CN107887174A - 利用植物根系制备多孔碳电极材料的方法 - Google Patents

利用植物根系制备多孔碳电极材料的方法 Download PDF

Info

Publication number
CN107887174A
CN107887174A CN201711075942.6A CN201711075942A CN107887174A CN 107887174 A CN107887174 A CN 107887174A CN 201711075942 A CN201711075942 A CN 201711075942A CN 107887174 A CN107887174 A CN 107887174A
Authority
CN
China
Prior art keywords
plant
root system
electrode material
porous carbon
carbon electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711075942.6A
Other languages
English (en)
Inventor
马国富
王颖洁
戴秀雯
雷自强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201711075942.6A priority Critical patent/CN107887174A/zh
Publication of CN107887174A publication Critical patent/CN107887174A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种利用植物根系制备多孔碳电极材料的方法,是将植物根系经表面清洗,真空冷冻干燥后,先在400~600℃预碳化1~4 h,再用稀盐酸浸泡40~48 h,抽滤,超纯水清洗,干燥,然后于600~900℃下全碳化处理1~4 h,即得具有排列有序多孔结构的、比表面积高的多孔碳材料。电化学性能测试表明,本发明制备的多孔碳材料作为超级电容器电极材料,具有很低的阻抗和很高的倍率性能,而且其材料成本第,制备过工艺简单,在超级电容器中的大规模应用和工业化生产更加具有可行性。

