CN106683899A - 超级电容器电极材料用生物质碳的制备方法及其应用 - Google Patents

超级电容器电极材料用生物质碳的制备方法及其应用 Download PDF

Info

Publication number
CN106683899A
CN106683899A CN201710093413.2A CN201710093413A CN106683899A CN 106683899 A CN106683899 A CN 106683899A CN 201710093413 A CN201710093413 A CN 201710093413A CN 106683899 A CN106683899 A CN 106683899A
Authority
CN
China
Prior art keywords
biomass
leaveves
preparation
electrode material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710093413.2A
Other languages
English (en)
Inventor
郑明波
李露露
戴晓
张松涛
庞欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710093413.2A priority Critical patent/CN106683899A/zh
Publication of CN106683899A publication Critical patent/CN106683899A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

超级电容器电极材料用生物质碳的制备方法及其应用,本发明属于超级电容器电极材料的制备技术领域。本发明以具有大孔结构的广玉兰树叶为原料,制成的生物质活性碳粉末具有多孔活性碳的特性,比表面积≥1500m2·g‑1,孔容≥0.9 cm3·g‑1,适用于超级电容器的电极材料,有利于电解液与活性物质的充分接触,加上活性碳骨架能作为整体连通的导电网络,使电极内阻降低,降低极化,提高超级电容器电极材料的性能。

