增强。表面粗糙度Ra和Rq根据JIS B0601:2013的规定。
在具有上述各种优选模式或构造的本发明的电子器件等中,可以采 用这样的构造:例如,第一电极形成在基板上,光发射/光接收层形成在 第一电极上,且第二电极形成在光发射/光接收层上。换言之,本发明的 电子器件等具有包括第一电极和第二电极的两端子型电子器件结构。然 而,应注意,这不是限制性的。本发明的电子器件等可以具有还包括控 制电极的三端子型电子器件结构,在这种情况下,通过将电压施加在控 制电极上,能够进行流动电流的调制。三端子型电子器件结构的具体示 例包括与所谓的底部栅极/底部接触型、底部栅极/顶部接触型、顶部栅极 /底部接触型和顶部栅极/顶部接触型的场效应晶体管(FET)相同的构造 或结构。注意,第二电极能够被制作为起到阴极电极(阴极)的作用(即, 起到用于取出电子的电极的作用),而第一电极能够被制作为起到阳极电 极(阳极)的作用(即,起到用于取出空穴的电极的作用)。可以采用这 样的结构:堆叠有多个电子器件等,该多个电子器件等具有光吸收频谱 不同的光发射/光接收层。此外,可以采用这样的结构:例如,基板是硅 半导体基板,硅半导体基板初步设置有用于电子器件等的驱动电路以及 设置有光发射/光接收层,且电子器件等堆叠在硅半导体基板上。
在具有上述优选模式或构造的本发明的电子器件等中,光发射/光接 收层可以处于非晶态或处于晶态。用于构成光发射/光接收层的有机材料 (有机光电转换材料)的示例包括有机半导体材料、有机金属化合物和 有机半导体颗粒。可替代地,用于构成光发射/光接收层的材料的示例包 括金属氧化物半导体、无机半导体颗粒、核材覆盖有壳材的材料和有机- 无机混合化合物。注意,为了方便,将具有该结构的本发明的电子器件 等(包括第(1-A)构造的电子器件、第(1-B)构造的电子器件和第(1-C) 构造的电子器件在内)称为“第(1-D)构造的电子器件”。
这里,有机半导体材料的具体示例包括:由喹吖啶酮及其衍生物代 表的有机色素,由Alq3[三(8-羟基喹啉)铝(III)]代表的其中前周期 (指的是周期表的左侧的金属)离子与有机材料螯合的色素,由酞菁锌 (II)代表的通过过渡金属离子与有机材料的络合形成而获得的有机金属 色素,和DNTT(dinaphthothienothiophene)。
此外,有机金属化合物的具体示例包括:上述的前周期离子与有机 材料螯合的色素,和通过过渡金属离子与有机材料的络合形成而形成的 有机金属色素。有机半导体颗粒的具体示例包括:上述的由喹吖啶酮及 其衍生物代表的有机色素的联合体,前周期离子与有机材料螯合的色素 的联合体,通过过渡金属离子与有机材料的络合形成而获得的有机金属 色素的联合体,或金属离子与氰基交联的普鲁士蓝及其衍生物,或它们 的络合联合体。
金属氧化物半导体或无机半导体颗粒的具体示例包括:ITO,IGZO, ZnO,IZO,IrO2,TiO2,SnO2,SiOX,含硫族元素[例如,硫磺(S),硒 (Se),碲(Te)]的金属硫族半导体(具体地,CdS,CdSe,ZnS,CdSe/CdS, CdSe/ZnS,PbSe),ZnO,CdTe,GaAs,和Si。
核材覆盖有壳材的材料或(核材,壳材)的组合的具体示例包括诸 如(聚苯乙烯,聚苯胺)等有机材料和诸如(难电离金属材料,易电离 金属材料)等金属材料。有机-无机混合化合物的具体示例包括:金属离 子与氰基交联的普鲁士蓝及其衍生物。除此以外,具体示例还包括配位 聚合物,其是如下化合物的通用名称:金属离子与二吡啶无限交联的化合物,和由草酸和红氨酸代表的由金属离子与多价离子酸交联的化合物。
取决于使用的材料,用于形成第(1-D)构造的电子器件中的光发射 /光接收层的方法的示例包括:涂布法、物理气相沉积法(PVD法)和包 括MOCVD法在内的各种化学气相沉积法(CVD法)。这里,涂布法的 具体示例包括:旋转涂布法;浸渍法;铸造法;各种印刷方法,诸如丝 网印刷法、喷墨印刷法、胶版印刷法和凹版印刷法等;冲压法;喷涂法; 和诸如气刀(air doctor)式涂布机法、叶片式涂布机法、棒式涂布机法、 刮刀式涂布机法、挤压式涂布机法、逆转辊式涂布机法、传送辊式涂布 机法、凹版辊式涂布机法、吻式涂布机法、铸造式涂布机法、喷涂式涂 布机法、狭缝孔式涂布机法和辊压式涂布机法等各种涂布法。注意,在涂布法中,溶剂的示例包括非极性或低极性有机溶剂,诸如甲苯、氯仿、 己烷和乙醇等。此外,PVD法的示例包括:各种真空气相沉积法,诸如 电子束加热法、电阻加热法和闪蒸法等;等离子体气相沉积法;各种溅 射法,诸如双极性溅射法、直流溅射法、直流磁控管溅射法、高频溅射 法、磁控管溅射法、离子束溅射法和偏置溅射法等;和各种离子镀法, 诸如直流(DC)法、RF法、多阴极法、激活反应法、电场气相沉积法、 高频离子镀法和反应离子镀法等。
此外,在第(1-D)构造的电子器件中,光发射/光接收层的厚度不 受限制,且可以是例如1×10-10至5×10-7m。
此外,在第(1-D)构造的电子器件中,基板的示例包括有机聚合物 (其具有聚合材料的形式,诸如含有聚合材料的柔性塑料膜、塑料薄片 或塑料基板等),例如,诸如聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇 (PVA)、聚乙烯苯酚(PVP)、聚醚砜(PES)、聚酰亚胺、聚碳酸酯(PC)、 聚对苯二甲酸乙二醇酯(PET)和聚萘二甲酸乙二醇酯(PEN)。当使用 该含有聚合材料的柔性基板时,例如可以将电子器件合并或集成到具有 曲面形状的电子装置中。可替代地,基板的示例包括:各种玻璃基板, 其表面上形成有绝缘膜的各种玻璃基板,石英基板,其表面上形成有绝 缘膜的石英基板,硅半导体基板,其表面上形成有绝缘膜的硅半导体基板,和含有诸如不锈钢等各种合金或各种金属的金属基板。注意,绝缘 膜的示例包括:硅氧化物材料(例如,SiOX或旋涂玻璃(SOG));硅氮 化物(SiNY);硅氮氧化物(SiON);氧化铝(Al2O3);金属氧化物和金 属盐。此外,也能够使用其表面上形成有上述绝缘膜的导电基板(含有 诸如金和铝等金属的基板,含有高定向性石墨的基板)。虽然期望基板的 表面是光滑的,但是它可以具有不会不利地影响光发射/光接收层的特性 的程度上的粗糙度。在基板的表面上,通过硅烷偶联法形成硅醇衍生物、 通过SAM法等形成含有硫醇衍生物、羧酸衍生物或磷酸衍生物等的薄膜 或通过CVD法等形成含有绝缘金属盐或金属络合物的薄膜,可以增强第 一电极或第二电极与基板之间的粘附。
第一电极、第二电极和绝缘层根据溅射法而形成,溅射法的具体示 例包括磁控管溅射法和平行板溅射法,且包括使用DC放电系统或RF放 电系统的等离子体产生形成法。可替代地,取决于用于构成第一电极的 材料,用于形成第一电极的方法的示例包括PVD法(诸如真空气相沉积 法、反应气相沉积法、各种溅射法、电子束气相沉积法、离子镀法等)、 高温溶胶工艺、有机金属化合物热解法、喷涂法、浸渍法、包括MOCVD 法在内的各种CVD法、化学镀法和电解镀法。注意,在本发明的优选构 造中,通过氧气流量(氧气分压,氧气引入量),可以控制功函数,且可 以实现电极特性的控制和增强。具体地,例如,可以控制电极的电阻率, 且可以实现电极的透过光频谱宽度的加宽。
虽然不是不可缺少,但是优选的是,在第一电极形成后且在第一电 极上形成光发射/光接收层前,使第一电极经受表面处理。表面处理的示 例包括紫外(UV)线照射和氧等离子体处理。通过施加表面处理,可以 去除第一电极的表面的污染物,且可以在将光发射/光接收层形成在第一 电极上时实现光发射/光接收层的粘附的增强。此外,使用经受表面处理 的第一电极,改变第一电极的缺氧的状态(具体地,减少缺氧),且能够 增加第一电极的功函数的值。
基于溅射法形成绝缘层时的氧气分压不受限制,并且优选是0.06至 0.10Pa。此外,在该优选模式下,根据溅射法形成绝缘层时的温度(成 膜温度)优选是室温或22℃至28℃。
在具有上述各种优选模式或构造的本发明的电子器件等中,可以通 过第二电极实施或可以通过第一电极进行光发射/光接收层中的光(广义 地,电磁波,且包括可见光、UV线和IR线在内)接收或发射/接收。在 后种情况下,应该使用对将要被发射/接收的光来说是透明的基板。