Description

利用植物根系制备多孔碳电极材料的方法
技术领域
本发明涉及一种多孔碳电极材料的制备,尤其涉及一种利用植物根系制备多孔碳材料的方法,主要用于超级电容器的电极材料。
背景技术
社会技术的发展为人类的进步提供了源源不断的动力,从早期人类钻木取火的出现到现代社会生活的方方面面,化学学科都为人类生活的便利提供了强有力的保障。近代以来,化石燃料的大规模开发和应用使得人类社会发展产生了质的变化,但这类能源的日益消耗使得人类逐步面临能源枯竭的历史性难题。风能、核能、潮汐能、地热能等一系列新能源的出现使得这一难题得到了有效的缓解,同时广大科研工作者也在储能领域展开了广泛的研究。超级电容器作为一种重要的储能材料也得到了广泛的关注。超级电容器高的功率密度和倍率性能使得它具有更加广泛的应用领域。目前,随着柔性可穿戴设备和新能源汽车的快速发展,超级电容器产业必将迎来新一轮爆发式增长。
超级电容器具有构造简单、循环稳定性高、充电时间短、工作温度范围广和绿色环保等优点,决定其比电容的关键结构为其电极材料。这其中生物质碳材料因其良好的电化学性能、优异的天然结构以及低廉的价格、广泛的材料来源成为电极材料的重要研究对象。植物根系材料具有天然的多孔结构,相较于其他生物质碳材料,植物根系材料具有更大的比表面积和更加合理的孔径分布,从而具有优于其他生物质碳材料的电化学性能。
发明内容
本发明的目的是提供一种利用植物根系制备多孔碳材料的方法。
本发明多孔碳材料的制备方法,是将植物根系经表面清洗,真空冷冻干燥后,先在400~600℃预碳化1~4 h,在用0.1~0.5 M稀盐酸浸泡40~48 h,抽滤,超纯水清洗,干燥,然后于600~900℃下全碳化处理1~4 h,即得植物根系多孔碳电极材料。
所述植物根系可采用香樟树根、白刺根、柽柳根、杨树根;所述干燥是在50~60℃的鼓风干燥箱中烘干;所述预碳化、全碳化处理是在真空条件下中进行。
进行预碳化处理的目的在于保留植物根系结构的天然结构。在进一步碳化过程中,植物根系的水分和有机化合物在挥发过程中可能会造成微观多孔结构的坍塌。通过预碳化和碳化两步过程可以更好的保留植物根系的天然多孔结构。
图1为植物根系材料的扫描电镜(SEM)的微观形貌图。从图1可以看到,所制备的植物根系多孔碳电极材料具有排列有序的多孔结构,孔径分布合理,比表面积高。这种高比表面积的多孔碳材料的交织网状结构和多孔性使得离子在电极和电解质溶液界面之间转移速率加快,从而使的比电容增大。
图2为制备的植物根系多孔碳电极材料在不同扫速下的循环伏安曲线图。从图2中可以看出,随着扫速的增大,循环伏安曲线的面积增大,但形状并没有发生明显的变化,表明所制备植物根系多孔碳材料具有良好的倍率性能和较小的阻抗。
图3为制备的植物根系多孔碳电极材料在不同电流密度下恒电流充放电曲线图。从图3可以看到,随着电流密度增大,所有的充放电曲线在线性电压和时间剖面依然呈等腰三角形形状,表明所制备植物根系多孔碳电极材料具有很低的阻抗和很高的倍率性能。
图4为制备的植物根系多孔碳电极材料交流阻抗图。从图4可以看出,所制备植物根系多孔碳电极材料具有较低的物理阻抗和界面反应阻抗以及较低的内阻。
综上所述,本发明通过两步碳化处理实现了对植物根系材料形貌保留和电化学性能提升,从而有效降低了操作难度和材料成本,简化了制备过程,同时又大大提升了植物根系材料的电化学性能,使其在超级电容器中的大规模应用和工业化生产更加具有可行性。
附图说明
图1为本发明制备的植物根系材料的SEM图。
图2 为本发明制备的植物根系多孔碳电极材料在不同扫速下的循环伏安曲线图。
图3 为本发明制备的植物根系多孔碳电极材料在不同电流密度下恒电流充放电曲线图。
图4为本发明制备的植物根系多孔碳电极材料交流阻抗图。
具体实施方式
下面通过具体实施例对本发明利用植物根系制备多孔碳电极材料的方法及性能做进一步说明。
实施例1
取适量香樟树根,用蒸馏水做简单的表面清洗后在真空冷冻干燥机进行干燥处理;先置于真空管式炉中,在400℃下预碳化4 h,在用0.5 M稀盐酸浸泡48 h,使用超纯水配合循环水式抽滤泵进行抽滤处理后,在60℃鼓风干燥箱中烘干;然后于600℃下全碳化处理4h,即得植物根系多孔碳电极材料。
碳电极材料的比表面积为460 m2 g-1;其用作超级电容器电极材料,在0.5A g-1电流密度下比电容达到140F g-1。在5 A g-1电流密度下进行10000次充放电循环后其电容保持率为93%。
实施例2
取适量白刺根,用蒸馏水做简单的表面清洗后在真空冷冻干燥机进行干燥处理;先置于真空管式炉中,在500℃下预碳化3 h,再用0.5 M稀盐酸浸泡48 h,使用超纯水配合循环水式抽滤泵进行抽滤处理后,在60℃鼓风干燥箱中烘干;然后于700℃下全碳化处理3 h,即得植物根系多孔碳电极材料。
碳电极材料的比表面积为425 m2 g-1;其用作超级电容器电极材料,在0.5A g-1电流密度下比电容达到120F g-1。在5 A g-1电流密度下进行10000次充放电循环后其电容保持率为95%。
实施例3
取适量柽柳根,用蒸馏水做简单的表面清洗后在真空冷冻干燥机进行干燥处理;先置于真空管式炉中,在600℃下预碳化1 h,在用0.5 M稀盐酸浸泡48 h,使用超纯水配合循环水式抽滤泵进行抽滤处理后,在60℃鼓风干燥箱中烘干;然后于800℃下全碳化处理2 h,即得植物根系多孔碳电极材料。
碳电极材料的比表面积为525 m2 g-1;其用作超级电容器电极材料,在0.5A g-1电流密度下比电容达到150F g-1。在5 A g-1电流密度下进行10000次充放电循环后其电容保持率为94%。
实施例4
取适量杨树根,用蒸馏水做简单的表面清洗后在真空冷冻干燥机进行干燥处理;先置于真空管式炉中,在600℃下预碳化1 h,在用0.5 M稀盐酸浸泡48 h,使用超纯水配合循环水式抽滤泵进行抽滤处理后,在60℃鼓风干燥箱中烘干;然后于900℃下全碳化处理1 h,即得植物根系多孔碳电极材料。
碳电极材料的比表面积550 m2 g-1;其用作超级电容器电极材料,在0.5A g-1电流密度下比电容达到135 F g-1。在5 A g-1电流密度下进行10000次充放电循环后其电容保持率为96%。