Description

超级电容器电极材料用生物质碳的制备方法及其应用
技术领域
本发明属于超级电容器电极材料的制备技术领域。
背景技术
超级电容器电极材料需要具有大的比表面积,这是因为无论是双电层电容器还是法拉第电容器,其存储电荷都是在材料的表面发生,比表面积越大,所能存储的电荷就越多,容量就越大。
生物质碳是由有机废弃物(如动物骨头、植物根茎、木屑和秸秆等)加工而成的碳材料,其资源丰富,大多廉价易得,且它的有效利用还可以减少环境污染。通过筛选原材料和优化制备方法,可以得到具有大量孔隙结构、巨大比表面积,导电性良好、吸附能力强、物理化学性能稳定、失效后再生方便等特点的生物质碳材料,且被广泛应用于气体吸附与分离、水体净化、电化学储能等前沿领域。利用生物质碳作为超级电容器电极材料已逐渐成为一个研究热点。
发明内容
本发明目的是,提出以具有大孔结构的广玉兰树叶作为原料制备超级电容器电极材料用生物质碳的方法。
本发明包括以下步骤:
1)将干燥、干净的块状广玉兰树叶在惰性气体保护下,于500℃环境温度下进行2小时退火处理,得到热解的广玉兰树叶;
2)将热解的广玉兰树叶和KOH水溶液混合均匀后置100℃环境温度下烘干,得到混合粉末;
3)将混合粉末在惰性气体保护下,置于800~900℃环境温度下退火处理,得到碳化粉末;
4)将碳化粉末冷却后用1M的HCl水溶液浸泡12小时,然后抽滤并水洗至pH值呈中性,再将粉末于80℃烘干,得到生物质活性碳粉末。
本发明以具有大孔结构的广玉兰树叶为原料,制成的生物质活性碳粉末具有多孔活性碳的特性,比表面积≥1500m2·g-1,孔容≥0.9 cm3·g-1,适用于超级电容器的电极材料。
与现有技术相比,本发明具有如下优势:生物质多孔活性碳具有超高的比表面积(2534 m2·g-1)和大的孔容(1.61 cm3·g-1),有利于电解液与活性物质的充分接触,加上活性碳骨架能作为整体连通的导电网络,使电极内阻降低,降低极化,提高超级电容器电极材料的性能。
进一步地,本发明所述热解的广玉兰树叶与KOH水溶液中的KOH的混合质量比为1∶3~5。采用该比例有利于提高比表面积,增加微孔含量,为其在超级电容器应用中,提供更多的路径和活性位点。
所述热解的广玉兰树叶与KOH水溶液中的KOH的混合质量比为1∶4。对比热解广玉兰树叶与KOH水溶液中KOH的其他混合质量比例,该比例下的比表面积较大,孔容较大,所测得超级电容器性能最佳。
所述混合粉末的退火环境温度为850℃。对比其他温度,该温度下的比表面积较大,孔容较大,所测得超级电容器性能最佳。
本发明还提出以上方法制成的超级电容器电极材料用生物质碳的应用。
将生物质活性碳粉末与乙炔黑和聚四氟乙烯混合,以异丙醇为溶剂,将混合物均匀涂抹在泡沫镍片上,经烘干后压实,制成超级电容器电极片。
该方法制作过程简单,成本低,利于大规模制作。所制得的电极片结构稳定,活性物质不易脱落。
本发明制备的超级电容器电极片具有较高的比电容(110 F·g-1,在电流密度为0.5 A·g-1)。
所述生物质活性碳粉末与乙炔黑和聚四氟乙烯的混合质量比为8∶1∶1。该混合比在保证电极片良好电导率与结构稳定性的前提下,尽可能使用少的乙炔黑和聚四氟乙烯。在测试过程中,该比例下得到的电极材料,既具有较高的比电容,也具有较好的稳定性(电极材料不易脱落)。
所述压实的压力条件为5~10Mp。该范围内的压力,在确保电极片不被压坏的前提下,保证电极材料很好地固定在泡沫镍上。
附图说明
图1为生物质活性碳材料的XRD谱图。
图2为生物质活性碳材料的氮气等温吸附-脱附曲线。
图3为生物质活性碳材料的孔径分布图。
图4为生物质活性碳材料的SEM照片。
图5为生物质活性碳材料的TEM照片。
图6为采用本发明方法制成的超级电容器电极片在不同的电流密度下的恒流充放电曲线。
具体实施方式
本发明技术方案不局限以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式:
一、制备工艺:
例一:本实施方式的一种以广玉兰树叶作为原料制备超级电容器电极材料用生物质碳的方法。具体是按以下步骤操作的:
1、将广玉兰树叶水洗、烘干、粉碎成块状,在管式炉中,惰性气体氮气保护下,于500℃进行2小时的预碳化,得到热解的广玉兰树叶。
2、取出步骤1中的热解的广玉兰树叶称重,将热解的广玉兰树叶与KOH按质量比为1∶4混合,并加适量水溶解KOH,充分搅拌12小时,以确保KOH溶液完全渗透到热解的广玉兰树叶的内部。
3、将步骤2所得混合物于100℃烘干,得到粉末。
4、将步骤3所得物粉末在惰性气体保护下,于850℃进行1小时的碳化。
5、将步骤4中碳化后的粉末冷却后分别用1M HCl溶液浸泡12小时,然后抽滤并水洗至pH值呈中性。
6、将步骤中的样品于80℃烘干,得到生物质活性碳粉末。
7、将步骤6中生物质活性碳粉末与乙炔黑和聚四氟乙烯混合,以异丙醇为溶剂,将混合物均匀涂抹在泡沫镍片上,经烘干后压实,制成超级电容器电极片。
例二:本实施方式与例一不同的是 :步骤2中热解的广玉兰树叶与KOH按质量比分别按1∶3、1∶4和1∶5混合。其它与例一相同。
例三:本实施方式与例一不同的是 :步骤4中混合物粉末在惰性气体保护下,碳化温度为800℃~900℃中任意温度。其它与例一相同。
图1为本发明制备的生物质活性碳材料的XRD图谱,结果表明生物质碳为无定型碳。
图2为本发明制备的生物质活性碳材料的氮气等温吸附-脱附曲线,结果表明材料内部孔道以微孔与小尺寸的介孔为主。此外,氮气等温吸附-脱附分析还表明材料具有超高的比表面积(2534 m2·g-1)和大的孔容(1.61 cm3·g-1)。
图3为本发明制备的生物质活性碳材料的孔径分布图,结果表明材料内部孔道以微孔与小尺寸的介孔为主。
图4为本发明制备的生物质活性碳材料的SEM照片,由图可看出生物质活性碳由微米尺度的块体所组成。
图5为本发明制备的生物质活性碳材料的TEM照片,由图可看出生物质活性碳内部含有大量的微孔与小尺寸介孔孔道。
二、应用:
将各生物质活性碳分别与乙炔黑和PTFE(聚四氟乙烯)按8∶1∶1的比例混合,以异丙醇为溶剂,将混合物分别各自均匀涂抹在一块5cm x 1cm泡沫镍片上,各涂抹面积大小约为1cm x 1cm,烘干后,分别在压力5~10Mp下压实,制成三片超级电容器电极片。
图6为利用生物质活性碳材料所制备电极片在不同电流密度下的恒流充放电曲线。单电极的超电容性能采用三电极体系、通过CHI760E电化学工作站进行测试,其中Hg/HgO为参比电极,铂电极为对电极,3mol·L-1 KOH溶液为电解液。测试电压范围设定为-0.8~0V,电流密度设置在0.5~10 A·g-1
电化学测试结果表明,该生物质材料有较高的比容量(如图6所示),这个优越的电化学性能,要归因于生物质活性碳优异的结构参数。
综上所述,本发明利用的生物质活性碳具有十分高的比表面积,是在原有植物细胞壁中,活化生成大量微孔,有利于电解液与活性物质的充分接触,加上活性碳骨架能作为整体连通的导电网络,使电极内阻降低,降低极化,提高超级电容器电极材料的性能。