本发明的绝缘材料可以应用于光发射/光接收元件(具体地,半导体 光发射元件,诸如端面发射型半导体激光元件、端面发射型超发光二极 管(SLD)、表面发射激光元件(垂直谐振腔激光器,也被称为VCSEL)、 发光二极管(LED)等)或半导体光放大器中的绝缘层的形成,或可以 应用于太阳能电池或光电传感器中的绝缘层的形成。半导体光放大器直 接在光的状态下放大光信号而不需要将光信号转换成电信号,具有谐振 腔效应尽可能被安全地排除的激光器结构,且根据半导体光放大器的光 增益来放大入射光。在半导体激光元件中,实现了第一端面上的光反射 率和第二端面上的光反射率的最优化,凭此构造了谐振腔,且光从第一 端面发射。另一方面,在超发光二极管中,第一端面上的光反射率设定 为非常低的值,而第二端面上的光反射率设定为非常高的值,且在不构 成谐振腔的情况下,产生于活性层中的光在第二端面上反射且从第一端 面出射。在半导体激光元件和超发光二极管中,在第一端面上形成有抗 反射涂层(AR)或低反射涂层,在第二端面上形成有高反射涂层(HR)。 此外,在半导体光放大器中,第一端面和第二端面上的光反射率设定为 非常低的值,且在不构成谐振腔的情况下,从第二端面入射的光被放大 且从第一端面出射。在表面发射激光元件中,光在两个光反射层(分布 式布拉格反射器(Distributed BraggReflector)层,DBR层)之间谐振, 凭此产生激光振荡。
通过本发明的电子器件,不仅能够构造诸如电视相机等成像装置, 而且能够构造光电传感器和图像传感器。
实施例1
实施例1涉及本发明的电子器件和本发明的绝缘材料,此外,涉及 第(1-D)构造的电子器件。图1B示出了实施例1的电子器件的示意性 截面图。实施例1的电子器件构成光电转换元件。
实施例1或将在后面说明的实施例2至4的电子器件包括:第一电 极31、形成在第一电极31上的光发射/光接收层20,和形成在光发射/ 光接收层20上的第二电极32。例如,第二电极32包括导电非晶氧化物, 其包括铟(In)、镓(Ga)和/或铝(Al)、锌(Zn)和氧(O)的至少四 元化合物。此外,光发射/光接收层20和/或第二电极32由绝缘层40覆 盖。绝缘层40或绝缘材料包括金属氧化物,该金属氧化物含有作为主组 分的氧化锌且含有作为副组分的从由下列的氧化物组成的组中选择的至 少两种材料:氧化铝、氧化镁、氧化铌、氧化钛、氧化钼和氧化铪。具 体地,以金属原子为基准,副组分的含量是5至30原子%。更具体地,副组分包括氧化铝和氧化镁。绝缘层40也包括透明的、非晶的、绝缘的 非晶氧化物。绝缘层40或绝缘材料的示例性组分表示在下面的表1中。 绝缘层40起到一种保护层的作用。
<表1>
Figure BDA0001577633410000151
更具体地,在实施例1或将在后面说明的实施例2和3的电子器件 中,第二电极32包括透明导电材料,诸如铟掺杂镓锌氧化物(IGZO, In-GaZnO4)等。即,第二电极32包括Ina(Ga,Al)bZncOd。换言之, 第二电极32包括非晶氧化物,其含有铟(In)、镓(Ga)和/或铝(Al)、锌(Zn)和氧(O)的至少四元化合物[Ina(Ga,Al)bZncOd]。这里, “a”、“b”、“c”和“d”能够采用各种值。“a”的示例性值是0.05至0.10, “b”的示例性值是0.10至0.20,“c”的示例性值是0.10至0.20,且“d” 的示例性值是0.30至0.40,这些值是非限制性的。注意,第二电极32 可以不仅包括铟掺杂镓锌氧化物(IGZO),而且包括氧化铝掺杂氧化锌 (AZO)、铟锌氧化物(IZO)、铟镓氧化物(IGO)或镓掺杂氧化锌(GZO)。
图3示出了对根据以氧化锌为靶的溅射法的包括氧化锌的薄膜实施 X射线衍射的结果以及对包括有氧化锌、氧化铝和氧化镁这样的三元金 属氧化物的实施例1的薄膜(为了方便,以下被称为“绝缘材料薄膜”) 进行X射线衍射的结果。注意,在图3中,“氧化物混合物A”表示关于 包含氧化锌的薄膜的数据,且“氧化物混合物B”表示关于绝缘材料薄 膜的数据。从图3看出,氧化锌薄膜具有微晶结构,而绝缘材料薄膜是 非晶的。
在实施例1的电子器件10中,第一电极31包括透明导电材料,诸 如,例如铟锡氧化物(ITO)等,且光发射/光接收层20包括有机光电转 换材料,具体地,例如,厚度为0.1μm的喹吖啶酮。光发射/光接收层20 夹在第一电极31和第二电极32之间。换言之,第一电极31、光发射/ 光接收层20和第二电极32以此顺序堆叠。为了更具体,在实施例1的 电子器件10中,第一电极31形成在作为硅半导体基板的基板11上,光 发射/光接收层20形成在第一电极31上,且第二电极32形成在光发射/ 光接收层20上。换言之,实施例1或将在后面说明的实施例2至4的电 子器件10具有设置有第一电极31和第二电极32的两端子型电子器件结构。具体地,在光发射/光接收层20中,进行光电转换。换言之,实施 例1或将在后面说明的实施例2至4的电子器件10包括光电转换元件。 构成第一电极31的材料的其它示例包括在与第二电极32不同的成膜条 件下形成的诸如铟锌氧化物(IZO)和氧化锡(SnO2)等透明导电材料。
绝缘层40对于波长为400至660nm的光的光透过率不小于80%; 具体地,对于波长为550nm的光的光透过率是90%。第二电极32对于 波长为400至660nm的光的光透过率不小于75%;具体地,对于波长为 550nm的光的光透过率是85%。通过将第一电极31、第二电极32或绝 缘层40形成在透明玻璃平板上,能够测量第一电极31、第二电极32和 绝缘层40的光透过率。此外,第二电极32的薄层电阻是3×10至 1×103Ω/□,具体地,8×10Ω/□。此外,绝缘层40的薄层电阻不小于 1×105Ω/□,具体地,6.4×106Ω/□。此外,第二电极32上的绝缘层40的 厚度是5×10-8至7×10-7m,优选1.5×10-7至7×10-7m,更优选3×10-7至 7×10-7m。
绝缘材料薄膜在室温(或22℃至28℃)的成膜温度基于溅射法而 形成。此外,实验了成膜时的氧气分压和获得的绝缘材料薄膜的内应力 之间的关系,结果示意在图4中。平行平板溅射装置或DC磁控管溅射 装置用作溅射装置,氩(Ar)气用作工艺气体,且氧化锌、氧化铝和氧 化镁的烧结体用作靶。同样适用于将在下面说明的绝缘层40的形成。使 用商业薄膜应力测量装置根据已知的方法测量了内应力。从图4看出, 随着成膜时的氧气分压上升,获得的绝缘材料薄膜或绝缘层40的内应力 (压缩应力)的值减小。
根据各种测试结果,发现:优选的是,绝缘层40的内应力的绝对值 不大于50MPa,具体地,压缩应力或拉伸应力不大于50MPa,或绝缘层 40的压缩应力不大于50MPa。也发现:为了实现此目的,优选的是,通 过控制基于溅射法形成绝缘层40时的氧气分压(氧气引入量),控制绝 缘层40的氧(O)的组分比例。具体地,发现:为了使绝缘层40的压缩 应力不大于50MPa,优选的是,将形成绝缘层40时的氧气分压设定为值 不小于0.06Pa且不大于0.1Pa(参见图4)。
下面将说明实施例1的电子器件的制造方法。通过实施例1的电子 器件的制造方法而获得的电子器件10构成光电转换元件。
[步骤100]
准备作为硅半导体基板的基板11。这里,基板11例如设置有用于电 子器件的驱动电路,光电转换层(未示意)和配线12,且层间绝缘膜13 形成在基板11的表面上。层间绝缘膜13的底部设置有开口14,配线12 在开口14处露出。包括有ITO的第一电极31基于溅射法形成(成膜) 在包括开口14的内部在内的层间绝缘膜13上。这样,能够获得图1A所 示的结构。
[步骤110]
接着,进行第一电极31的图案化,其后,通过真空气相沉积法将包 括喹吖啶酮的光发射/光接收层20形成(成膜)在整个表面上。因此而 形成的光发射/光接收层20可以图案化或可以不图案化。
[步骤120]