Claims (5)

1.一种利用植物根系制备多孔碳电极材料的方法,是将植物根系经表面清洗,真空冷冻干燥后,先在400~600℃预碳化1~4 h,再用稀盐酸浸泡40~48 h,抽滤,超纯水清洗,干燥,然后于600~900℃下全碳化处理1~4 h,即得植物根系多孔碳电极材料。
2.如权利要求1所述利用植物根系制备多孔碳电极材料的方法,其特征在于:植物根系为香樟树根、白刺根、柽柳根或杨树根。
3.如权利要求1或2所述利用植物根系制备多孔碳电极材料的方法,其特征在于:所述稀盐酸的浓度为0.1~0.5 M。
4.如权利要求1或2所述利用植物根系制备多孔碳电极材料的方法,其特征在于:所述干燥是在50~60℃的鼓风干燥箱中烘干。
5.如权利要求1或2所述利用植物根系制备多孔碳电极材料的方法,其特征在于:所述预碳化、全碳化处理是在真空条件下进行。
CN201711075942.6A 2017-11-06 2017-11-06 利用植物根系制备多孔碳电极材料的方法 Pending CN107887174A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711075942.6A CN107887174A (zh) 2017-11-06 2017-11-06 利用植物根系制备多孔碳电极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711075942.6A CN107887174A (zh) 2017-11-06 2017-11-06 利用植物根系制备多孔碳电极材料的方法

Publications (1)

Publication Number Publication Date
CN107887174A true CN107887174A (zh) 2018-04-06

Family

ID=61778732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711075942.6A Pending CN107887174A (zh) 2017-11-06 2017-11-06 利用植物根系制备多孔碳电极材料的方法

Country Status (1)

Country Link
CN (1) CN107887174A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108715447A (zh) * 2018-08-22 2018-10-30 中南大学 一种樟树基多孔活性炭及其制备方法和在电化学储能中的应用
CN109610031A (zh) * 2018-11-20 2019-04-12 西北师范大学 生物质碳掺杂纳米纤维毡的制备及其在分离油水混合物中的应用
CN111326755A (zh) * 2019-12-09 2020-06-23 中国人民解放军军事科学院军事医学研究院 香蕉皮衍生的肋状多孔碳作为电极材料用于完全氧化甲醇和甲醇燃料电池
CN113648966A (zh) * 2021-08-10 2021-11-16 南京航空航天大学 一种生物质多孔碳材料及其制备方法和应用
CN115159495A (zh) * 2022-06-14 2022-10-11 安徽工程大学 一种轻质高强多孔碳材料的绿色制备方法及多孔碳材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103803546A (zh) * 2014-01-29 2014-05-21 天津大学 以狼毒根为原料的活性炭及其制备方法
WO2014077714A1 (en) * 2012-11-16 2014-05-22 Politechnika Poznańska Production of activated carbon from tobacco leaves by simultaneous carbonization and self-activation and the activated carbon thus obtained
CN105948036A (zh) * 2016-04-26 2016-09-21 湘潭大学 一种葛根基互联层次孔径结构多孔活性炭材料的制备方法及其应用
CN106683899A (zh) * 2017-02-21 2017-05-17 扬州大学 超级电容器电极材料用生物质碳的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077714A1 (en) * 2012-11-16 2014-05-22 Politechnika Poznańska Production of activated carbon from tobacco leaves by simultaneous carbonization and self-activation and the activated carbon thus obtained
CN103803546A (zh) * 2014-01-29 2014-05-21 天津大学 以狼毒根为原料的活性炭及其制备方法
CN105948036A (zh) * 2016-04-26 2016-09-21 湘潭大学 一种葛根基互联层次孔径结构多孔活性炭材料的制备方法及其应用
CN106683899A (zh) * 2017-02-21 2017-05-17 扬州大学 超级电容器电极材料用生物质碳的制备方法及其应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108715447A (zh) * 2018-08-22 2018-10-30 中南大学 一种樟树基多孔活性炭及其制备方法和在电化学储能中的应用
CN109610031A (zh) * 2018-11-20 2019-04-12 西北师范大学 生物质碳掺杂纳米纤维毡的制备及其在分离油水混合物中的应用
CN109610031B (zh) * 2018-11-20 2020-12-22 西北师范大学 生物质碳掺杂纳米纤维毡的制备及其在分离油水混合物中的应用
CN111326755A (zh) * 2019-12-09 2020-06-23 中国人民解放军军事科学院军事医学研究院 香蕉皮衍生的肋状多孔碳作为电极材料用于完全氧化甲醇和甲醇燃料电池
CN113648966A (zh) * 2021-08-10 2021-11-16 南京航空航天大学 一种生物质多孔碳材料及其制备方法和应用
CN115159495A (zh) * 2022-06-14 2022-10-11 安徽工程大学 一种轻质高强多孔碳材料的绿色制备方法及多孔碳材料