Claims (7)

1.超级电容器电极材料用生物质碳的制备方法,其特征在于包括以下步骤:
1)将干燥、干净的块状广玉兰树叶在惰性气体保护下,于500℃环境温度下进行2小时退火处理,得到热解的广玉兰树叶;
2)将热解的广玉兰树叶和KOH水溶液混合均匀后置100℃环境温度下烘干,得到混合粉末;
3)将混合粉末在惰性气体保护下,置于800~900℃环境温度下退火处理,得到碳化粉末;
4)将碳化粉末冷却后用1M的HCl水溶液浸泡12小时,然后抽滤并水洗至pH值呈中性,再将粉末于80℃烘干,得到生物质活性碳粉末。
2.根据权利要求1所述的制备方法,其特征在于所述热解的广玉兰树叶与KOH水溶液中的KOH的混合质量比为1∶3~5。
3.根据权利要求2所述的制备方法,其特征在于所述热解的广玉兰树叶与KOH水溶液中的KOH的混合质量比为1∶4。
4.根据权利要求1所述的制备方法,其特征在于所述混合粉末的退火环境温度为850℃。
5.如根据权利要求1所述方法制成的超级电容器电极材料用生物质碳的应用,其特征在于:将生物质活性碳粉末与乙炔黑和聚四氟乙烯混合,以异丙醇为溶剂,将混合物均匀涂抹在泡沫镍片上,经烘干后压实,制成超级电容器电极片。
6.根据权利要求5所述的应用,其特征在于:所述生物质活性碳粉末与乙炔黑和聚四氟乙烯的混合质量比为8∶1∶1。
7.根据权利要求5或6所述的应用,其特征在于:所述压实的压力条件为5~10Mp。
CN201710093413.2A 2017-02-21 2017-02-21 超级电容器电极材料用生物质碳的制备方法及其应用 Pending CN106683899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710093413.2A CN106683899A (zh) 2017-02-21 2017-02-21 超级电容器电极材料用生物质碳的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710093413.2A CN106683899A (zh) 2017-02-21 2017-02-21 超级电容器电极材料用生物质碳的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN106683899A true CN106683899A (zh) 2017-05-17

Family

ID=58861222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710093413.2A Pending CN106683899A (zh) 2017-02-21 2017-02-21 超级电容器电极材料用生物质碳的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106683899A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887174A (zh) * 2017-11-06 2018-04-06 西北师范大学 利用植物根系制备多孔碳电极材料的方法
CN108109853A (zh) * 2017-12-25 2018-06-01 武汉大学 超高比表面多孔碳生物质电极材料的制备方法及应用
CN108807941A (zh) * 2018-07-18 2018-11-13 江苏科技大学 磷化铁纳米片与生物质碳复合材料的制备方法及应用
CN109231201A (zh) * 2018-11-05 2019-01-18 安徽工业大学 一种超级电容器用硫、氮、磷共掺杂多孔碳材料的制备方法
CN109850896A (zh) * 2017-11-30 2019-06-07 中南民族大学 一种原生凤眼莲生物质碳多孔电极材料的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072986A (zh) * 2013-01-25 2013-05-01 中国科学院新疆理化技术研究所 一种梯度恒温活化法制备棉秆基活性炭电极材料的方法
US20140104751A1 (en) * 2012-06-15 2014-04-17 Ellen T. Chen Nanobiomimetic Supercapacitors with High Rate High Energy Storage
US20160031713A1 (en) * 2014-08-01 2016-02-04 Washington State University Activated carbon with high percentage mesoporosity, surface area, and total pore volume
CN105731452A (zh) * 2016-01-22 2016-07-06 青岛大学 一种活性炭电极材料及其制备方法与应用
CN105923634A (zh) * 2016-05-06 2016-09-07 海南大学 超级电容器用椰壳纤维基活性炭及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140104751A1 (en) * 2012-06-15 2014-04-17 Ellen T. Chen Nanobiomimetic Supercapacitors with High Rate High Energy Storage
CN103072986A (zh) * 2013-01-25 2013-05-01 中国科学院新疆理化技术研究所 一种梯度恒温活化法制备棉秆基活性炭电极材料的方法
US20160031713A1 (en) * 2014-08-01 2016-02-04 Washington State University Activated carbon with high percentage mesoporosity, surface area, and total pore volume
CN105731452A (zh) * 2016-01-22 2016-07-06 青岛大学 一种活性炭电极材料及其制备方法与应用
CN105923634A (zh) * 2016-05-06 2016-09-07 海南大学 超级电容器用椰壳纤维基活性炭及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887174A (zh) * 2017-11-06 2018-04-06 西北师范大学 利用植物根系制备多孔碳电极材料的方法
CN109850896A (zh) * 2017-11-30 2019-06-07 中南民族大学 一种原生凤眼莲生物质碳多孔电极材料的制备方法和应用
CN109850896B (zh) * 2017-11-30 2020-08-11 中南民族大学 一种原生凤眼莲生物质碳多孔电极材料的制备方法和应用
CN108109853A (zh) * 2017-12-25 2018-06-01 武汉大学 超高比表面多孔碳生物质电极材料的制备方法及应用
CN108807941A (zh) * 2018-07-18 2018-11-13 江苏科技大学 磷化铁纳米片与生物质碳复合材料的制备方法及应用
CN108807941B (zh) * 2018-07-18 2021-07-09 江苏科技大学 磷化铁纳米片与生物质碳复合材料的制备方法及应用
CN109231201A (zh) * 2018-11-05 2019-01-18 安徽工业大学 一种超级电容器用硫、氮、磷共掺杂多孔碳材料的制备方法

Similar Documents

Publication Publication Date Title
CN106276893B (zh) 一种氮掺杂葛根基介孔活性炭的制备方法及其应用
CN105869912B (zh) 一种淀粉基均分散活性炭微球材料的制备方法及其应用
CN108117073B (zh) 一种利用水葫芦制备多孔碳材料的方法及应用
CN106683899A (zh) 超级电容器电极材料用生物质碳的制备方法及其应用
Ma et al. Nitrogen-doped porous carbon obtained via one-step carbonizing biowaste soybean curd residue for supercapacitor applications
Shi et al. A novel porous carbon material derived from the byproducts of bean curd stick manufacture for high-performance supercapacitor use
Xu et al. Green conversion of Ganoderma lucidum residues to electrode materials for supercapacitors
CN108109853A (zh) 超高比表面多孔碳生物质电极材料的制备方法及应用
CN105152170A (zh) 一种蝉蜕基用于电化学电容器的多孔碳材料的制备方法
CN105540585A (zh) 利用含羞草制备超级电容器电极材料的方法
CN110937601A (zh) 核桃壳基活性炭、制备方法及其应用
CN102867654A (zh) 一种用于超级电容器的石墨化活性炭电极材料及制备方法
CN111285688A (zh) 生物质碳膜及其制备方法和应用
CN112713009B (zh) 一种橄榄果壳衍生的超级电容器电极材料的制备方法
CN111547723B (zh) 一种汉麻基多级孔碳材料及其制备方法和应用
AU2020101283A4 (en) Method for Manufacturing Straw-Based Activated Carbon Electrode Material for Super Capacitor with Energy Storage Efficiency Enhanced Through Acid Mine Drainage
CN102280262A (zh) 一种多孔碳电极材料及其制备方法
CN108832107A (zh) 石墨烯量子点-生物基活性炭复合材料及其制备方法
Ding et al. Preparation of Nitrogen and Sulfur Co‐doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO2 Atmosphere for Symmetric Supercapacitors
CN109003828B (zh) 小麦秸秆衍生的多孔生物质炭电极材料及其制备方法
CN105036130A (zh) 一种以榆钱为原料制备超级电容器用活性炭材料的方法
CN113648966A (zh) 一种生物质多孔碳材料及其制备方法和应用
CN107954422B (zh) 一种高比表面积的介孔生物质碳片材料的制备及应用
CN114408919B (zh) 一种基于椰壳材料的高温热冲击碳化和koh活化的多孔碳材料、制备方法及应用
CN109755039A (zh) 一种基于杨梅生物质碳基材料的锰氧化物复合材料制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170517

WD01 Invention patent application deemed withdrawn after publication