此后,在使用平行平板溅射装置或DC磁控管溅射装置作为溅射装 置且使用氩(Ar)气作为工艺气体的同时,在室温(或22℃至28℃) 的成膜温度基于溅射法在光发射/光接收层20上形成包括导电非晶氧化 物(具体地,包括IGZO)的第二电极32,其后,根据已知的图案化技 术将第二电极32图案化成期望的形状。注意,第二电极32的图案化不 是不可缺少的。
[步骤130]
随后,在改变的溅射条件下,在室温(或22℃至28℃)的成膜温 度在整个表面上形成(成膜)绝缘层40。具体地,根据溅射法,用包括 绝缘非晶氧化物(具体地,包括绝缘材料薄膜)的绝缘层40覆盖第二电 极32。这样,能够获得具有图1B所示结构的实施例1的电子器件。
对于第二电极32上的绝缘层40的厚度是0.5μm的实施例1A、第二 电极32上的绝缘层40的厚度是0.7μm的实施例1B和由不形成绝缘层的 电子器件构成的比较例1,确定各自的内部量子效率的值,并且确定当各 电子器件放置在室内时内部量子效率的相对值的变化。结果说明在下面 的表2中。内部量子效率的相对值是当假设内部量子效率的初始值(在放置前的值)是100%时的值。内部量子效率η是产生的电子的数量与入 射的光子的数量的比,并且能够由下面的表达式表示。
η={(h·c)/(q·λ)}(I/P)=(1.24/λ)(I/P)
其中,
h:普朗克常数
c:光速
q:电子的电荷
λ:入射光的波长(μm)
I:光电流,且在实施例1的测量中,在1伏特的反向偏置电压下获 得的电流值(安培/cm2)
P:入射光的功率(安培/cm2)
<表2>
Figure BDA0001577633410000181
Figure BDA0001577633410000191
此外,在反向偏置电压设定为2.6伏特的情况下,测量暗电流。在 实施例1A和实施例1B的电子器件中,暗电流的初始值、被放置2小时 后的暗电流的值和被放置170小时后的暗电流的值没有任何改变,还是 1×10-10安培/cm2。另一方面,在比较例1中,暗电流的初始值和被放置2 小时后的暗电流的值是1×10-10安培/cm2,但是被放置170小时后的暗电 流的值显示增加至9×10-8安培/cm2
因此,在实施例1中,规定了绝缘层或绝缘材料薄膜的组分,且能 够根据溅射法形成第二电极和绝缘层;因此,能够通过更合理的方法制 造电子器件。此外,因为通过在22℃至28℃的低温时的工艺来制造电 子器件,所以能够防止光发射/光接收层的热劣化。此外,因为通过控制 成膜时的氧的组分比例,具体地,通过将根据溅射法形成绝缘层时的氧 气分压(氧气引入量)设定为例如值是0.06至0.10Pa,能够使绝缘层的 压缩应力不大于50Mpa或绝缘层的膜应力能够被抑制,所以可以提供高 可靠性的电子器件。此外,因为绝缘层包括绝缘非晶氧化物,所以能够 给予电子器件高密封性质。因此,能够抑制电子器件的特性的经时变化 (例如,上述的内部量子效率的经时变化),且可以提供高耐久性的电子 器件。
注意,在基于溅射法将包括绝缘材料薄膜的绝缘层40形成在光发射 /光接收层20上之后,根据已知的图案化技术去除绝缘层40的将要形成 有第二电极32的部分,从而露出光发射/光接收层20的一部分。接着, 在改变的溅射条件下,将包括导电非晶氧化物(具体地,包括IGZO)的 第二电极32形成在整个表面上,其后,根据已知的图案化技术将第二电极32图案化成期望的形状。这样,能够获得具有图1C所示结构的实施 例1的电子器件,其中,光发射/光接收层20被包括绝缘材料薄膜的绝 缘层40覆盖。因此,绝缘层40可以形成在第二电极32的上侧或下侧。
实施例2
实施例2是实施例1的变型例,并且涉及第(1-A)构造的电子器件 和第(1-D)构造的电子器件。具体地,在实施例2的电子器件中,第二 电极32的功函数值和第一电极31的功函数值之间的差值不小于0.4eV。 这里,在第二电极32的功函数值和第一电极31的功函数值之间的差值 设定为不小于0.4eV的情况下,根据功函数值的差值在光发射/光接收层 20中产生内电场,凭此实现内部量子效率的增强。第二电极32起到阴极 电极(阴极)的作用。换言之,它起到用于取出电子的电极的作用。另 一方面,第一电极31起到阳极电极(阳极)的作用。换言之,它起到用 于取出空穴的电极的作用。这里,取决于成膜条件,构成第二电极32的 IGZO的功函数是4.1至4.2eV。此外,取决于成膜条件,构成第一电极 31的ITO的功函数例如是4.8至5.0eV。
具体地,通过控制基于溅射法形成第二电极32时的氧气引入量(氧 气分压),控制第二电极32的功函数值。在图5的曲线图中,示出了氧 气分压的值与第二电极32的功函数值之间关系的确定结果的示例。可以 看出,随着氧气分压的值升高或随着缺氧减少,第二电极32的功函数值 增加;随着氧气分压的值降低或随着缺氧增加,第二电极32的功函数值减小。
因此,在实施例2的电子器件中,通过控制在基于溅射法形成第二 电极32时的氧气引入量(氧气分压),控制第二电极32的功函数值。注 意,在第二电极32中,氧含量低于根据化学计量组分的氧含量。
在比较例2的电子器件中,第一电极和第二电极都包括ITO。因此, 在图6B中,示出了能量图的概念图,第二电极的功函数值和第一电极的 功函数值之间不存在差值。为此,空穴很容易从第二电极流入第一电极, 其结果是暗电流增加。此外,因为第二电极的功函数值和第一电极的功 函数值之间不存在差值,所以在取出电子和空穴时不存在电势梯度(或 光发射/光接收层中不产生内电场),使得难以平滑地取出电子和空穴(参 见图6D的概念图)。另一方面,在实施例2的电子器件中,第二电极包 括IGZO,而第一电极包括ITO,且第二电极的功函数值和第一电极的功 函数值之间的差值不小于0.4eV。在图6A中,示出了能量图的概念图。 因此,能够防止从第一电极至第二电极的空穴的流动,其结果是能够限 制暗电流的产生。此外,因为第二电极的功函数值和第一电极的功函数 值之间的差值不小于0.4eV,所以在取出电子和空穴时产生电势梯度(或 光发射/光接收层中产生内电场),使得能够通过施加该电势梯度而进行 电子和空穴的平滑取出(参见图6C的概念图)。
此外,在图7A的曲线图中,示出了内部量子效率和功函数值之间相 关性的实验结果,且在图7B的曲线图中,示出了暗电流(在实施例2 的测量中,在反向偏置电压为1伏特的情况下,无光照射获得的电流值) 和功函数值之间相关性的实验结果。注意,图7A和图7B的横坐标轴表 示第二电极32的功函数值和第一电极31的功函数值之间的差值,而图 8A和图8B的横坐标轴表示第二电极32的第2B层的功函数值和第二电 极32的第2A层的功函数值之间的差值。从图7A和图7B观察到,以大 约0.4eV的功函数值的差值为边界,内部量子效率明显增加且暗电流明 显减小。
如上所述,在实施例2的电子器件中,规定了第二电极的功函数值 和第一电极的功函数值之间的差值。因此,当偏置电压(具体地,反向 偏置电压)施加在第一电极和第二电极之间时,基于功函数值的差值能 够在光发射/光接收层中产生大的内电场。因此,能够实现内部量子效率 的增强或能够实现光电电流的增加,且此外,能够限制暗电流的产生。在实施例2的电子器件的制造中,通过控制在基于溅射法的形成时的氧 气引入量(氧气分压),能够控制第二电极的功函数值。因此,能够根据 功函数值的差值在光发射/光接收层中产生大的内电场。因此,能够实现 内部量子效率的增强或能够实现光电电流的增加。此外,能够通过简单 的制造工艺来制造暗电流的产生能够被限制的电子器件。
实施例3
实施例3是实施例2的变型例,并且涉及第(1-B)构造的电子器件 和第(1-D)构造的电子器件。具体地,在实施例3的电子器件中,第二 电极32具有从光发射/光接收层20侧的第2B层32B和第2A层32A的 堆叠结构,且第二电极32的第2A层32A的功函数值低于第二电极32 的第2B层32B的功函数值。在图2中,示出了实施例3的电子器件的 示意性局部截面图。