Similar Documents

Publication Publication Date Title
CN107887174A (zh) 利用植物根系制备多孔碳电极材料的方法
CN108529587A (zh) 一种磷掺杂生物质分级孔炭材料的制备方法及其应用
CN109678130A (zh) 一种用于钠离子电池负极的硬碳材料及其制备方法和相关钠离子电池
CN107579259B (zh) 一种石墨烯改性碳毡的制备方法
CN103183329B (zh) 一种多级孔道碳电极材料的制备方法
CN107128918A (zh) 一种氮掺杂多孔活性炭材料的制备及其应用
CN106744784A (zh) 一种浸渍-活化法制备氮氧双掺杂浒苔基层次孔碳材料的方法及其用途
CN104167301A (zh) 一种碳化浒苔制备超级电容器电极材料的方法
CN103824702A (zh) 氮/磷共掺杂的虾壳基多孔炭电极材料的制备方法
CN104843685A (zh) 利用牲畜粪便制备三维多孔类石墨烯碳电极材料的方法
CN109019598A (zh) 一种混合生物质制备高比电容的三维多孔碳材料的方法和制成的三维多孔碳材料及其应用
CN107910200A (zh) 一种多级孔氮氧掺杂碳超级电容器电极材料的制备方法
CN109354015A (zh) 一种以葵花盘制作锂离子负极用活性炭、电极及测试方法
CN105047434B (zh) 一种利用气相扩渗法制备氧化钛纳米管/碳/氧化锰复合材料的方法
CN110931266B (zh) 一种3d开花棒状硫化镍/木材电极材料及其制备方法和应用
CN103346025A (zh) 用紫菜制备超级电容器电极材料的方法
CN112133572A (zh) 用作超级电容器的三维多孔生物质碳材料及其制备方法
CN105742571A (zh) 空心管状结构的生物碳用锂离子电池负极材料及制备方法
CN107680826B (zh) 一种用于超级电容器的分层多孔活性炭电极材料的制备方法
CN108010734A (zh) 一种基于石墨烯/碳纳米管气凝胶的微型超级电容器制作方法
CN106058254B (zh) 一种钠离子电池负极材料用生物碳/碳纳米管的制备方法
Meng et al. Superior thermal-charging supercapacitors with bio-inspired electrodes of ultra-high surface areas
CN112635199A (zh) 多级结构MXene@双活化杉木复合材料电极及其制备方法和应用
CN110467180A (zh) 一种用于钠离子电池的生物质衍生炭材料的制备方法
CN106698391B (zh) 一种以海带为碳源制得的硬碳颗粒及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180406