具体地,第二电极32的第2A层32A的功函数值和第二电极32的 第2B层32B的功函数值之间的差值是0.1至0.2eV,更具体地0.15eV, 且第一电极31的功函数值和第二电极32的第2A层32A的功函数值之 间的差值不小于0.4eV。此外,第二电极32的厚度是1×10-8至1×10-7m, 具体地50nm,且第二电极32的第2A层32A的厚度和第二电极32的第 2B层32B的厚度的比是从9/1至1/9,具体地9/1。此外,在实施例3中, 第一电极31的功函数值和第二电极32的第2A层32A的功函数值之间 的差值被设定为不小于0.4eV,凭此,基于功函数在光发射/光接收层中 产生内电场,且实现内部量子效率的增强。这里,使第2A层32A的组 分是Ina(Ga,Al)bZncOd且使第2B层32B的组分是Ina’(Ga,Al)b’Znc’Od’, 则a=a’,b=b’,c=c’,且此外,d<d’。在图8A的曲线图中,示出了内部 量子效率与功函数值差值之间相关性的实验结果,且在图8B的曲线图 中,示出了暗电流(也在实施例3的测量中,在反向偏置电压为1伏特 的情况下,无光照射获得的电流值)与功函数值差值之间相关性的实验 结果。从图8A和图8B观察到,随着第二电极的第2A层的功函数值和 第二电极的第2B层的功函数值之间的差值增加至大约0.2eV时,内部量 子效率明显增加且暗电流明确减小。
在实施例3的电子器件的制造中,以与实施例1的步骤130类似的 步骤,如例如图5的曲线图所示,通过控制在基于溅射法的形成时的氧 气引入量,控制第二电极32的第2A层32A和第2B层32B的功函数值。
在实施例3的电子器件中,因为第二电极包括第2A层和第2B层且 规定了第2A层和第2B层之间功函数的差值,能够实现第二电极的功函 数的最优化,且进一步促进载流子的传输(迁移)。
实施例4
实施例4也是实施例1的变型例,并且涉及第(1-C)构造的电子器 件和第(1-D)构造的电子器件。在实施例4的电子器件中,第一电极 31包括透明导电材料,该材料具有5.2至5.9eV的功函数值,优选5.5 至5.9eV,更优选5.8至5.9eV。这里,透明导电材料包括如下材料:假 设铟原子和金属种类原子的总量是100原子%,则通过以0.5至10原子% 的量将从由铈(Ce)、镓(Ga)、钨(W)和钛(Ti)组成的组中选出的 至少一种金属种类添加至氧化铟而获得的材料。
在实施例4中,与实施例1不一样,第二电极32具体地由铟锡氧化 物(ITO)形成。取决于成膜条件,第二电极32的功函数值例如是4.8 至5.0eV。换言之,第二电极32的功函数值不大于5.0eV。第一电极31 起到阳极电极(阳极)的作用。换言之,它起到用于取出空穴的电极的 作用。第二电极32起到阴极电极(阴极)的作用。换言之,它起到用于 取出电子的电极的作用。光发射/光接收层20包括具有例如100μm厚度 的喹吖啶酮。
在实施例4的电子器件中,第一电极31的电阻系数(电阻率)小于 1×10-2Ω·cm。此外,第一电极31的薄层电阻是3×10至1×103Ω/□。具体 地,在将在后面说明的实施例4A的电子器件中,当第一电极的膜厚度是 100nm时,第一电极31的薄层电阻是60Ω/□。此外,第一电极31的折 射率是1.9至2.2。此外,第一电极31的厚度是1×10-8至2×10-7m,优选2×10-8至1×10-7m。第一电极31根据溅射法而形成。此外,在这种情况 下,通过控制在基于溅射法形成第一电极31时的氧气引入量(氧气分压), 控制第一电极31的透过光频谱宽度。此外,第一电极31的氧含量低于 根据化学计量组分的氧含量。
第一电极31对于波长为400至660nm的光的光透过率不小于80%, 且第二电极32对于波长为400至660nm的光的光透过率也不小于80%。 通过将第一电极31和第二电极32各自的膜形成在透明玻璃平板上,能 够测量第一电极31和第二电极32的光透过率。
下面,将参照图1A和图1B说明实施例4的电子器件的制造方法。
[步骤400]
以与实施例1的[步骤100]类似的方式形成第一电极31。然而,应注 意,与实施例1不一样,包含前述透明导电材料的第一电极31基于共溅 法形成(成膜)在层间绝缘膜13上。平行平板溅射装置或DC磁控管溅 射装置用作溅射装置,氩(Ar)气用作工艺气体,且氧化铟和铈的烧结 体、氧化铟和镓的烧结体、氧化铟和钨的烧结体以及氧化铟和钛的烧结 体分别用作靶。
[步骤410]
接着,实施第一电极31的图案化,其后,使第一电极31经受使用 UV线照射第一电极31的表面这样的表面处理。此后,就立即通过真空 气相沉积法将包括喹吖啶酮的光发射/光接收层20形成(成膜)在整个 表面上,且此外,基于溅射法将包括ITO的第二电极32形成(成膜)在 光发射/光接收层20上。这里,在基于溅射法形成第二电极时,平行平 板溅射装置或DC磁控管溅射装置用作溅射装置,氩(Ar)气用作工艺 气体,且ITO烧结体用作靶。此后,以与实施例1的[步骤130]类似的方 式,将绝缘层40形成(成膜)在整个表面上。具体地,基于溅射法,使 用包括绝缘非晶氧化物(具体地,包括绝缘材料薄膜)的绝缘层40覆盖 第二电极32。这样,能够获得具有图1B所示结构的实施例4的电子器 件。
除了比较例4的电子器件的第一电极包括ITO以外,比较例4的电 子器件具有与实施例4一样的构造和结构。
实施例4和比较例4的在表面处理之前和之后的第一电极的组分、 金属种类原子的添加量、结晶温度、光学特性(折射率)、电阻率和功函 数值示出在下面的表3中。通过基于使用UV线的照射来实施表面处理, 升高了第一电极的功函数值,且能够获得第一电极和第二电极之间功函 数值的大差值。具体地,通过将第一电极31的功函数值减去第二电极32的功函数值而获得的值不小于0.4eV。可替代地,通过设定将第一电极 31的功函数值减去第二电极32的功函数值而获得的值为不小于0.4eV的 值,在光发射/光接收层20中基于功函数值的差值而产生内电场,且实 现了内部量子效率的增强。在表3中,“差值A”是将各实施例4的在处 理前的第一电极的功函数值减去比较例4的在处理前的第一电极的功函 数值而获得的值,且“差值B”是使各实施例4的在处理后的第一电极 的功函数值减去比较例4的在处理后的第一电极的功函数值而获得的值。 注意,各实施例4和比较例4的第二电极包括ITO,且第二电极的功函 数值是4.8eV。
<表3>
Figure DA00015776334151835024
Figure BDA0001577633410000251
在图9A中,示出了第一电极31包括铟铈氧化物(ICO)的实施例 4A的电子器件(光电转换元件)中和第一电极31包括ITO的比较例4 的电子器件(光电转换元件)中获得的光电流的I-V曲线。在图9A、9B 和10中,“A”表示关于实施例4A的电子器件的数据,而“B”表示关 于比较例4的电子器件的数据。从图9A看出,在实施例4A的电子器件 中,一旦施加稍微小于1伏特的反向偏置电压(偏置电压:稍微小于-1 伏特),电流值就突然增加。此外,在图9B中,示出了暗电流的I-V曲 线。确认的是,一旦施加-3伏特的偏置电压,与比较例4的2×10-9安培 /cm2相比,暗电流在实施例4A中被大幅抑制至6×10-11安培/cm2
此外,实施例4A和比较例4的电子器件的内部量子效率的值示出在 下面的表4中。此外,第一电极和第二电极的表面粗糙度的测量结果示 出在表4中。比较例4与实施例4A相比,表面粗糙度在粗糙程度上约大 一个量级。在实施例4中,第一电极31的表面粗糙度(算术平均粗糙度) Ra1不大于1nm,且第一电极31的均方根粗糙度Rq1不大于2nm。此外, 第二电极32的表面粗糙度(算术平均粗糙度)Ra2不大于1.5nm,且第 二电极32的均方根粗糙度Rq2不大于2.5nm。此外,第二电极的光透过 率的测量结果表示在表4中。
<表4>
Figure BDA0001577633410000252
Figure BDA0001577633410000261
在图10的顶部(光吸收率)和底部(光透过率)中,示出了实施例 4A和比较例4的电子器件的第一电极的光谱特性。注意,在实施例4A 中,第一电极31的铈的添加浓度是10原子%,且第一电极31的膜厚度 是150nm。此外,比较例4的第一电极的膜厚度是150nm。根据图10, 可以确认:实施例4A和比较例4的光谱特性大致相同。
在图11A中,示出了在实施例4A的电子器件中,以使用第一电极 的铈添加浓度作为参数的情况下,第一电极成膜时的氧气引入量(氧气 分压)和电阻率之间关系的测量结果。在铈添加浓度为10原子%(由图 11A的“A”表示)时,在氧气分压为约1%的量级时,电阻率小于 1×10-2Ω·cm。另一方面,在铈添加浓度为20原子%(由图11A的“B” 表示)和30原子%(由图11A的“C”表示)时,电阻率超过1×10-2Ω·cm。
在图11B中,示出了第一电极31包括铟钨氧化物的实施例4C的电 子器件的第一电极的钨添加浓度和电阻率之间关系的测量结果。在钨添 加浓度为1至7原子%时,第一电极的电阻率不大于1×10-3Ω·cm。
在图12A中,示出了当实施例4C的电子器件的第一电极的钨添加 浓度是2原子%时,第一电极成膜时的氧气引入量(氧气分压)和光透 过率之间关系的测量结果。注意,成膜时的氧气分压被设定为0.5%、 1.0%、1.5%和2.0%。因此,发现,当成膜时的氧气分压被设定为不小于 1%时,比较例4的在可见光区域中的平均透光率是82%,而在实施例4C中是84%,表明实施例4C和比较例4能够实现可比较的光透过率特性。
第一电极31包括铟镓氧化物的实施例4B的电子器件的镓添加浓度 和电阻率之间关系的测量结果表示在下面的表5中。在镓添加浓度高达 30原子%时,可以保留1×10-3Ω·cm的电阻率。注意,ITO(Sn:10原子%) 的电阻率是4.1×10-4Ω·cm。
<表5>
Figure BDA0001577633410000271
在图12B中,示出了第一电极31包括铟钛氧化物的实施例4D的电 子器件的第一电极的钛添加浓度与电阻率之间关系的测量结果。在室温 (RT)时的成膜的情况下,在钛添加浓度高达4原子%时,可以保留 1×10-3Ω·cm的电阻率。此外,在300℃时的成膜的情况下,即使钛添加 浓度高达5原子%,也可以保留1×10-3Ω·cm的电阻率。
总结上面的结果以及各种测试结果,可以采用这样的构造:其中, 透明导电材料包括<铟铈氧化物(ICO)>(其是通过将铈添加至氧化铟 而获得的材料),且第一电极31具有5×10-8至2×10-7m的厚度和不小于 1×10-3Ω·cm且小于1×10-2Ω·cm的电阻率。这里,铈添加浓度优选1至10 原子%。可替代地,可以采用这样的构造:其中,透明导电材料包括<铟镓氧化物(IGO)>(其是通过将镓添加至氧化铟而获得的材料),且第 一电极31具有5×10-8至1.5×10-7m的厚度和1×10-5至1×10-3Ω·cm的电阻 率。这里,镓添加浓度优选1至30原子%,期望1至10原子%。可替代 地,可以采用这样的构造:其中,透明导电材料包括<铟钨氧化物(IWO)> (其是通过将钨添加至氧化铟而获得的材料),且第一电极31具有5×10-8至2×10-7m的厚度和1×10-4至1×10-3Ω·cm的电阻率。这里,钨添加浓度 优选1至7原子%。可替代地,可以采用这样的构造:其中,透明导电 材料包括<铟钛氧化物(ITiO)>(其是通过将钛添加至氧化铟而获得的 材料),且第一电极31具有5×10-8至2×10-7m的厚度和1×10-4至1×10-3Ω·cm的电阻率。这里,钛添加浓度优选0.5至5原子%。
在第二电极32包括氧化锡(SnO2)、铟掺杂镓锌氧化物(IGZO, In-GaZnO4)、氧化铝掺杂氧化锌(AZO)、铟锌氧化物(IZO)、铟镓氧化 物(IGO)或镓掺杂氧化锌(GZO)的电子器件的情况下,也可以获得 与在第二电极32包括ITO的实施例4的电子器件的情况下大致类似的结 果。
如上面已经说明,在实施例4的电子器件中,第一电极包括具有5.2 至5.9eV的功函数值的透明导电材料。因此,能够加宽构成第二电极的 透明导电材料的材料选择宽度,以便扩大第一电极的功函数值和第二电 极的功函数值之间的差值,且可以提供具有极好特性的电子器件。此外, 当偏置电压(更具体地,反向偏置电压)施加在第一电极和第二电极之 间,在光发射/光接收层中能够基于第一电极和第二电极之间功函数值的 差值产生大的内电场;因此,能够实现内部量子效率的增强,能够实现 光电电流的增加,且能够限制暗电流的产生。
实施例5
实施例5涉及本发明的成像装置。实施例5的成像装置包括实施例1 至4的电子器件(具体地,光电转换元件)。
图13示出了实施例5的成像装置(成像元件)的概念图。实施例5 的成像装置100包括位于半导体基板(例如,硅半导体基板)上的其中 以二维阵列布置有实施例1至4所述的电子器件(光电转换元件)10的 成像区域101,和用作周边电路的垂直驱动电路102、列信号处理电路 103、水平驱动电路104、输出电路105、控制电路106等。注意,自然, 这些电路能够是已知的电路,或能够通过使用其它电路构造(例如,用 于常规CCD成像装置和CMOS成像装置的各种电路)来构成。
控制电路106根据垂直同步信号、水平同步信号和主时钟产生用作 垂直驱动电路102、列信号处理电路103和水平驱动电路104的操作参考 的时钟信号和控制信号。因此而产生的时钟信号和控制信号输入至垂直 驱动电路102、列信号处理电路103和水平驱动电路104。
垂直驱动电路102例如包括移位寄存器,并且在垂直方向上和以行 为单位顺序地进行成像区域101中的电子器件10的选择性扫描。此外, 以根据电子器件10接收的光量而产生的电流(信号)为基础的像素信号 通过垂直信号线107发送至列信号处理电路103。
列信号处理电路103例如是基于电子器件10的列而布置的,并且根 据来自黑参考像素(形成在有效像素区域的周边,未图示)的信号以各 电子器件10为单位将诸如噪声去除和信号放大等信号处理施加于从整个 一行的电子器件10输出的信号。在列信号处理电路103的输出级,水平 选择开关(未图示)以连接的方式设置在列信号处理电路103和水平信 号线108之间。
水平驱动电路104例如包括移位寄存器,并且通过顺序地输出水平 扫描脉冲,来顺序地选择各列信号处理电路103和将来自各列信号处理 电路103的信号输出至水平信号线108。
输出电路105将信号处理施加于通过水平信号线108从各列信号处 理电路103顺序地供给的信号,并且输出处理过的信号。
虽然取决于构成光发射/光接收层的材料,但是可以采用这样的构 造:其中,光发射/光接收层自身也起到滤色器的作用,且因此,不需要 布置滤色器就能够实现颜色分离。注意,在一些情况下,允许特定波长 (例如,该波长是诸如红色、绿色、蓝色、青色、品红色或黄色)从中 透过的已知滤色器可以布置在电子器件10的光入射侧的上侧。此外,成 像装置可以是正面照射型或可以是背面照射型。此外,可以根据需要布 置用于控制光在电子器件10上的入射的快门。
虽然已经根据上面的优选实施例说明了本发明,但是本发明不限于 这些实施例。根据需要,实施例所述的电子器件(光电转换元件,成像 元件)和成像装置的结构或构造、制造条件、制造方法、使用材料仅是 示例,并且能够变型。在使本发明的电子器件起到太阳能电池的作用的 情况下,可以在没有电压施加于第一电极和第二电极的状态下使用光照射光发射/光接收层。此外,通过使用本发明的电子器件,不仅能够构造 诸如电视相机等成像装置,而且能够构造光电传感器和图像传感器。
氧化锡也能够替代地用作用于构成绝缘材料或绝缘层的金属氧化物 的主组分,且通过该方法,也可以获得与在使用氧化锌的情况下类似的 效果。此外,除了氧化铝和氧化镁的组合以外,在使用含有作为副组分 的从由氧化铝、氧化镁、氧化铌、氧化钛、氧化钼和氧化铪组成的组中 选出的至少两种材料的金属氧化物的情况下,也可以获得与在使用含有 氧化铝和氧化镁作为副组分的金属氧化物的情况下类似的效果。
注意,本发明也可以采用下面的构造。
[A01]《电子器件》
一种电子器件,其包括第一电极、形成在所述第一电极上的光发射/ 光接收层和形成在所述光发射/光接收层上的第二电极,
其中,所述光发射/光接收层和/或所述第二电极被含有金属氧化物的 绝缘层覆盖,所述金属氧化物含有作为主组分的氧化锌且含有作为副组 分的从由氧化铝、氧化镁、氧化铌、氧化钛、氧化钼和氧化铪组成的组 中选出的至少两种材料。
[A02]如[A01]所述的电子器件,其中,以金属原子为基准,所述副 组分的含量是5至30原子%。
[A03]如[A01]或[A02]所述的电子器件,其中,所述副组分包括氧化 铝和氧化镁。
[A04]如[A01]至[A03]中任一项所述的电子器件,其中,所述绝缘层 在所述第二电极上的厚度是5×10-8至7×10-7m。
[A05]如[A01]至[A04]中任一项所述的电子器件,其中,所述绝缘层 中的内应力的绝对值不大于50MPa。
[A06]如[A01]至[A05]中任一项所述的电子器件,其中,所述绝缘层 是透明的和非晶的。
[A07]如[A01]至[A06]中任一项所述的电子器件,其中,所述绝缘层 对于波长为400至660nm的光的光透过率不小于80%。
[A08]如[A01]至[A07]中任一项所述的电子器件,其中,所述第二电 极对于波长为400至660nm的光的光透过率不小于75%。
[A09]如[A01]至[A08]中任一项所述的电子器件,其中,所述光发射/ 光接收层包含有机光电转换材料。
[A10]如[A09]所述的电子器件,所述电子器件包含光电转换元件。
[A11]如[A01]至[A10]中任一项所述的电子器件,其中,所述绝缘层的薄层电阻不小于1×105Ω/□。
[A12]如[A01]至[A11]中任一项所述的电子器件,其中,所述绝缘层 的折射率是1.9至2.2。
[A13]如[A01]至[A12]中任一项所述的电子器件,其中,所述第一电 极的表面粗糙度Ra不大于1nm。
[A14]如[A13]所述的电子器件,其中,所述第一电极的均方根粗糙 度Rq不大于2nm。
[A15]如[A01]至[A14]中任一项所述的电子器件,其中,所述第二电 极的表面粗糙度Ra不大于1.5nm。
[A16]如[A01]至[A14]中任一项所述的电子器件,其中,所述第二电 极的均方根粗糙度Rq不大于2.5nm。
[B01]《第(1-A)构造》
如[A01]至[A16]中任一项所述的电子器件,其中,所述第二电极的 功函数的值与所述第一电极的功函数的值之间的差值不小于0.4eV。
[B02]如[B01]所述的电子器件,其中,所述第二电极的功函数的值和 所述第一电极的功函数的值之间的差值被设定为不小于0.4eV,凭此,在 所述光发射/光接收层中基于所述功函数的值的所述差值产生内电场,且 实现内部量子效率的增强。
[B03]如[B01]或[B02]所述的电子器件,其中,所述第二电极包括铟 镓氧化物、铟掺杂镓锌氧化物、氧化铝掺杂锌氧化物、铟锌氧化物或镓 掺杂氧化锌。
[B04]如[B01]至[B03]中任一项所述的电子器件,其中,所述第二电 极的薄层电阻是3×10至1×103Ω/□。
[B05]如[B01]至[B04]中任一项所述的电子器件,其中,所述第二电 极的功函数的值是4.1至4.5eV。
[B06]如[B01]至[B05]中任一项所述的电子器件,其中,所述第一电 极包含铟锡氧化物、铟锌氧化物或氧化锡。
[C01]《第(1-B)构造》
如[A01]至[A16]中任一项所述的电子器件,
其中,所述第二电极具有从所述光发射/光接收层侧的第2B层和第 2A层的堆叠结构,且
所述第二电极的第2A层的功函数的值低于所述第二电极的第2B层 的功函数的值。
[C02]如[C01]所述的电子器件,其中,所述第二电极的第2A层的功 函数的值和所述第二电极的第2B层的功函数的值之间的差值是0.1至 0.2eV。
[C03]如[C01]或[C02]所述的电子器件,其中,所述第一电极的功函 数的值和所述第二电极的第2A层的功函数值之间的差值不小于0.4eV。
[C04]如[C01]至[C03]中任一项所述的电子器件,其中,所述第一电 极的功函数的值和所述第二电极的第2A层的功函数的值之间的差值被 设定为不小于0.4eV,凭此,在所述光发射/光接收层中基于所述功函数 值的差值而产生内电场,且实现内部量子效率的增强。
[C05]如[C01]至[C04]中任一项所述的电子器件,
其中,所述第二电极的厚度是1×10-8至1×10-7m,且
所述第二电极的第2A层的厚度和所述第二电极的第2B层的厚度的 比是从9/1至1/9。
[C06]如[B01]至[C05]中任一项所述的电子器件,其中,通过控制在 基于溅射法形成所述第二电极时的氧气引入量,控制所述第二电极的功 函数的值。
[C07]如[B01]至[C06]中任一项所述的电子器件,其中,氧含量小于 根据化学计量组分的氧含量。
[D01]《第(1-C)构造》
如[A01]至[A16]中任一项所述的电子器件,其中,所述第一电极包 括透明导电材料,所述透明导电材料的功函数的值为5.2至5.9eV。
[D02]如[D01]所述的电子器件,其中,所述透明导电材料包括这样 的材料:假设铟原子和金属种类原子的总量是100原子%,通过以0.5至 10原子%的量将从由铈、镓、钨和钛组成的组中选出的至少一种金属添 加至氧化铟而获得的材料。
[D03]如[D01]或[D02]所述的电子器件,其中,所述第一电极的电阻 率小于1×10-2Ω·cm。
[D04]如[D01]至[D03]中任一项所述的电子器件,其中,所述第一电 极的薄层电阻是3×10至1×103Ω/□。
[D05]如[D01]至[D04]中任一项所述的电子器件,其中,所述第一电 极的厚度是1×10-8至2×10-7m。
[D06]如[D05]所述的电子器件,其中,所述第一电极的厚度是2×10-8至1×10-7m。
[D07]如[D01]所述的电子器件,
其中,所述透明导电材料包括通过将铈添加至氧化铟而获得的材料, 且
所述第一电极具有5×10-8至2×10-7m的厚度以及不小于1×10-3Ω·cm 且小于1×10-2Ω·cm的电阻率。
[D08]如[D07]所述的电子器件,其中,假设铟原子和铈原子的总量 是100原子%,则铈原子的比例是1至10原子%。
[D09]如[D01]所述的电子器件,
其中,所述透明导电材料包括通过将镓添加至氧化铟而获得的材料, 且
所述第一电极具有5×10-8至1.5×10-7m的厚度以及1×10-5至 1×10-3Ω·cm的电阻率。
[D10]如[D09]所述的电子器件,其中,假设铟原子和镓原子的总量 是100原子%,则镓原子的比例是1至30原子%。
[D11]如[D01]所述的电子器件,
其中,所述透明导电材料包括通过将钨添加至氧化铟而获得的材料, 且
所述第一电极具有5×10-8至2×10-7m的厚度以及1×10-4至 1×10-3Ω·cm的电阻率。
[D12]如[D11]所述的电子器件,其中,假设铟原子和钨原子的总量是 100原子%,则钨原子的比例是1至7原子%。
[D13]如[D01]所述的电子器件,
其中,所述透明导电材料包括通过将钛添加至氧化铟而获得的材料, 且
所述第一电极具有5×10-8至2×10-7m的厚度和1×10-4至1×10-3Ω·cm 的电阻率。
[D14]如[D13]所述的电子器件,其中,假设铟原子和钛原子的总量 是100原子%,则钛原子的比例是0.5至5原子%。
[D15]如[D01]至[D14]中任一项所述的电子器件,其中,所述第二电 极的功函数的值不大于5.0eV。
[D16]如[D01]至[D15]中任一项所述的电子器件,其中,所述第二电 极包含铟锡氧化物、铟锌氧化物或氧化锡。
[D17]如[D01]至[D15]中任一项所述的电子器件,其中,所述第二电 极包含铟镓氧化物、铟掺杂镓锌氧化物、氧化铝掺杂氧化锌、铟锌氧化 物或镓掺杂氧化锌。
[D18]如[D01]至[D17]中任一项所述的电子器件,其中,通过控制在 基于溅射法形成所述第一电极时的氧气引入量,控制所述第一电极的透 过光频谱宽度。
[E01]《成像装置》
一种成像装置,其包括如[A01]至[D18]中任一项所述的电子器件。
[F01]《绝缘层》
一种绝缘材料,其含有金属氧化物,所述金属氧化物含有作为主组 分的氧化锌且含有作为副组分的从由氧化铝、氧化镁、氧化铌、氧化钛、 氧化钼和氧化铪组成的组中选出的至少两种材料。
[F02]如[F01]所述的绝缘材料,其中,以金属原子为基准,所述副组 分的含量是5至30原子%。
[F03]如[F01]或[F02]所述的绝缘材料,其中,所述副组分包含氧化铝 和氧化镁。
附图标记的列表
10电子器件、11基板、12配线、13层间绝缘膜、14开口、20光 发射/光接收层、31第一电极、32第二电极、32A第二电极的第2A层、 32B第二电极的第2B层、40绝缘层、100成像装置、101成像区域、 102垂直驱动电路、103列信号处理电路、104水平驱动电路、105输 出电路、106控制电路、107垂直信号线、108水平信号线。

Claims (12)

1.一种电子器件,其包括第一电极、形成在所述第一电极上的光发射/光接收层和形成在所述光发射/光接收层上的第二电极,
其中,所述光发射/光接收层和/或所述第二电极被含有金属氧化物的绝缘层覆盖,所述金属氧化物含有主组分和副组分,所述主组分为氧化锌,并且所述副组分为从由氧化铝、氧化镁、氧化铌、氧化钛、氧化钼和氧化铪组成的组中选出的至少两种材料,
其中,所述绝缘层的折射率是1.9至2.2。
2.根据权利要求1所述的电子器件,其中,以金属原子为基准,所述副组分的含量是5至30原子%。
3.根据权利要求1或2所述的电子器件,其中,所述副组分包括氧化铝和氧化镁。
4.根据权利要求1或2所述的电子器件,其中,所述绝缘层在所述第二电极上的厚度是5×10-8至7×10-7m。
5.根据权利要求1或2所述的电子器件,其中,所述绝缘层内的内应力的绝对值不大于50MPa。
6.根据权利要求1或2所述的电子器件,其中,所述绝缘层是透明的和非晶的。
7.根据权利要求1或2所述的电子器件,其中,所述绝缘层对于波长为400至660nm的光的光透过率不小于80%。
8.根据权利要求1或2所述的电子器件,其中,所述第二电极对于波长为400至660nm的光的光透过率不小于75%。
9.根据权利要求1或2所述的电子器件,其中,所述光发射/光接收层包含有机光电转换材料。
10.根据权利要求9所述的电子器件,包含光电转换元件。
11.一种成像装置,其包括根据权利要求1至10中任一项所述的电子器件。
12.一种绝缘材料,其含有金属氧化物,所述金属氧化物含有主组分和副组分,所述主组分为氧化锌,并且所述副组分为从由氧化铝、氧化镁、氧化铌、氧化钛、氧化钼和氧化铪组成的组中选出的至少两种材料,
其中,所述绝缘材料的折射率是1.9至2.2。
CN201680047400.5A 2015-08-19 2016-06-20 绝缘材料、电子器件和成像装置 Active CN107924930B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-161779 2015-08-19
JP2015161779 2015-08-19
PCT/JP2016/068265 WO2017029877A1 (ja) 2015-08-19 2016-06-20 絶縁材料、電子デバイス及び撮像装置

Publications (2)

Publication Number Publication Date
CN107924930A CN107924930A (zh) 2018-04-17
CN107924930B true CN107924930B (zh) 2022-07-15

Family

ID=58051643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680047400.5A Active CN107924930B (zh) 2015-08-19 2016-06-20 绝缘材料、电子器件和成像装置

Country Status (4)

Country Link
US (1) US10727429B2 (zh)
JP (1) JP7003661B2 (zh)
CN (1) CN107924930B (zh)
WO (1) WO2017029877A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496251B (zh) * 2016-01-22 2022-08-12 日本制铁株式会社 微小开关及使用其的电子设备
US20170309852A1 (en) * 2016-04-22 2017-10-26 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
US10398382B2 (en) * 2016-11-03 2019-09-03 Siemens Medical Solutions Usa, Inc. Respiratory motion estimation in projection domain in nuclear medical imaging
JP7173044B2 (ja) 2017-12-05 2022-11-16 ソニーグループ株式会社 撮像素子、積層型撮像素子及び固体撮像装置
TWI800636B (zh) * 2018-04-20 2023-05-01 日商索尼股份有限公司 攝像元件、積層型攝像元件及固體攝像裝置
TWI803616B (zh) * 2018-04-20 2023-06-01 日商索尼股份有限公司 攝像元件、積層型攝像元件及固體攝像裝置
TWI820114B (zh) * 2018-04-20 2023-11-01 日商索尼股份有限公司 攝像元件、積層型攝像元件及固體攝像裝置
DE102018118824A1 (de) * 2018-08-02 2020-02-06 Osram Opto Semiconductors Gmbh Halbleiterbauelement mit einer stresskompensationsschicht und verfahren zur herstellung eines halbleiterbauelements
KR102426648B1 (ko) * 2020-10-20 2022-07-29 한국과학기술연구원 집적형 광음향 가스 센서 및 이의 제조방법
WO2022149401A1 (ja) * 2021-01-06 2022-07-14 パナソニックIpマネジメント株式会社 撮像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040647A (ja) * 2001-07-25 2003-02-13 Kyocera Corp シリコン被覆用ガラス組成物およびそれを用いたシリコンと接触する絶縁皮膜並びにシリコンデバイス
CN102449712A (zh) * 2009-06-02 2012-05-09 美光科技公司 电容器及形成电容器的方法
US20140231782A1 (en) * 2011-10-31 2014-08-21 Fujifilm Corporation Imaging device and method for manufacturing imaging device
CN104103760A (zh) * 2013-04-10 2014-10-15 索尼公司 电子设备、固态成像装置及制造用于该设备的电极的方法
TW201447002A (zh) * 2013-04-11 2014-12-16 Heraeus Materials Tech Gmbh 吸光層,含該層的層系統,製造該層系統的方法,及適合此目的的濺鍍靶
CN106463563A (zh) * 2014-07-17 2017-02-22 索尼公司 光电转换元件、成像装置、光学传感器及光电转换元件制造的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664567B2 (en) 2001-06-28 2003-12-16 Kyocera Corporation Photoelectric conversion device, glass composition for coating silicon, and insulating coating in contact with silicon
KR100847618B1 (ko) * 2001-09-05 2008-07-21 니혼 이타가라스 가부시키가이샤 고 투과 글래스판 및 고 투과 글래스판의 제조방법
JP4298980B2 (ja) 2001-09-05 2009-07-22 日本板硝子株式会社 高透過ガラス板および高透過ガラス板の製造方法
US8486487B2 (en) * 2005-02-17 2013-07-16 Konica Minolta Holdings, Inc. Gas barrier film, gas barrier film manufacturing method, resin substrate for organic electroluminescent device using the aforesaid gas barrier film, and organic electroluminescent device using the aforementioned gas barrier film
EP1849593A4 (en) 2005-02-17 2011-01-05 Konica Minolta Holdings Inc GAS REINFORCEMENT, GAS-PROOF MANUFACTURING METHOD, BARRIER BASE WITH GAS-REINFORMS FOR AN ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT ITEM
KR20100069642A (ko) 2007-10-24 2010-06-24 니폰 덴키 가라스 가부시키가이샤 플라즈마 디스플레이 패널용 유전체 재료
KR20100071650A (ko) 2008-12-19 2010-06-29 삼성전자주식회사 가스차단성박막, 이를 포함하는 전자소자 및 이의 제조방법
JP2010232568A (ja) 2009-03-29 2010-10-14 Univ Of Tokyo 半導体デバイス及びその製造方法
DE102010006331A1 (de) * 2010-01-29 2011-08-04 Schott Ag, 55122 Aluminosilikatgläser mit hoher thermischer Beständigkeit, niedriger Verarbeitungstemperatur und hoher Kristallisationsbeständigkeit
JP5557595B2 (ja) 2010-05-14 2014-07-23 富士フイルム株式会社 電子デバイスの製造方法、薄膜トランジスタ、電気光学装置及びセンサー
JP2012238763A (ja) 2011-05-12 2012-12-06 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
US9499428B2 (en) * 2012-07-20 2016-11-22 Ferro Corporation Formation of glass-based seals using focused infrared radiation
KR20150019727A (ko) * 2013-08-14 2015-02-25 삼성에스디아이 주식회사 태양전지모듈 및 이의 제조방법
JP6465545B2 (ja) 2013-09-27 2019-02-06 ソニー株式会社 撮像素子およびその製造方法ならびに電子機器
WO2015084896A1 (en) 2013-12-02 2015-06-11 Solexel, Inc. Passivated contacts for back contact back junction solar cells
JP6446644B2 (ja) * 2015-03-06 2019-01-09 株式会社リコー 有機化合物、有機材料薄膜、光電変換層、光電変換層形成用溶液、および光電変換素子
CN107636844B (zh) * 2015-03-17 2021-05-28 欧提腾股份有限公司 组成物、含组成物的装置及他们的制造方法与提高电池效率的方法
KR102404726B1 (ko) * 2015-06-24 2022-05-31 삼성전자주식회사 유기 전자 소자 및 그 제조 방법
US11104602B2 (en) * 2015-06-26 2021-08-31 Corning Incorporated Glass with high surface strength

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040647A (ja) * 2001-07-25 2003-02-13 Kyocera Corp シリコン被覆用ガラス組成物およびそれを用いたシリコンと接触する絶縁皮膜並びにシリコンデバイス
CN102449712A (zh) * 2009-06-02 2012-05-09 美光科技公司 电容器及形成电容器的方法
US20140231782A1 (en) * 2011-10-31 2014-08-21 Fujifilm Corporation Imaging device and method for manufacturing imaging device
CN104103760A (zh) * 2013-04-10 2014-10-15 索尼公司 电子设备、固态成像装置及制造用于该设备的电极的方法
TW201447002A (zh) * 2013-04-11 2014-12-16 Heraeus Materials Tech Gmbh 吸光層,含該層的層系統,製造該層系統的方法,及適合此目的的濺鍍靶
CN106463563A (zh) * 2014-07-17 2017-02-22 索尼公司 光电转换元件、成像装置、光学传感器及光电转换元件制造的方法

Also Published As

Publication number Publication date
WO2017029877A1 (ja) 2017-02-23
JPWO2017029877A1 (ja) 2018-06-07
US10727429B2 (en) 2020-07-28
CN107924930A (zh) 2018-04-17
US20180226596A1 (en) 2018-08-09
JP7003661B2 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
CN107924930B (zh) 绝缘材料、电子器件和成像装置
JP6128020B2 (ja) 電子デバイス及び固体撮像装置、並びに、電子デバイスにおける電極形成方法
JP7163938B2 (ja) 撮像素子及び固体撮像装置
WO2016185858A1 (ja) 撮像素子、積層型撮像素子及び撮像装置
JPWO2016027793A6 (ja) 撮像素子、固体撮像装置及び電子デバイス
WO2016042866A1 (ja) 撮像素子、固体撮像装置及び電子デバイス
CN108369952B (zh) 成像装置和电子装置
US20210151614A1 (en) Imaging element, solid state imaging device, and electronic device
JP2021090058A (ja) 電子デバイスの製造方法
WO2017038256A1 (ja) 撮像素子、積層型撮像素子及び固体撮像装置
JP6252696B2 (ja) 電子デバイス及び固体撮像装置、並びに、電子デバイスにおける電極形成方法
WO2017110392A1 (en) Imaging element, solid state imaging device, and electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant