CN107863426B - 氮化铝系半导体深紫外发光元件 - Google Patents

氮化铝系半导体深紫外发光元件 Download PDF

Info

Publication number
CN107863426B
CN107863426B CN201710851492.9A CN201710851492A CN107863426B CN 107863426 B CN107863426 B CN 107863426B CN 201710851492 A CN201710851492 A CN 201710851492A CN 107863426 B CN107863426 B CN 107863426B
Authority
CN
China
Prior art keywords
conductive
layer
aluminum nitride
electrode
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710851492.9A
Other languages
English (en)
Other versions
CN107863426A (zh
Inventor
山本秀一郎
上田吉裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN107863426A publication Critical patent/CN107863426A/zh
Application granted granted Critical
Publication of CN107863426B publication Critical patent/CN107863426B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种氮化铝系半导体深紫外发光元件,包括导电性支承基板、空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜、及包括发光层的氮化铝系半导体层结构体,导电性支承基板与氮化铝系半导体层结构体夹着多孔质金属膜以电连接的方式接合,发光峰值波长为220nm以上300nm以下。由此,能够提供发光效率较高且成品率得到改善的纵型结构的氮化铝系半导体深紫外发光元件。

Description

氮化铝系半导体深紫外发光元件
技术领域
本发明涉及一种氮化铝系半导体深紫外发光元件。
背景技术
发光层由AlGaN构成的氮化铝系半导体为,通过对该发光层的Al组合进行调节,从而主要能够实现近紫外线的区域的发光的化合物半导体。紫外线为波长从10nm到400nm为止的电磁波,特别是,波长从200nm到400nm为止的紫外线被称作近紫外线(NUV)。近紫外线有时也被分类为UVA(315nm以上400nm以下)、UVB(280nm以上且未满315nm)、UVC(未满280nm)。此外,波长300nm以下的紫外线也被称作深紫外线(DUV)。在发光层由AlGaN构成的氮化铝系半导体中,通过该Al组合的增减,从而原理上能够制作发出波长从192nm到365nm的近紫外线的半导体发光元件。另外,至此为止,作为使用了半导体的半导体发光元件,已知有发光二极管(LED)、半导体激光二极管(半导体LD)、超发光二极管(SLD)等。
在利用了氮化铝系半导体的半导体发光元件中,对于该紫外线区域(特别是,波长300nm以下的深紫外线区域)而言,期待替代以往的紫外线灯、紫外光源等或杀菌、树脂固化、医疗等领域中的应用,当前,实施了活跃的研究开发,对于深紫外LED也开始了小规模的批量生产。
然而,在当前所开发的波长300nm以下的深紫外LED中,当发光效率为百分之几程度时,与已经实用化的蓝色LED的效率的百分之几十相比较,显着较低。作为其原因,可列举出以深紫外LED所使用的氮化铝系半导体所特有的物理常数等为起因的主要原因、结晶成长等元件制作技术的主要原因、上述的原因复合而成的主要原因。
作为以物理常数为起因的主要原因,由于氮化铝系半导体的折射率较低,因此,将发光层所产生的紫外光向半导体外部提取的光提取效率显着较低,此外,由于发光波长在紫外区域且为短波长,因此,可列举出易于接受来自元件结构内外的物质的吸收等。作为元件制作技术的主要原因,可列举出氮化铝系半导体以1000℃以上这样的高温形成,为了以成品率良好且较高的再现性形成良好品质的结晶,而需要高级的技术等。此外,作为上述原因复合而成的主要原因,可列举出在Al组合高于25%的AlGaN中,即使高浓度地实施用于p型化的掺杂,受主的活化能也较高,因此,p型化较为困难,除此以外,因AlGaN难以结晶成长而AlGaN的结晶性不完全的理由、或容易受到以意外的O等杂质的混入为起因的残留供体等的影响,而难以获得高浓度的p型载体密度等。
氮化铝系半导体发光元件通常通过在蓝宝石基板等基底基板上使用MOCVD装置等结晶成长装置对许多层的半导体层进行层压来形成。另外,作为基底基板,也存在有使用本体的AlN基板的情况。
作为氮化铝系半导体层的结晶成长用的基底基板,在使用蓝宝石基板的情况下,基于蓝宝石基板与氮化铝系半导体层之间的晶格常数差,在氮化铝系半导体层中导入有许多结晶缺陷、裂纹等,从而形成高品质的半导体层较为困难。因此,公开了一种在于蓝宝石基板上形成由AlN构成的缓冲层之后,依次对n型AlGaN接触层、发光层、p型接触层等进行层压,从而获得高品质的成长层的方法。此外,还公开了一种为了使结晶性高品质化,通过将晶格常数与作为发光层的AlGaN层接近的AlN用作基板,从而获得高品质的成长层的方法。此外,对于提高光提取效率的方法,由各研究机构实施各种各样的研究开发。
作为氮化铝系半导体层的结晶成长用的基底基板,在使用蓝宝石基板的情况下,由于蓝宝石基板不具有导电性,因此,需要直至n型层为止进行干蚀刻去除来形成形成有n型电极的平行电极结构的横型电极结构。然而,在平行电极结构中,会引起因电流集中而产生的发光效率的大幅的下降。因该电流集中而产生的发光效率的下降在使用了InGaN系半导体的蓝色LED等发光元件中也会产生,但是,在氮化铝系半导体中,由于p型、n型的电阻率与InGaN系半导体相比较,都显着较高,因此,发光效率的下降对电流集中的影响远远大于蓝色LED的情况。
为了解决以该横型结构为起因的上述问题,尝试了在于具有导电性的支承基板上粘附了氮化铝系半导体层结构体之后,剥离蓝宝石基板等基底基板的方法。
在此,在蓝色LED中,如日本特开2009-231560号公报以及日本特开2014-38920号公报所示,建立了在于基底基板上成长的半导体层接合了支承基板之后去除作为基底基板的蓝宝石基板等,从而制造半导体发光元件的技术。
发明内容
本发明人们在为了制作纵型结构的氮化铝系半导体深紫外发光元件,而在具有导电性的支承基板上,形成各种接合层等方法中,实施了由氮化铝系半导体层结构体与导电性支承基板的接合、蓝宝石基板的剥离等工序构成的纵型结构的开发。
然而,产生了由于氮化铝系半导体层结构体自支承基板剥离、或因氮化铝系半导体层结构体上产生的多量的裂纹而引起的电气特性的不良等,因此成品率较低这样的课题。若要更详细说明引起成品率下降的该等原因,则如以下所示。
在氮化铝系半导体深紫外发光元件中,以结晶性的不完全性以及其载体密度的较低等为起因,而在氮化铝系半导体中,难以形成具有良好的欧姆特性的电极。为了获得良好的欧姆电极,而需要高于接合温度的500℃以上的高温下的电极合金化处理,针对对支承基板和氮化铝系半导体层结构体进行接合的接合层而言,也需要高温抗性。
此外,通过用于上述的欧姆化的500℃以上的高温下的热处理,从而因支承基板和接合层、氮化铝系半导体层结构体、以及基底基板的各自的热膨胀系数的不同,因支承基板和接合层、氮化铝系半导体层结构体、以及基底基板的各自的接合界面及内部所产生的应力,会引起氮化铝系半导体层结构体自支承基板的剥离、氮化铝系半导体层结构体内的裂纹的产生、接合层中的裂纹的产生等,从而引起成品率的下降。特别是,在使用与基底基板的热膨胀系数差较大的支承基板的情况下,经常发生氮化铝系半导体层结构体自支承基板的剥离,在使用了热膨胀系数大于支承基板的接合层的情况下,会引起氮化铝系半导体层结构体内的裂纹的产生和/或接合层中的裂纹的产生。
为了防止上述的氮化铝系半导体层结构体自支承基板的剥离、氮化铝系半导体层结构体内的裂纹的产生、接合层中的裂纹的产生,而在未实施500℃以上的高温下的n型电极合金化处理的情况下,无法获得具有良好的欧姆特性的n型电极,从而引起氮化铝系半导体深紫外发光元件的电压特性、光输出特性、以及发光效率的下降。
如上所述,以成品率良好地制作具有良好的特性的纵型结构的氮化铝系半导体深紫外发光元件较为困难。
在此,在以往的蓝色LED等发光元件的制造方法中,通常使用以300℃程度以下的温度形成共晶的AuSn等合金等的体积密度的较高的连续膜,来实施氮化铝系半导体层结构体与支承基板的接合。这是因为,在蓝色LED中,在剥离成长基板之后,容易在n型GaN上形成n型欧姆电极,因此,在n型电极形成后,无需实施氮化铝系半导体层结构体的接合温度以上的热处理。
然而,在使用了氮化铝系半导体的深紫外发光元件中,在n型电极形成后,需要实施氮化铝系半导体层结构体接合温度以上的热处理,由于以300℃程度以下的温度形成共晶的AuSn等合金通过用于形成n型欧姆电极的500℃以上的高温下的热处理来熔解,会引起氮化铝系半导体层结构体与支承基板的剥离,因此,直接应用以往的技术较为困难。
此外,在形成该n型欧姆电极的热处理工序中,即使对氮化铝系半导体层结构体和支承基板进行固定等防止来剥离,也会因支承基板、接合层、以及氮化铝系半导体层结构体的各自的热膨胀系数的不同,而在支承基板、接合层、以及氮化铝系半导体层结构体的各自的接合界面以及内部产生应力。由于因上述的热膨胀系数的不同而产生的应力,在热处理后,在氮化铝系半导体层结构体内会产生许多的裂纹、或引起接合层中的裂纹的产生等、或者产生氮化铝系半导体层结构体自支承基板的剥离等,从而引起成品率的显着下降。
因此,本发明的目的在于,为了解决上述的问题,而提供一种发光效率较高且成品率较高的氮化铝系半导体深紫外发光元件。
本发明的某方式为,氮化铝系半导体深紫外发光元件包括导电性支承基板、空孔率为10%以上50%以下且具有导电性的大孔结构(macroporous structure)的多孔质金属膜、及包括发光层的氮化铝系半导体层结构体,导电性支承基板与氮化铝系半导体层结构体夹着多孔质金属膜以电连接的方式接合,发光峰值波长为220nm以上300nm以下。本方式所涉及的氮化铝系半导体深紫外发光元件能够抑制因支承基板、氮化铝系半导体层结构体、以及作为支承基板与氮化铝系半导体层结构体的接合层的多孔质金属膜的各自的热膨胀系数的不同而产生的、热处理后的氮化铝系半导体层结构体自支承基板的剥离、氮化铝系半导体层结构体内的裂纹产生、多孔质金属膜中的裂纹的产生,从而提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
在本方式所涉及的氮化铝系半导体深紫外发光元件中,氮化铝系半导体层结构体依次包括第一导电型接触层、发光层、第二导电型接触层,第二导电型接触层夹着多孔质金属膜以电连接的方式与导电性支承基板接合,所述氮化铝系半导体层结构体还可包括以电连接的方式与第一导电型接触层的至少一部分接合的第一导电侧电极。该氮化铝系紫外发光元件能够抑制因支承基板、氮化铝系半导体层结构体、以及作为支承基板与氮化铝系半导体层结构体的接合层的多孔质金属膜的各自的热膨胀系数的不同而产生的、热处理后的氮化铝系半导体层结构体自支承基板的剥离、氮化铝系半导体层结构体内的裂纹产生、多孔质金属膜中的裂纹的产生,从而能够提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
本发明的上述以及其他的目的、特征、方式以及优点根据与附图相关连地理解的与本发明相关的以下的详细的说明清楚可见。
附图说明
图1为表示本发明的实施方式1所涉及的氮化铝系半导体深紫外发光元件的某示例的概要剖视图。
图2为表示本发明的实施方式1所涉及的氮化铝系半导体深紫外发光元件的其他的示例的概要剖视图。
图3为表示本发明的实施方式1~4所涉及的氮化铝系半导体深紫外发光元件的制造中的氮化铝系半导体晶圆形成后的状态的某示例的概要剖视图。
图4为表示本发明的实施方式1~4所涉及的氮化铝系半导体深紫外发光元件的制造中的基底基板去除时的状态的某示例的概要剖视图。
图5为表示本发明的实施方式1~4所涉及的氮化铝系半导体深紫外发光元件的制造中的基底基板去除后的状态的某示例的概要剖视图。
图6为表示本发明的某实施方式所涉及的氮化铝系半导体深紫外发光元件的光提取结构的一个示例的概要立体图。
图7为表示本发明的某实施方式所涉及的氮化铝系半导体深紫外发光元件的光提取结构的一个示例的概要俯视图。
图8为表示本发明的实施方式2所涉及的氮化铝系半导体深紫外发光元件的某示例的概要剖视图。
图9为表示本发明的其他的实施方式所涉及的氮化铝系半导体深紫外发光元件的制造中的基底基板去除后的状态的某示例的概要剖视图。
图10为表示本发明的实施方式3所涉及的氮化铝系半导体深紫外发光元件的某示例的概要剖视图。
图11为表示本发明的实施方式3所涉及的氮化铝系半导体深紫外发光元件的其他的示例的概要剖视图。
图12为表示本发明的实施方式4所涉及的氮化铝系半导体深紫外发光元件的某示例的概要剖视图。
图13为表示本发明的实施方式4所涉及的氮化铝系半导体深紫外发光元件的其他的示例的概要剖视图。
图14为表示本发明的实施例1所涉及的氮化铝系半导体深紫外发光元件的多孔质金属膜的截面的一个示例的SEM写真。
图15为表示本发明的实施例1所涉及的氮化铝系半导体深紫外发光元件的多孔质金属膜的截面的一个示例的放大SEM写真。
图16为表示本发明的比较例1所涉及的氮化铝系半导体深紫外发光元件的多孔质金属膜的截面的一个示例的放大SEM写真。
图17为表示本发明的比较例2所涉及的氮化铝系半导体深紫外发光元件的多孔质金属膜的截面的一个示例的放大SEM写真。
具体实施方式
以下,使用附图对本发明的实施方式详细地进行说明。另外,在本说明书的附图中,相同参照符号表示相同部分或者相当部分。
<实施方式1>
[氮化铝系半导体深紫外发光元件的结构]
参照图1以及图2,本实施方式的氮化铝系半导体深紫外发光元件(称作具有包括发光层104的氮化铝系半导体层结构体403的发光元件,以下相同。)为,用于氮化铝系半导体层结构体403的形成的基底基板完全被去除的纵型结构的氮化铝系半导体深紫外发光元件。即,本实施方式的氮化铝系半导体深紫外发光元件,包括导电性支承基板205、空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜204、及包括发光层104的氮化铝系半导体层结构体403,导电性支承基板205与氮化铝系半导体层结构体403夹着多孔质金属膜204以进行电连接的方式接合,发光峰值波长为220nm以上300nm以下。在此,氮化铝系半导体层结构体403依次包括第一导电型接触层103、发光层104、第二导电型接触层107,第二导电型接触层107夹着多孔质金属膜204以电连接的方式与导电性支承基板205接合,还包括以与第一导电型接触层103的至少一部分(图1的作为第一导电型接触层103的一个主面即表面的一部分、或者图2的作为第一导电型接触层103的一个主面的表面的全部)电连接的方式接合的第一导电侧电极(图1的第一导电侧接触电极301以及第一导电侧焊盘电极302、或者图2的第一导电侧透光性导电膜304以及第一导电侧焊盘电极302)。
本实施方式的氮化铝系半导体深紫外发光元件能够抑制因导电性支承基板205、氮化铝系半导体层结构体403、以及作为导电性支承基板205与氮化铝系半导体层结构体403的接合层的多孔质金属膜204的各自的热膨胀系数的不同而产生的、热处理后的氮化铝系半导体层结构体403自导电性支承基板205的剥离、氮化铝系半导体层结构体403内的裂纹产生、多孔质金属膜204中的裂纹的产生,从而能够提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
本实施方式的氮化铝系半导体深紫外发光元件具体而言为,在导电性支承基板205上夹着空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜204,作为氮化铝系半导体层结构体403而依次配置第二导电型接触层107、第二导电型层106、第二导电型阻挡层105、发光层104、以及第一导电型接触层103,并且以电连接的方式与第一导电型接触层103的至少一部分接合而配置有第一导电侧接触电极301(图1)或者第一导电侧透光性导电膜304(图2)的、纵型结构的发光元件。
(导电性支承基板)
导电性支承基板205被称作对氮化铝系半导体层结构体403进行支承的导电性基板,从能够提高导电性支承基板205的导电性且降低纵型结构的氮化铝系发光元件的导通电阻的观点出发,优选导电性支承基板205为硅基板。此外,从该硅基板在实用的半导体材料之中最容易加工,其技术精炼且材料以及加工的成本也便宜的观点出发也是优选的。
(氮化铝系半导体层结构体)
氮化铝系半导体层结构体403被称作至少包括一层含有氮化铝(AlN)的半导体层(例如,AlxGa1-xN(0<x≤1)半导体层)的结构体,依次至少包括第一导电型接触层103、发光层104、第二导电型接触层107,并体现了作为发光元件的功能。在此,从使从发光层104发出的光透过而不使发光效率下降的观点出发,优选第一导电型接触层103为第一导电型AlxGa1-xN(0<x≤1且x≥(发光层104的平均Al组合))接触层。从相对于发光波长的温度的稳定性以及提高内部量子效率的观点出发,优选发光层104具有由多周期的AlsGa1-sN(0<s≤1)阻隔层和AltGa1-tN(0<t≤1)阱层构成的多重量子阱结构。从使从发光层104发出的光的大部分透过,而不使发光效率下降且降低接触电阻的观点出发,优选第二导电型接触层107为第二导电型AlyGa1-yN(0.25≤y≤1)接触层。
(多孔质金属膜)
多孔质金属膜204为空孔率为10%以上50%以下且具有导电性的大孔结构的金属膜。在此,空孔率通过以下的方法来计算。在多孔质金属膜204的任意地特定的截面的SEM(扫描型电子显微镜)观察中,对空孔截面积相对于截面积整体的百分率(空孔面积率)进行计算,通过将该空孔面积率乘以3/2,从而对空孔率进行计算。截面的空孔面积率优选为,由于也存在测量时而产生的不均匀,因此,通过实施多个截面的空孔的面积率的测量来取得其平均值等,从而对空孔面积率以及空孔率进行计算。从在对氮化铝系半导体层结构体进行接合时,在多孔质金属膜中降低应力的观点出发,空孔率为10%以上,优选为15%以上,进一步优选为20%以上。此外,从在对氮化铝系半导体层结构体进行接合时,获得充分地确保接合面积的接合强度的观点出发,空孔率为50%以下,优选为45%以下,进一步优选为40%以下。
在此,大孔结构是指空孔的孔径分布大于50nm的结构。通过多孔质金属膜204的大孔结构,对因导电性支承基板205、氮化铝系半导体层结构体403以及多孔质金属膜204的各自的热膨胀系数的不同而在导电性支承基板205、氮化铝系半导体层结构体403以及多孔质金属膜204的各自的接合界面以及内部产生的应力进行缓和,从而能够抑制热处理后的氮化铝系半导体层结构体403自导电性支承基板205的剥离、氮化铝系半导体层结构体403内的裂纹产生、多孔质金属膜204中的裂纹的产生。
此外,从能够提高多孔质金属膜204的导电性且降低纵型结构的氮化铝系发光元件的导通电阻的观点出发,多孔质金属膜204优选为包括银的多孔质金属膜。此外,从银相对于深紫外光的反射率较高的观点出发,也优选为包括银的多孔质金属膜。
(发光峰值波长)
本实施方式的氮化铝系发光元件的发光峰值波长处于220nm以上300nm以下的深紫外线区域。此外,发光峰值的一半宽度大概为几十nm以下。
[氮化铝系半导体深紫外发光元件的制造方法]
本实施方式的氮化铝系发光元件的制造方法并不特别限制特,但是,从效率良好地进行制造的观点出发,优选为包括基底基板上的氮化铝系半导体层结构体的形成工序、第二导电型的层(具体而言,第二导电型阻挡层105、第二导电型层106以及第二导电型接触层107)的活性化工序、第二导电侧电极以及反射电极的形成工序、由多孔质金属膜实施的导电性支承基板的接合工序、基底基板的去除工序、光取出结构的形成工序、以及第一导电侧电极(第一导电侧接触电极以及第一导电侧焊盘电极)有形成工序。
(基底基板上的氮化铝系半导体层结构体的形成工序)
参照图3,从形成高品质的氮化铝系半导体层结构体403的观点出发,用于形成氮化铝系半导体层结构体403的基底基板101优选使用蓝宝石基板。作为基底基板101,除蓝宝石基板以外,还能够使用硅基板、氮化硅基板、氮化镓基板等。从使高品质的氮化铝系半导体层结构体403厚度的精度良好且效率良好地成长的观点出发,使用于在基底基板101上形成氮化铝系半导体层结构体403的氮化铝系半导体层成长的方法,优选使用MOCVD(有机金属化学气相堆积)法、MBE(分子线气相成长)法等。
具体而言,如图3所示,在MOCVD装置内,在作为基底基板101的蓝宝石基板的一个主面上,通过依次使作为缓冲层102的厚度上述层(例如300nm)的AlN缓冲层、作为第一导电型接触层103的厚度1μm~5μm(例如3μm)的n型Al0.65Ga0.35N接触层、作为第一导电型层108的n型Al0.60Ga0.40N层、由Al0.80Ga0.20N阻隔层/Al0.55Ga0.45N阱层的6周期的多重量子阱结构构成的发光层104、作为第二导电型阻挡层105的厚度5nm~300nm(例如15nm)的p型Al0.85Ga0.15N阻挡层、作为第二导电型层106的厚度50nm~1000nm(例如150nm)的p型Al0.60Ga0.40N层、以及作为第二导电型接触层107的厚度20nm~500nm(例如50nm)的p型Al0.25Ga0.75N接触层外延成长并层压,从而获得在基底基板101的一个主面形成有氮化铝系半导体层结构体403的氮化铝系半导体晶圆401。
在此,第一导电型层108以及第二导电型层106分别根据发光元件的种类,被称作n型包层和/或n型引导层、以及p型包层和/或p型引导层等,并且能够对上述层的Al组合以及Ga组合和上述层的厚度进行适当调节。在需要包层以及引导层这两者的情况下,第一导电型层108以及第二导电型层106也可以分别为由Al组合不同的n型以及p型的氮化铝系半导体层构成的两层以上的多层结构。
此外,在氮化铝系深紫外LED的情况下,也可以不具有第一导电型层108以及第二导电型层106中的任意一者。在图1以及图2中记载了省略了第一导电型层108的氮化铝系半导体深紫外发光元件。
另外,对于发光层,在本实施方式中,通过由80%的Al组合构成的Al0.80Ga0.20N阻隔层为120nm和由55%的Al组合构成的Al0.55Ga0.45N阱层为60nm每6周期交替地形成,作为最终阻隔层,被设为层压成40nm的Al0.75Ga0.25N层的结构,但是,除此以外,也可以将AlN层等用作阻隔层等。此外,如果1层的层厚在100nm以内,则也可以在阻隔层、阱层的周期结构的最初或者最后,以邻接并横跨多层的方式具有包括形成AlN层的任意的Al组合的未掺杂或者n型的AlxGa1-xN(0<x≤1)层,上述层也被看作发光层的一部分。此外,通过将阱层的Al组合适当调节为25%~75%,从而能够将发光峰值波长调节至300nm~220nm程度。
(第二导电型的层的活性化工序)
接着,从MOCVD装置中提取氮化铝系半导体晶圆401,并实施用于使作为第二导电型的层(第二导电型阻挡层105,第二导电型层106以及第二导电型接触层107)的p型层(p型Al0.85Ga0.15N阻挡层、p型Al0.60Ga0.40N层以及p型Al0.25Ga0.75N接触层)活性化的热处理。即,氮化铝系半导体晶圆401被导入热处理装置内,并以650℃~1350℃(例如900℃)的高温实施1分钟~30分钟(例如5分钟)热处理。作为热处理的气氛,例如,能够利用氮气氛、或者包括氮和0.1%~100%(例如3%)的氧的氮/氧混合气氛、或者纯氧气氛。在本实施方式中,以纯氧气氛实施热处理。通过该热处理,促进p型层的活性化,从而使p型层低电阻化。该低电阻化为,在p型层中与作为杂质而添加的镁结合的氢,通过热处理的效果而被脱离,从而镁作为受主而被活性化。
(第二导电侧电极以及反射电极的形成工序)
接着,如图4所示,通过热处理而在作为第二导电型的p型层被活性化的氮化铝系半导体晶圆401的第二导电型接触层107上形成有第二导电侧接触电极201(p型接触电极)以及反射电极202。更具体而言,通过热处理而使作为第二导电型的p型层被活性化的氮化铝系半导体晶圆401向真空蒸镀装置内导入,从而在氮化铝系半导体晶圆401的第二导电型接触层107上形成有由Ni以及Au的薄膜构成的第二导电侧接触电极201。此时,为了抑制由第二导电侧接触电极201引起的光吸收,而优选为其透过率为75%以上,进一步优选为95%以上。因此,第二导电侧接触电极201的厚度优选为0.5nm~50nm。Ni和Au的各自的层厚如果是两层的共计的厚度在上述的0.5nm~50nm的范围内,则能够分别在0nm~50nm的范围内任意地进行变更,并且如果上述层的总厚度在0.5nm~50nm的范围,则也可以是分别交替地层压多层等、3层以上的结构,也可以只是Ni或者Au的单层结构。另外,发明人们确认到了,在第一层Ni2.5nm、第二层Au2.5nm的共计5.0nm之时,在接下来实施的电极合金化后,得到第二导电侧接触电极201的透过率96%(波长280nm中的测量)。在由Ni、Au构成的第二导电侧接触电极201的形成后,为了第二导电侧接触电极201的合金化以及欧姆电极化,而实施电极合金化处理。在电极合金化处理中,在热处理炉内,导入形成有第二导电侧接触电极201的氮化铝系半导体晶圆401,在100%氧的气氛中以1个大气压,500℃的条件实施5分钟。接下来,优选为,在第二导电侧接触电极201上形成有由Al构成的反射电极202。反射电极202的形成通过真空蒸镀装置对Al进行蒸镀来实施。由于需要以减小损失的方式对发光层104所发出的光进行反射,因此,优选为反射电极202均匀地形成在氮化铝系半导体晶圆401整个面上。
(由多孔质金属膜实施的导电性支承基板的接合工序)
接着,如图4所示,形成有第二导电侧接触电极201以及反射电极202的氮化铝系半导体晶圆401通过多孔质金属膜204而与导电性支承基板205接合。氮化铝系发光元件通过该接合,从发光层104向导电性支承基板205的方向发出的220nm以上300nm以下的波长的紫外光透过第二导电侧接触电极201,并被反射电极202以及大孔结构的多孔质金属膜204反射,再次透过第二导电侧接触电极201,从而向导电性支承基板205的相反方向放射。
由多孔质金属膜实施的导电性支承基板的接合通过如下方式来实施,即在高温高压下对混合有金属粒子的导电性糊剂进行烧结,从而形成大孔结构的多孔质金属膜204,具体而言,为了取得多孔质金属膜204与导电性支承基板205的电气的接触,在形成有作为第一层的Ni为20nm、作为第二层的Au为250nm的导电性支承基板205、即硅基板上,在使用丝网印刷机涂布含银(Ag)导电性糊剂之后,将形成有第二导电侧接触电极201的氮化铝系半导体晶圆401的第二导电侧接触电极201侧固定在上述导电性糊剂上。通过将该固定晶圆导入加热压接装置,以50个大气压350℃的条件进行60分钟压接,从而能够使导电性支承基板205(硅基板)与氮化铝系半导体晶圆401夹着大孔结构的多孔质金属膜204而进行接合。另外,在本实施方式的晶圆接合条件中,为了含银导电性糊剂在烧结后成为大孔结构,而对银含有量、密度、粘土、组合等实施调节,在本晶圆接合条件下且接合后,含银导电性糊剂具有牢固的晶圆接合强度和较高的电导率。
在本晶圆的接合条件中,在从压力1个大气压到100个大气压为止以及从温度200℃到350℃为止的范围,无论压力1个大气压(无加压)时的温度如何,多孔质金属膜的空孔率高于50%,且压力5个大气压以及温度225℃时的多孔质金属膜204的空孔率为50%,压力75个大气压以及温度350℃时的多孔质金属膜204的空孔率为5%。在上述的任意的接合条件下,都能够实施晶圆的接合。
(基底基板的去除工序)
接着,实施基底基板101自氮化铝系半导体晶圆401的去除。该基底基板101(例如蓝宝石基板)的去除能够使用激光剥离法来实施。例如,如图4中的箭头所示,波长193nm的激光从基底基板101侧向氮化铝系半导体晶圆401内照射。该激光被缓冲层102吸收。这是因为,缓冲层102的带隙小于波长193nm的光所具有的能量,因此,对波长193nm的光具有吸收功能。此时,缓冲层102所吸收的激光的能量的大部分被转换为热能,并通过所产生的热而使缓冲层102自身被热分解。由此,通过分离为基底基板101和从缓冲层102到导电性支承基板205的部分,从而基底基板101被剥离和去除。另外,在基底基板101的去除之时,与被照射的激光的波长193nm相比,发光层104的发光峰值波长为220nm以上300nm以下且较长,因此,在激光的强度过强,而无法通过缓冲层102以及第一导电型接触层103吸收所有激光的情况下、或者在通过缓冲层102以及第一导电型接触层103产生多量的热能并且该热能传输至发光区域的情况下,存在有对发光层104造成损伤的可能性。因此,为了不使被照射的激光全部被缓冲层102吸收而产生过度的热能,而需要对照射的激光的强度、以及缓冲层102的层厚进行适当调节。另外,对于基底基板101的去除,除了波长193nm的激光以外,还能够使用缓冲层102所吸收的任意的波长的激光。
(光提取结构的形成工序)
通过上述的基底基板101的去除,从而获得图5所示那样的包括氮化铝系半导体层结构体403的晶圆。通过激光的照射而在基底基板被剥离的分离面上附着有因通过激光照射而分解的缓冲层产生的残留层402。因此,优选为,在通过由盐酸等酸实施的湿蚀刻使分离面洁净化之后,再实施干蚀刻,从而露出第一导电型接触层103的洁净的表面。例如,在将上述晶圆浸渍在盐酸溶液中3分钟之后,只要将该晶圆导入RIE(反应性离子蚀刻)装置仅实施厚度0.5μm程度干蚀刻即可。另外,在干蚀刻前,在利用电子束描绘装置等在第一导电型接触层103的表面上形成用于作为提高光提取的效率的结构(光提取结构)的纹理结构的形成的电子束蚀刻图案之后,通过实施干蚀刻,从而能够形成纹理结构。作为光提取结构的纹理结构的一个示例被示出在图6的概要立体图中。
图6所示的纹理结构所包含的截头圆锥状的各个凸部,例如具有直径250nm的底面、直径225nm的上表面、以及250nm的高度,并且如图7的概要俯视图所示,以截头圆锥的中心位于一边350nm的正三角形的顶点的方式周期性地配置。虽然不需要必须形成这样的纹理结构,但是,通过该纹理结构的形成,从而能够提高从第一导电型接触层103的光提取效率。此外,除了纹理结构以外,为了提高光提取效率,也可以在n型AlGaN接触层的表面上形成蛾眼结构等其他的低反射率结构。
(第一导电侧电极的形成工序)
接着,如图1所示,在表面形成有光提取结构的纹理结构的第一导电型接触层103的其表面的一部分,形成有第一导电侧接触电极301。在通过光刻形成第一导电侧接触电极301形成用的蚀刻图案之后,将上述晶圆向蒸镀装置内导入,蒸镀由Ti/Al层压结构构成的第一导电侧接触电极层。如此,在形成有第一导电侧接触电极层之后,从蒸镀装置提取上述晶圆,并实施第一导电侧接触电极层的剥离处理,从而形成有第一导电侧接触电极301。在第一导电侧接触电极301的形成后,根据需要,能够实施欧姆电极化以及合金化的热处理。
另外,在作为第一导电型接触层103的第一导电型AlxGa1-xN(0<x≤1)接触层的Al组合大于0%且未满25%的情况下,由于能够比较容易使第一导电侧接触电极301欧姆化,因此也可以不需要热处理,但是,在Al组合为25%以上的情况下,对于第一导电侧接触电极301的欧姆化,需要500℃以上的高温下的热处理,而且,在Al组合为50%以上的情况下,需要700℃以上的高温下的热处理。在本实施的方式中,由于第一导电型AlxGa1-xN(0<x≤1)接触层的Al组合为65%且较高,因此,以900℃的条件实施了第一导电侧接触电极的欧姆化热处理。
此外,由于第一导电型AlxGa1-xN(0<x≤1)接触层的Al组合需要使来自发光层104的光透过,因此,优选为高于发光层104中的阱层的Al组合。在本发明的某实施方式所涉及的发光峰值波长为220nm以上300nm以下的深紫外发光元件中,由于即使阱层的Al组合最少时(发光峰值波长300nm),阱层的Al组合也有大概25%程度,因此,在第一导电型AlxGa1-xN(0<x≤1)接触层的Al组合中,由于最低也是25%以上,因此,需要500℃以上的高温下的第一导电侧接触电极的欧姆化处理。在此,发光峰值波长为265nm时的阱层的Al组合为大概45%程度,发光峰值波长为220nm时的阱层的Al组合为大概75%程度。另外,如图2所示,作为第一导电侧接触电极,能够将使所发出的光透过的第一导电侧透光性导电膜304形成在第一导电型接触层103的大部分的区域内。
接下来,在第一导电侧接触电极301上形成有第一导电侧焊盘电极302。在利用光刻形成第一导电侧焊盘电极302形成用的蚀刻图案之后,将上述晶圆向蒸镀装置内导入,蒸镀由Ti/Au的层压构成的第一导电侧焊盘电极层。如此,在形成有焊盘电极层之后,从蒸镀装置提取上述晶圆,实施第一导电侧焊盘电极层的剥离处理,如图1所示,形成有第一导电侧焊盘电极302。另外,如图2所示,也可以在使所发出的光透过的第一导电侧透光性导电膜304上的一部分区域内形成第一导电侧焊盘电极302(n侧焊盘电极)。
(固定)
接着,形成有第一导电侧焊盘电极302的上述晶圆,根据需要,在形成由SiO2等绝缘体构成的分割保护膜和/或电流阻止层等之后,通过切割而被分割为适当的尺寸(在本实施的方式中1mm×1mm)的多个芯片。通过芯片分割所获得的各紫外LED芯片通过管座或者SMD(表面贴装器件)被固定,并在第一导电侧焊盘电极302等上实施布线,而且,通过紫外线透过树脂等进行密封,从而成为紫外LED元件。此时,即使在管座或者SMD等任意的封装方式中,所发出的光的出射面也会成为第一导电侧电极侧的面。
[作用效果]
在本实施方式的氮化铝系半导体深紫外发光元件中,由于通过空孔率为10%以上50%以下的大孔结构的多孔质金属膜204而使导电性支承基板205与氮化铝系半导体层结构体403接合,因此,因导电性支承基板、氮化铝系半导体层结构体、多孔质金属膜以及基底基板的各自的热膨胀系数的不同而产生的应力,通过被大孔结构的多孔质金属膜吸收,从而能够抑制晶圆自导电性支承基板的剥离、氮化铝系半导体层结构体内的裂纹产生、多孔质金属膜内的裂纹的产生,从而能够提高氮化铝系半导体深紫外发光元件的成品率。此外,由于大孔结构的多孔质金属膜具有高温抗性,因此,能够实施500℃以上的条件下的第一导电侧接触电极的欧姆化热处理,因此,能够提供能够形成具有良好的欧姆特性的第一导电侧接触电极、发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
<实施方式2>
[氮化铝系半导体深紫外发光元件的结构]
参照图8,本实施方式的氮化铝系半导体深紫外发光元件(称作具有包括发光层104的氮化铝系半导体层结构体403的发光元件,以下相同。)为,与实施方式1的氮化铝系半导体深紫外发光元件相同的纵型结构、且还具有在氮化铝系半导体层结构体403的第一导电型接触层103侧的主面的一部分上所接合的作为其他基板的基底基板101的纵型结构的氮化铝系半导体深紫外发光元件。即,本实施方式的氮化铝系半导体深紫外发光元件,包括导电性支承基板205、空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜204、及包括发光层104的氮化铝系半导体层结构体403,并且,导电性支承基板205与氮化铝系半导体层结构体403以夹着多孔质金属膜204而电连接的方式接合,发光峰值波长为220nm以上300nm以下。在此,氮化铝系半导体层结构体403依次包括第一导电型接触层103、发光层104、第二导电型接触层107,第二导电型接触层107夹着多孔质金属膜204而以电连接的方式与导电性支承基板205接合,还包括第一导电型接触层103侧的一部分所接合的作为其他基板的基底基板101;以电连接的方式与第一导电型接触层103侧的一部分接合的第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302)。即,在本实施方式中,第一导电侧电极以电连接的方式与第一导电型接触层103的至少一部分接合。
本实施方式的氮化铝系半导体深紫外发光元件能够抑制因导电性支承基板205、氮化铝系半导体层结构体403、以及作为导电性支承基板205与氮化铝系半导体层结构体403的接合层的多孔质金属膜204的各自的热膨胀系数的不同而产生的、氮化铝系半导体层结构体403自热处理后的导电性支承基板205的剥离、氮化铝系半导体层结构体403内的裂纹产生、多孔质金属膜204中的裂纹的产生,从而能够提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
本实施方式的氮化铝系半导体深紫外发光元件具体而言为,在导电性支承基板205上夹着空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜204,而依次配置作为氮化铝系半导体层结构体403的第二导电型接触层107、第二导电型层106、第二导电型阻挡层105、发光层104、以及第一导电型接触层103,并以与第一导电型接触层103侧的一部分接合的方式配置有基底基板101,以与第一导电型接触层103侧的一部分电连接而接合的方式配置有第一导电侧接触电极301的、纵型结构的发光元件。
对于本实施方式的氮化铝系紫外发光元件中的导电性支承基板205、氮化铝系半导体层结构体403以及多孔质金属膜204,与实施方式1的氮化铝系紫外发光元件中的导电性支承基板205、氮化铝系半导体层结构体403以及多孔质金属膜204相同。
(基底基板)
本实施方式的氮化铝系紫外发光元件中的基底基板101为用于形成氮化铝系半导体层结构体403的基板,从形成高品质的氮化铝系半导体层结构体403的观点以及使波长220nm以上300nm以下的深紫外线透过的观点出发,优选蓝宝石基板。
[氮化铝系半导体深紫外发光元件的制造方法]
本实施方式的氮化铝系发光元件的制造方法并不特别限制,但是,从效率良好地进行制造的观点出发,优选为包括基底基板上的氮化铝系半导体层结构体的形成工序;第二导电型的层(具体而言,第二导电型阻挡层105、第二导电型层106以及第二导电型接触层107)的活性化工序;第二导电侧电极以及反射电极的形成工序;由多孔质金属膜实施的导电性支承基板的接合工序;基底基板的一部分的去除工序;第一导电型接触层的露出工序;第一导电侧电极(第一导电侧接触电极以及第一导电侧焊盘电极)的形成工序;以及光取出结构的形成工序。
(从基底基板上的氮化铝系半导体层结构体的形成工序到由多孔质金属膜实施的导电性支承基板的接合工序)
基底基板上的氮化铝系半导体层结构体的形成工序、第二导电型的层(具体而言,第二导电型阻挡层105、第二导电型层106以及第二导电型接触层107)的活性化工序、第二导电侧电极以及反射电极的形成工序、以及由多孔质金属膜实施的导电性支承基板的接合工序与实施方式1的氮化铝系半导体深紫外发光元件的情况相同。
(基底基板的一部分的去除工序)
在由多孔质金属膜204实施的氮化铝系半导体晶圆401与导电性支承基板205的接合之后,实施基底基板101的一部分自氮化铝系半导体晶圆401的去除。该基底基板101的剥离能够与第一实施方式同样地使用激光剥离法来实施。在本实施方式中,波长193nm的激光仅相对于基底基板101的欲去除的部分向氮化铝系半导体晶圆内照射。由此,被激光照射的部分的蓝宝石基板被剥离。在激光的照射条件等中,只有激光照射区域等不同,其他与第一实施方式相同样。
(第一导电型接触层的露出工序)
通过上述的基底基板的一部分去除,如图9所示,在通过激光的照射而基底基板101被剥离的部分附着有因通过激光照射而分解的缓冲层102产生的残留层402。因此,优选为,在通过由盐酸等酸实施的湿蚀刻使分离面洁净化之后,再实施干蚀刻,从而露出第一导电型接触层103的洁净的表面。例如,在将该晶圆浸渍在盐酸溶液中3分钟之后,只要将该晶圆导入RIE(反应性离子蚀刻)装置仅实施厚度0.5μm程度干蚀刻即可。
接下来,如图8所示,在基底基板101被剥离的部分,为了形成第一导电型区域,通过干蚀刻使作为第一导电型接触层103的n型Al0.65Ga0.35N接触层露出。首先,使用光刻技术,形成抗蚀剂图案。接下来,将该晶圆导入ICP干蚀刻装置实施干蚀刻,直至从第一导电型接触层103的表面起露出大致1.0μm程度的深度。在如此使第一导电型接触层103露出之后,通过去除用于干蚀刻的抗蚀剂掩膜等,并实施有机洗净,从而实施晶圆的洁净化。
(第一导电侧电极的形成工序)
在通过上述方式露出和洗净的第一导电型接触层103上形成第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302)。第一导电侧接触电极301以及第一导电侧焊盘电极302的形成方法与实施方式1的氮化铝系半导体深紫外发光元件的情况相同。另外,在本实施方式中,由于第一导电型接触层103的Al组合为0.65且较高,因此,在第一导电侧焊盘电极302的形成前以900℃的条件实施第一导电侧接触电极301的欧姆化热处理。
(光提取结构的形成工序)
接着,利用电子束描绘装置或者纳米压印装置等,在基底基板101的表面形成用于形成纹理结构的电子束蚀刻图案、或者利用树脂模制件在基底基板101的表面形成用于形成纹理结构的树脂图案之后,通过实施干蚀刻,从而能够形成纹理结构。纹理结构的一个示例与第一实施方式同样地,通过图5的示意的立体图来表示。虽然不需要必须形成这样的纹理结构,但是,能够通过纹理结构的形成,提高从基底基板101的光提取效率。此外,除了纹理结构以外,为了提高光提取效率,也可以在成长基板的表面上形成蛾眼结构等其他的低反射率结构。
(固定)
接着,与实施方式1的情况同样地,上述晶圆通过切割而被分割为适当的尺寸(本实施方式中为1mm×1mm)的多个芯片,并通过管座或者SMD(表面贴装器件)而被固定,并在第一导电侧焊盘电极302等上实施布线,而且,通过紫外线透过树脂等进行密封,从而成为紫外LED元件。所发出的光的出射面成为第一导电侧电极侧的第一导电型接触层103的主面。
在本实施方式的氮化铝系半导体深紫外发光元件的上述说明中,对作为上述其他基板而具有基底基板的情况进行说明。然而,本实施方式的氮化铝系半导体深紫外发光元件的上述其他基板如果是绝缘性透明基板,则并不特别限制,也可以不是基底基板。例如,与实施方式1的情况同样地,也可以在从第一导电型接触层侧完全去除基底基板之后,在第一导电型接触层的一部分形成第一导电侧电极(第一导电侧接触电极以及第一导电侧焊盘电极),在第一导电型接触层侧的另一部分上接合作为其他基板的绝缘性透明基板。在此,从使波长220nm以上300nm以下的深紫外光透过的观点出发,绝缘性透明基板优选为蓝宝石基板。
[作用效果]
本实施方式的氮化铝系半导体深紫外发光元件为与实施方式1的氮化铝系半导体深紫外发光元件同样的纵型结构、且还具有在氮化铝系半导体层结构体403的第一导电型接触层103侧的主面的一部分上所接合的其他基板的纵型结构,并具有与实施方式1的氮化铝系半导体深紫外发光元件同样的作用效果,从而能够提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
<实施方式3>
参照图10以及图11,本实施方式的氮化铝系半导体深紫外发光元件与实施方式1同样地是用于氮化铝系半导体层结构体403的形成的基底基板完全被去除的纵型结构的氮化铝系半导体深紫外发光元件且从端面发光的发光元件。作为端面发光的元件,可列举出激光二极管(LD)、超发光二极管(SLD)等受激发射型的发光元件。
因此,本实施方式的氮化铝系半导体深紫外发光元件与实施方式1同样地包括导电性支承基板205;空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜204;包括发光层104的氮化铝系半导体层结构体403,并且,导电性支承基板205与氮化铝系半导体层结构体403夹着多孔质金属膜204而以电连接的方式接合的、发光峰值波长が220nm以上300nm以下的氮化铝系半导体深紫外发光元件。在此,氮化铝系半导体层结构体403依次包括第一导电型接触层103、发光层104、第二导电型接触层107,第二导电型接触层107夹着多孔质金属膜204而以电连接的方式与导电性支承基板205接合,氮化铝系半导体层结构体403还包括以与第一导电型接触层103的至少一部分(图10以及图11的作为第一导电型接触层103的一个主面即表面的全部)电连接的方式接合的第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302)。
本实施方式的氮化铝系半导体深紫外发光元件除了与实施方式1同样的上述的结构以外,为了获得适当的光学限制效果,而优选为预先分别将作为引导层和/或包层的第一导电型层108以及第二导电型层106设为Al组合不同的多层结构,此外,为了易于产生受激发射,而优选为在氮化铝系半导体晶圆401的向导电性支承基板205的接合之前,预先作成对作为第二导电侧的p侧的电流路径进行限制的结构。具体而言,如图10所示,第二导电侧接触电极201仅形成为一部分,未形成有第二导电侧接触电极201的部分能够被设为形成了绝缘层206的电极条状结构。或者,如图11所示,能够在通过蚀刻直至第二导电型层106的一部分为止去除了第二导电型接触层107的一部分区域之后,成为形成了绝缘层206的脊状条结构。
在形成了上述的电极条状结构或者脊状条结构之后,与实施方式1同样地,在氮化铝系半导体晶圆401的向导电性支承基板205的接合之后,实施至第一导电侧焊盘电极302的形成为止。对于第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302),如图10以及图11所示,既可以形成在露出的第一导电型接触层103的整个面上,也可以与实施方式1同样地通过图案化而形成在露出的第一导电型接触层的一部分表面上。
(固定)
接着,形成有第一导电侧焊盘电极302的晶圆通过劈开和/或切割而被分割为横杠状。在半导体激光的情况下,劈开面的一侧的面被实施高反射涂层而成为光反射面,另一侧的面根据用途而实施低反射涂层、保护涂层等,从而成为激光出射面。在超发光二极管的情况下,为了不引起激光振荡,而在端面实施低反射涂层、形成凹凸形状、和/或实施斜面化处理等,从而形成了端面反射的降低化结构。在实施了端面处理之后,呈横杠状地分割为适当的尺寸(本实施方式中为0.8mm×0.4mm)的多个芯片。通过芯片分割而获得的端面出射型发光元件芯片被固定在管座上,并对第一导电侧焊盘电极等实施布线,并且通过紫外线透过树脂等进行密封从而成为端面出射型紫外发光元件。
[作用效果]
本实施方式的氮化铝系半导体深紫外发光元件为,能够使一部分电流路径受到限制而容易引起受激发射的结构、且基底基板完全被去除的纵型结构的端面出射型的发光元件,通过与实施方式1同样的作用效果,从而能够提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
<实施方式4>
参照图12以及图13,本实施方式的氮化铝系半导体深紫外发光元件为,与实施方式3的氮化铝系半导体深紫外发光元件同样的纵型结构、且还具有在氮化铝系半导体层结构体403的第一导电型接触层103侧的主面的一部分上所接合的作为其他基板的基底基板101的纵型结构的氮化铝系半导体深紫外发光元件,并且与实施方式3同样地从端面发光的发光元件。作为端面发光的元件,可列举出激光二极管(LD)、超发光二极管(SLD)等受激发射型的发光元件。
因此,本实施方式的氮化铝系半导体深紫外发光元件与实施方式2同样地包括导电性支承基板205、空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜204、及包括发光层104的氮化铝系半导体层结构体403,导电性支承基板205与氮化铝系半导体层结构体403夹着多孔质金属膜204以电连接的方式接合,发光峰值波长为220nm以上300nm以下。在此,氮化铝系半导体层结构体403依次包括第一导电型接触层103、发光层104、第二导电型接触层107,第二导电型接触层107夹着多孔质金属膜204而以电连接的方式与导电性支承基板205接合,氮化铝系半导体层结构体403还包括与第一导电型接触层103侧的一部分接合的基底基板101、和以电连接的方式与第一导电型接触层103侧的一部分接合的第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302)。即,在本实施方式中,第一导电侧电极以电连接的方式与第一导电型接触层103的至少一部分接合。
本实施方式的氮化铝系半导体深紫外发光元件除了与实施方式2同样的上述的结构以外,为了获得适当的光学限制效果,而优选为分别将作为引导层和/或包层的第一导电型层108以及第二导电型层106设为Al组合不同的多层结构,此外,为了易于产生受激发射,而优选为在氮化铝系半导体晶圆401的向导电性支承基板205的接合之前,预先作成对作为第二导电侧的p侧的电流路径进行限制的结构。具体而言,如图12所示,第二导电侧接触电极201仅形成为一部分,未形成有第二导电侧接触电极201的部分能够被设为形成了绝缘层206的电极条状结构。或者,如图13所示,能够在通过蚀刻直至第二导电型层106的一部分为止去除第二导电型接触层107的一部分区域之后,成为形成了绝缘层206的脊状条结构。
在本实施方式的氮化铝系半导体深紫外发光元件的上述说明中,对具有作为上述其他基板的基底基板的情况进行了说明。然而,本实施方式的氮化铝系半导体深紫外发光元件的上述其他基板如果是绝缘性基板则并不特别限制,也可以不是基底基板。例如,与实施方式3的情况同样地,也可以在从第一导电型接触层侧完全去除了基底基板之后,在第一导电型接触层的一部分形成第一导电侧电极(第一导电侧接触电极以及第一导电侧焊盘电极),在第一导电型接触层侧的另一部分上接合作为其他基板的绝缘性基板。在此,从获得适当的光学限制效果的观点以及抑制电流泄漏的观点出发,绝缘性基板优选为蓝宝石基板。
在形成了上述的电极条状结构或者脊状条结构之后,与实施方式3同样地,上述晶圆在通过劈开和/或切割而被分割为横杠状并实施适当的端面处理之后,被呈横杠状地实施芯片分割并被固定在管座上,对第一导电侧焊盘电极等实施布线,并且通过紫外线透过树脂等进行密封从而成为端面出射型紫外发光元件。
[作用效果]
本实施方式的氮化铝系半导体深紫外发光元件为,与实施方式3的氮化铝系半导体深紫外发光元件同样的纵型结构、且还具有在氮化铝系半导体层结构体403的第一导电型接触层103侧的主面的一部分上所接合的其他基板的纵型结构,通过与实施方式3同样的作用效果,即,与实施方式1同样的作用效果,从而能够提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
【实施例】
(实施例1)
参照图3,将作为基底基板101的蓝宝石基板导入MOCVD装置,在蓝宝石基板的一个主面上依次层压由厚度300nm的AlN层构成的缓冲层102、由厚度3μm的n型Al0.65Ga0.35N层构成的第一导电型接触层103、由厚度3nm的Al0.80Ga0.20N阻隔层/厚度2nm的Al0.55Ga0.45N阱层的6周期的多重量子阱结构构成的发光层104、由厚度15nm的p型Al0.85Ga0.15N阻挡层构成的第二导电型阻挡层105、由厚度150nm的p型Al0.65Ga0.35N层构成的第二导电型层106、以及由厚度50nm的p型Al0.25Ga0.75N接触层构成的第二导电型接触层107,从而获得氮化铝系半导体晶圆401。另外,在图3中,记载了第一导电型层108,但是,在本实施例中省略。
在本实施例中,AlN系半导体层的结晶成长使用MOCVD法来实施,但是,除了MOCVD法以外,也能够局部或者全部应用MBE法、溅射法等已知的结晶成长方法。作为缓冲层102,能够使用未掺杂AlxGa1-xN(0<x≤1)层、n型AlxGa1-xN(0<x≤1)层等,但是,在用于去除基底基板101的激光剥离工序中,优选为充分吸收激光的层。
在MOCVD装置内中的结晶成长的结束后,M从OCVD装置提取包括层压的氮化铝系半导体层的晶圆,并实施用于使作为p型层的第二导电型的层(第二导电型阻挡层105、第二导电型层106以及第二导电型接触层107)活性化的热处理。热处理通过将氮化铝系半导体晶圆401导入热处理装置内,并在100%的氧气氛中,以900℃的高温保持10分钟来实施。另外,对于热处理的温度、气氛并限于此。
接下来,实施作为第二导电侧电极的p侧电极的形成。参照图4,将上述晶圆导入蒸镀装置内,并在作为第二导电型接触层107的p型Al0.25Ga0.75N接触层上形成由厚度15nm的Ni层以及15nm的Au层的p型接触电极构成的第二导电侧接触电极201。另外,在图4中,记载了第一导电型层108,但是,如上所述在本实施例中省略。此时,为了抑制由第二导电侧接触电极201产生的光吸收,而需要尽量提高发光波长中的第二导电侧接触电极201的透过率,优选为75%以上的透过率。在本实施例中,为了满足该条件,而将第二导电侧接触电极201设为由厚度15nm的Ni层以及厚度15nm的Au层构成的厚度30nm的金属层。另外,在本实施例中,在形成厚度15nm的Ni层以及厚度15nm的Au层这两层之后,在450℃的含氧气氛中,实施热处理,从而实施第二导电侧接触电极201的合金化处理。通过该热处理,从而能够实现第二导电侧接触电极201的透过率的提高和与第二导电型接触层107的欧姆性的提高。
接下来,实施形成有第二导电侧接触电极201的氮化铝系半导体晶圆401与导电性支承基板205的接合。作为导电性支承基板205,由于具有导电性,因此使用实施了掺杂的导电性硅基板。优选在硅基板的接合侧的面上预先形成金属电极,但是,并不限于此,也可以直接在硅基板面上接合形成有第二导电侧接触电极201的氮化铝系半导体晶圆401。在本实施例中,硅基板的接合侧的面为硅基板/Ni层(25nm)/Au层(250nm),并实施了Ni/Au金属膜的形成。
接下来,在形成有上述Ni/Au金属膜的导电性支承基板205的接合面上实施了混合有金属粒子的导电性糊剂的涂布。在本实施例中,使用丝网印刷机涂布Ag含有导电性糊剂。另外,本实施例中所使用的Ag含有导电性糊剂为,在本实施例中的晶圆接合条件中,为了在烧结后成为大孔结构,而对Ag含有量、密度、粘土、组合等进行了调节,在本晶圆接合条件下且接合后,具有牢固的晶圆接合强度和较高的电导率。另外,涂布时的Ag含有导电性糊剂的厚度大概为几十μm,但是,烧结后的厚度根据温度、压力等烧结条件,会较大地发生变动。
接下来,参照图4,将形成有第二导电侧接触电极201(p型接触电极)的在第二导电侧接触电极201侧的氮化铝系半导体晶圆401的面,固定在涂布有Ag含有导电性糊剂的导电性支承基板205的接合面上并与其接合。接合通过加热压接装置来实施。在本实施例中,通过在氮气氛中,以50个大气压350℃的条件压接60分钟,从而能够使导电性支承基板205与氮化铝系半导体晶圆401夹着大孔结构的多孔质金属膜204而接合。接合后的多孔质金属膜204的空孔率为,在其三个部位的截面的SEM(扫描型电子显微镜)观察中,对空孔截面积相对于截面积整体的百分率(空孔面积率)进行计算,对使该空孔面积率乘以3/2而得到的三个数值的平均值进行计算。空孔率大概为10%~25%,上述的平均值为20%。
另外,在上述接合条件中,在压力为1个大气压~100个大气压、温度为200℃~350℃的范围实施了研究。在压力5个大气压、温度225℃的接合条件下,多孔质金属膜204的空孔率为50%。在压力75个大气压、温度350℃的接合条件下,多孔质金属膜204的空孔率为5%。在上述的接合条件下,也能够实施晶圆的接合。此外,在常压(压力为1个大气压)下的条件下,实施了接合条件的研究,此时的多孔质金属膜204的空孔率无论温度如何,都高于50%。另外,在该条件下,也能够实施晶圆的接合。此外,在压力为80气压以上100个大气压以下的情况下,多孔质金属膜204的空孔率大约为0%,在SEM图像中,成为无法确认大孔结构的状态。另外,在该条件下,也能够实施晶圆的接合。
此外,确认到了在接合后的多孔质金属膜中,在实施反射率测量时,无论有无大孔结构的形成,相对于360nm以下的波长的光,都具有大概75%以上的反射率,并作为对紫外光进行反射的反射膜而发挥功能。
因此,在本实施例中,在第二导电侧接触电极201上直接接合多孔质金属膜204,将多孔质金属膜204作为反射电极202兼导电性接合层。然而,也可以在第二导电侧接触电极201上形成相对于铝、Ag等紫外光具有较高的反射特性的金属构成的反射电极202之后,形成多孔质金属膜204,从而作为导电性接合层。
在上述接合后,从氮化铝系半导体晶圆401去除基底基板101。在本实施例中,基底基板101的去除使用激光剥离法来实施。参照图4,将波长193nm的激光从基底基板101侧向氮化铝系半导体晶圆401内照射。被照射的激光在缓冲层102内中全部被吸收。被吸收的激光的光能被转换为热能,并通过该热能使缓冲层102被分解。由此,基底基板101被剥离和去除,从第一导电型接触层103到导电性支承基板205为止的部分被分离。
参照图5,由于在通过激光照射而去除了基板的剥离面上,附着有因通过激光照射而被分解的缓冲层102而产生的残留层402,因此,实施了该剥离面的洁净化。另外,在图5中,记载了第一导电型层108,但是,如上所述在本实施例省略。具体而言,将被分离的上述晶圆在盐酸和水以1:1的比例混合的溶液中浸渍3分钟。其后,在实施了水洗和干燥之后,通过干蚀刻将第一导电型接触层103的表面层去除厚度0.50μm程度。这是为了露出第一导电型接触层103的洁净的表面。
另外,在上述干蚀刻时,在利用电子束描绘装置等,在第一导电型接触层103的表面上形成了用于纹理结构形成的电子束蚀刻图案之后,通过干蚀刻也能够形成纹理结构。纹理结构的一个示例示出在图6的概要立体图中。图6所示的纹理结构所包含的截头圆锥状的各个凸部,例如具有直径250nm的底面、直径225nm的上表面以及250nm的高度,并且如图7的概要俯视图所示,以截头圆锥的中心位于一边350nm的正三角形的顶点的方式周期性地配置。虽然不需要必须形成这样的纹理结构,但是,通过纹理结构的形成,从而能够提高从第一导电型接触层103的光提取效率。此外,除了纹理结构以外,为了提高光提取效率,也可以在第一导电型接触层103的表面上形成蛾眼结构等其他的低反射率结构。
接下来,参照图1,形成了第一导电侧接触电极301(n侧接触电极)。具体而言,在利用光刻形成了第一导电侧接触电极301形成用的蚀刻图案之后,将上述晶圆导入蒸镀装置内,对具有Ti/Al多层结构的第一导电侧接触电极层进行堆积。其后,通过从蒸镀装置提取上述晶圆,并实施剥离处理,从而形成了图案化的第一导电侧接触电极301。在该剥离处理后,为了实施第一导电侧接触电极301的合金化、欧姆电极化,而以850℃实施了3分钟的热处理。
接下来,实施了第一导电侧焊盘电极302(n侧焊盘电极)的形成。与第一导电侧接触电极301的形成的情况同样地,在利用光刻形成了第一导电侧焊盘电极302形成用的蚀刻图案之后,将晶圆导入蒸镀装置内,对由Ti/Au多层膜构成的第一导电侧焊盘电极层进行堆积。其后,通过从蒸镀装置提取晶圆,并实施剥离处理,从而形成了图案化的第一导电侧焊盘电极302。
在形成有由第一导电侧接触电极301以及第一导电侧焊盘电极302构成的第一导电侧电极(n型电极)的晶圆中,接下来,形成由SiO2等绝缘体构成的分割保护膜和/或电流阻止层等。
接下来,将形成有保护膜和/或电流阻止层等的晶圆分割为1mm×1mm尺寸的多个芯片,从而实施半导体芯片的形成。在本实施例中,芯片的分割中,使用了切割装置,但是,使用激光刻图装置、刻图装置等也能够实施芯片化。
在通过芯片分割所获得的深紫外LED芯片中,在将第二导电侧(p侧)的导电性支承基板205经由由热传导率较高的多结晶的AlN构成的副安装件而固定在Al涂层的管座上、或者安装在由Al构成的表面安装用基体上之后,使用Al线对第一导电侧焊盘电极302(n侧焊盘电极)进行电连接。最后,通过石英玻璃进行密封,从而获得深紫外LED元件。
另外,在本实施例中,在深紫外LED元件中,作为支承基板使用由Al涂层的管座或者Al构成的表面安装用基体,作为布线使用Al线,作为密封材料使用石英玻璃,但是,除此以外,也可以分别使用由对深紫外光充分进行反射的金属构成的支承基板,作为布线以及密封材料也可以使用使深紫外光充分透过且相对于深紫外光劣化较少的树脂等。
在本实施例的氮化铝系半导体深紫外发光元件中,在图14以及图15中示出了,将接合条件设为压力5个大气压且温度225℃时的多孔质金属膜的剖视图。从图15来看,多孔质金属膜的空孔面积率为63%,通过使该值乘以3/2从而计算出空孔率为50%。此外,在根据通过积分球测量到的光输出而进行计算时,发光效率为12%且较高。此外,在对全部芯片特性进行检查并计算出满足元件额定值的比例时,成品率为95%且较高。在将接合条件设为压力75个大气压且温度225℃时,多孔质金属膜的空孔率为10%,发光效率为12%且较高,成品率为95%且较高。据此,可知多孔质金属膜的空孔率为10%以上50%以下是适当的。此外,在通过分光度计进行测量时,上述任意氮化铝系半导体深紫外发光元件的发光峰值波长为250nm。将结果归纳在表1中。
在本实施例的氮化铝系半导体深紫外发光元件中,由于通过空孔率为10%以上50%以下的大孔结构的多孔质金属膜使支承基板与氮化铝系半导体层结构体接合,因此,因支承基板、多孔质金属膜、氮化铝系半导体层结构体以及基底基板的各自的热膨胀系数的不同而产生的应力,通过被大孔结构的多孔质金属部分吸收,从而能够抑制氮化铝系半导体层结构体自支承基板的剥离、氮化铝系半导体层结构体内的裂纹产生、多孔质金属膜中的裂纹的产生,从而氮化铝系半导体深紫外发光元件的成品率得到提高。
此外,由于大孔结构的多孔质金属膜具有高温抗性,因此,能够实施500℃以上的条件下的第一导电侧接触电极(n侧接触电极)的欧姆化热处理,因此,能够形成具有良好的欧姆特性的第一导电侧接触电极。因此,能够提供发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
此外,由于能够形成具有良好的欧姆特性的n侧接触电极,因此,确认到了元件的工作电压的下降和发光效率的提高。
(比较例1)
本比较例为,在实施例1的基础上,将晶圆接合条件设为压力1个大气压且温度200℃~350℃的情况。另外,在该晶圆接合条件的情况下,多孔质金属膜的空孔率为50%且更高。如在实施例1中所记载那样,在上述条件下,也能够实施晶圆的接合。
另外,在图16中示出了将晶圆接合条件设为压力1个大气压且温度250℃时的多孔质金属膜的剖视图。从图16来看,多孔质金属膜的空孔面积率为71%,通过使该值乘以3/2从而计算出空孔率为60%。
在本比较例中,对于将接合条件设为压力1个大气压且温度250℃并通过空孔率60%的多孔质金属膜进行接合的晶圆,通过与实施例1同样的方法,实施至基底基板的去除、第一导电侧电极(n侧电极)的形成、芯片化、以及固定。对于本比较例的氮化铝系半导体深紫外发光元件,多孔质金属膜的空孔率为60%,发光峰值波长为250nm,发光效率为5%且较低,成品率为60%且显着较低。将结果归纳在表1中。作为其原因,在900℃下的第一导电侧电极(n侧电极)欧姆化热处理的前后,大孔结构的多孔质金属膜的交联部无法耐受由热处理产生的应力变化而被破坏,因此,考虑到了是导电性显下降的原因。
(比较例2)
本比较例为,在实施例1的基础上,将晶圆接合条件设为压力80气压以上100个大气压以下且温度200℃~350℃的情况。另外,在该晶圆接合条件的情况下,多孔质金属膜的空孔率为10%且更低。如实施例1中所记载那样,在上述条件下,也能够实施晶圆的接合。
另外,在图17中示出了将晶圆接合条件设为压力100个大气压且温度350℃时的多孔质金属膜的剖视图。从图17来看,多孔质金属膜的空孔面积率为14%,通过使该值乘以3/2从而计算出空孔率为5%。
在本比较例中,对于将接合条件设为压力100个大气压且温度350℃并通过空孔率5%的多孔质金属膜进行接合的晶圆,通过与实施例1同样的方法,尝试基底基板的去除、第一导电侧电极(n侧电极)的形成、芯片化、以及固定。然而,在基底基板的去除之时、和/或在900℃下的第二导电侧电极(p侧电极)的欧姆化热处理之后,经常发生作为氮化铝系半导体层结构体自支承基板的硅基板的剥离。对于本比较例的氮化铝系半导体深紫外发光元件,多孔质金属膜的空孔率为5%,发光峰值波长为250nm,发光效率为4%且较低,成品率为70%且显着较低。将结果归纳在表1中。作为其原因,考虑到了因支承基板、多孔质金属膜、氮化铝系半导体层结构体、以及基底基板等热膨胀系数之差而产生的应力变化的影响。即,考虑到了在基底基板的去除后,由于应力得到释放而使银膜欲进行收缩,因此,产生剥离。
另一方面,如实施例1所示,考虑到了在多孔质金属膜为空孔率10%以上50%以下的大孔结构的情况下,上述应力被空孔部吸收,氮化铝系半导体层结构体的剥离得到抑制。对于900℃下的第二导电侧电极(p侧电极)的欧姆化热处理后的氮化铝系半导体层结构体自支承基板的剥离,也考虑到了同样的原因,还考虑到了在更高的900℃下的热处理中,由于多孔质金属膜中所蓄积的应力,因此引起半导体晶圆自硅基板的剥离。
(实施例2)
参照图8,本实施例为,在实施例1的基础上,未完全去除作为基底基板的蓝宝石基板,而仅剥离了蓝宝石基板的一部分的情况的实施例。相对于波长300nm~220nm的深紫外光,AlN以及GaN的折射率为超过2的值,与蓝宝石的折射率大约1.6相比较,上述的折射率较大。因此,存在有与完全去除作为基底基板的蓝宝石基板而从作为第一导电型接触层的n型Al0.65Ga0.35N层提取光的情况相比,穿过基底基板而提取光在光提取效率这一点上是有利的情况。对于光提取效率而言,除了组装工序中的、发光元件芯片的结构以外,在模制件树脂等的形状、折射率的影响中也会发生变化,因此,为了成为最佳光提取效率而需要实施元件设计。
与实施例1同样地,参照图3,将作为基底基板101的蓝宝石基板导入MOCVD装置而获得氮化铝系半导体晶圆401。而且,与实施例1同样地,实施至用于第二导电型的层(p型层)的活性化的热处理、第二导电侧电极(p侧电极)的形成、形成有第二导电侧接触电极201(p型接触电极)的氮化铝系半导体晶圆401与导电性支承基板205夹着多孔质金属膜204的接合。接合条件在实施例1中被设为,作为获得空孔率25%的多孔质金属膜的实施例1的标准接合条件的、压力50个大气压且温度300℃。另外,接合条件也可以在获得空孔率为10%以上50%以下的多孔质金属膜的压力5个大气压以上75个大气压以下且温度200℃以上350℃以下的范围内。
在上述晶圆的接合后,与实施例1同样地,将波长193nm的激光从基底基板101侧向氮化铝系半导体晶圆401内照射,从而实施蓝宝石基板的剥离。但是,在本实施例中,激光的照射仅在欲实施基底基板的去除的部分。在图9中示出了激光照射后的概要剖视图。与实施例1的情况同样地,如图9所示,由于因通过激光照射而分解的缓冲层102产生的残留层402形成在激光照射部,因此,实施了剥离面的洁净化。接下来,与实施例1同样地,相对于该洁净化的基底基板剥离面,实施图案化的、第一导电侧接触电极301(n侧接触电极)以及第一导电侧焊盘电极302(n侧焊盘电极)的形成。
另外,在上述的第一导电侧电极(n型电极)的形成后,在利用电子束描绘装置或者纳米压印装置等,在作为基底基板101的蓝宝石基板的表面形成用于形成纹理结构的电子束蚀刻图案、或者利用树脂模制件在作为基底基板101的蓝宝石基板的表面形成用于形成纹理结构的树脂图案之后,能够通过干蚀刻来形成纹理结构。与实施方式1同样地,将纹理结构的一个示例示出在图6的概要立体图中。虽然不需要必须形成这样的纹理结构,但是,通过纹理结构的形成,能够提高从基底基板的光提取效率。此外,除了纹理结构以外,为了提高光提取效率,也可以在成长基板的表面上形成蛾眼结构等其他的低反射率结构。
在上述的光提取结构的形成后,与实施方式1同样地,在上述晶圆上根据需要,形成由SiO2等绝缘体构成的分割保护膜、电流阻止层等之后,晶圆通过切割而被分割为适当的尺寸(本实施方式中为1mm×1mm)的多个芯片,并通过管座或者SMD(表面贴装器件)而被固定,在第一导电侧焊盘电极(n侧焊盘电极)等上实施布线,并且通过紫外线透过树脂等进行密封从而形成紫外LED元件。
在本实施例中,不会产生因氮化铝系半导体层结构体自支承基板的剥离、氮化铝系半导体层结构体内的裂纹的产生、以及多孔质金属膜中的裂纹的产生等的工艺成品率的下降。此外,由于能够形成具有良好的欧姆特性的、n侧接触电极,因此,确认到了元件的工作电压的下降和发光效率的提高。对于本实施例的氮化铝系半导体深紫外发光元件,多孔质金属膜的空孔率为15%,发光峰值波长为250nm,发光效率为11%且较高,成品率为96%且较高。将结果归纳在表1中。
(实施例3)
参照图10,本实施例为,在实施例1的基础上,形成了作为端面放出型的发光器件的半导体激光和/或超发光二极管等的情况的实施例。
参照图3,将作为基底基板101的蓝宝石基板导入MOCVD装置,并在蓝宝石基板的一个主面上依次层压由厚度300nm的AlN层构成的缓冲层102、由厚度3μm的n型Al0.65Ga0.35N层构成的第一导电型接触层103、第一导电型层、由厚度3nm的Al0.80Ga0.20N阻隔层/厚度2nm的Al0.26Ga0.74N阱层的6周期的多重量子阱结构构成的发光层104、由厚度15nm的p型Al0.85Ga0.15N阻挡层构成的第二导电型阻挡层105、第二导电型层106、以及由厚度50nm的p型Al0.25Ga0.75N接触层构成的第二导电型接触层107,而形成氮化铝系半导体层结构体403,从而获得氮化铝系半导体晶圆401。
参照图10,在本实施例中,为了制作端面出射的发光器件,而需要将发光层104所发出的光利用折射率的不同而限制在层结构中的结构。因此,第一导电型层108(n型层)以及第二导电型层106(p型层)需要是,与发光层104和产生适当的折射率差的发光层中的阱层相比,分别具有组合较高的Al组合的第一导电型(n型)以及第二导电型(p型)的包层。此外,也可以是插入作为光导波层的光引导层的多层结构。因此,在本实施例中,第一导电型层108被设为从靠近发光层104的一侧起厚度75nm的n型Al0.68Ga0.32N引导层以及厚度750nm的n型Al0.78Ga0.22N包层的两层结构,第二导电型层106被设为从靠近发光层104的一侧起p型Al0.68Ga0.32N引导层以及p型Al0.78Ga0.22N包层的两层结构。此外,发光层的阱层被设为Al0.26Ga0.74N。
在氮化铝系半导体层结构体403的形成后,与实施例1同样地,实施了用于第二导电型的层(p型层)的活性化的热处理。
接下来,实施第二导电侧电极(p侧电极)的形成。在本实施例中,由于制造利用了受激发射的端面发光型的发光元件,因此,容易获得作为受激发射的条件的载体的反转分布,因此,形成了限制电流路径的电极条状结构的p侧电极。具体而言,如图10所示,仅在流通有电流的发光区域使用光刻技术,从而形成了由作为第一层的厚度2.5nm的Ni层以及作为第二层的厚度2.5nm的Au层构成的图案化的厚度5.0nm的第二导电侧接触电极201(p侧接触电极)。对于除此以外的部分,形成了绝缘层206,并形成了阻止向半导体区域的电流注入的电流阻止层。在本实施例中,绝缘层206被设为厚度250nm的SiO两层。
在上述电极条状结构的形成后,与实施例1同样地,实施了向导电性支承基板205的氮化铝系半导体晶圆的接合、支承基板的去除、第一导电侧电极(n侧电极)的形成。另外,本实施例的发光元件为端面发光型,因此,不需要形成光提取结构。
(固定)
在第一导电侧电极(作为第一导电侧接触电极301的n侧接触电极以及作为第一导电侧焊盘电极302的n侧焊盘电极)的形成后,上述晶圆根据需要,在形成由SiO2等绝缘体构成的分割保护膜、电流阻止层等之后,通过劈开来实施出射面的形成,从而晶圆被分割为许多横杠状。在本实施例中,晶圆被分割为宽度800μm的横杠状。
接下来,在发光元件为半导体激光的情况下,对劈开面的一侧实施高反射涂层而成为光反射面,另一侧的面根据用途实施低反射涂层、保护涂层等,而成为激光出射面。在发光元件为超发光二极管的情况下,为了不引起激光振荡,而在端面实施低反射涂层、形成凹凸形状、实施斜面化处理等,从而形成了端面反射的降低化结构。
在实施了上述的端面处理之后,呈横杠状地分割为适当的尺寸(本实施例中为0.8mm×0.4mm)的多个芯片。通过芯片分割而获得的端面出射型发光元件芯片被固定在管座上,并在第一导电侧焊盘电极(n侧焊盘电极)等上实施布线,并且通过紫外线透过树脂等进行密封,从而成为端面出射型紫外发光元件。
在本实施例中,不会产生因氮化铝系半导体层结构体的剥离、氮化铝系半导体层结构体内中的裂纹的产生、以及多孔质金属膜中的裂纹的产生等的成品率的下降。此外,由于能够形成具有良好的欧姆特性的第一导电侧接触层(n侧接触电极),因此,确认到了元件的工作电压的下降和发光效率的提高。对于本实施例的氮化铝系半导体深紫外发光元件,多孔质金属膜的空孔率为17%,发光峰值波长为265nm,发光效率为14%且较高,成品率为96%且较高。将结果归纳在表1中。
(实施例4)
参照图11,本实施例为,与实施例3同样地,形成了作为端面放出型的发光器件的半导体激光、超发光二极管等的情况的实施例。与实施例3的电极条状结构相比,本实施例为更易于产生受激发射的、形成有脊状条结构的端面放出型的发光器件的实施例。
与实施例3同样地,通过将作为基底基板101的蓝宝石基板插入MOCVD装置,而形成氮化铝系半导体层结构体403,从而获得氮化铝系半导体晶圆401。接下来,与实施例3同样地,实施了用于第二导电型的层(p型层)的活性化的热处理。
接下来,使用光刻技术和干蚀刻技术,如图11所示,直至第二导电型层106(p型层)的一部分为止(即,在一部分区域内直至第二导电型接触层107的全部和第二导电型层106的中途)去除第二导电型接触层107(p型接触层)的一部分区域,从而实施脊状条结构的形成。
接下来,实施了第二导电侧电极(p型电极)的形成。如图11所示,在未实施干蚀刻的部分实施了第二导电侧接触电极201(p侧接触电极)的形成。此外,对于通过干蚀刻而被去除的部分,为了阻止电流,而实施了绝缘层206的形成。在本实施例中,脊宽度被设为4μm,干蚀刻为700nm的深度。作为电流元件层的绝缘层206被设为厚度500nm的SiO两层。
在上述的脊状条结构的形成后,与实施例3同样地,依次实施向导电性支承基板205的氮化铝系半导体晶圆401的接合、基底基板101自氮化铝系半导体晶圆401的去除、以及第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302)的形成。另外,本实施例的元件为端面发光型,因此,不需要形成光提取结构。
接下来,与实施例3同样地,在于上述晶圆上根据需要形成了由SiO2等绝缘体构成的分割保护膜和/或电流阻止层等之后,通过劈开来实施出射面的形成,从而晶圆被分割为许多横杠状。在本实施例中,晶圆被分割为宽度800μm的横杠状。
接下来,在发光元件为半导体激光的情况下,对劈开面的一侧实施高反射涂层而成为光反射面,另一侧的面根据用途来实施低反射涂层、保护涂层等,而成为激光出射面。在发光元件为超发光二极管的情况下,为了不引起激光振荡,而在端面实施低反射涂层、形成凹凸形状、实施斜面化处理等,从而形成端面反射的降低化结构。
在实施了上述的端面处理之后,呈横杠状地被分割为适当的尺寸(本实施例中为0.8mm×0.4mm)的多个芯片。通过芯片分割而获得的端面出射型发光元件芯片被固定在管座上,并在第一导电侧焊盘电极302(n侧焊盘电极)等上实施布线,并且通过紫外线透过树脂等进行密封,从而成为端面出射型紫外发光元件。
在本实施例中,不会产生因氮化铝系半导体层结构体的剥离、氮化铝系半导体层结构体内的裂纹的产生、以及多孔质金属膜中的裂纹的产生等的成品率的下降。此外,由于能够形成具有良好的欧姆特性的、第一导电侧接触层(n侧接触电极),因此,确认到了元件的工作电压的下降和发光效率的提高。对于本实施例的氮化铝系半导体深紫外发光元件,多孔质金属膜的空孔率为15%,发光峰值波长为260nm,发光效率为10%且较高,成品率为96%且较高。将结果归纳在表1中。
(实施例5)
参照图12,本实施例为,与实施例3同样地,形成了作为条状电极结构的端面放出型的发光器件的半导体激光、超发光二极管等的情况的实施例。不同于实施例3,在本实施例中,基底基板仅一部分区域被剥离。
与实施例3同样地,通过将作为基底基板101的蓝宝石基板插入MOCVD装置,而形成氮化铝系半导体层结构体403,从而获得氮化铝系半导体晶圆401。接下来,与实施例3同样地,在实施了用于第二导电型的层(p型层)的活性化的热处理之后,形成了电极条状结构。
在电极条状结构的形成后,与实施例3同样地,依次实施向导电性支承基板205的氮化铝系半导体晶圆401的接合、基底基板101(蓝宝石基板)自氮化铝系半导体晶圆401的去除、以及第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302)的形成。但是,在本实施例中,未去除蓝宝石基板的整个面,而仅去除了一部分。即,激光的照射仅在欲实施蓝宝石基板的去除的部分。对于要去除的蓝宝石基板,如图12所示,优选为电极条状正上方部分。另外,本实施例的元件为端面发光型,因此,不需要形成光提取结构。
接下来,与实施例3同样地,在于上述晶圆根据需要,形成了由SiO2等绝缘体构成的分割保护膜和/或电流阻止层等之后,通过劈开来实施出射面的形成,从而晶圆被分割为许多横杠状。在本实施例中,晶圆被分割为宽度800μm的横杠状。
接下来,在发光元件为半导体激光的情况下,对劈开面的一侧实施高反射涂层而成为光反射面,另一侧的面根据用途,实施低反射涂层、保护涂层等,而成为激光出射面。在发光元件为超发光二极管的情况下,为了不引起激光振荡,而在端面实施低反射涂层、形成凹凸形状、实施斜面化处理等,从而形成了端面反射的降低化结构。
在实施了上述的端面处理之后,呈横杠状地被分割为适当的尺寸(本实施例中为0.8mm×0.4mm)的多个芯片。通过芯片分割而获得的端面出射型发光元件芯片被固定在管座上,并在第一导电侧焊盘电极302(n侧焊盘电极)等上实施布线,并且通过紫外线透过树脂等进行密封,从而成为端面出射型紫外发光元件。
在本实施例中,不会产生因氮化铝系半导体层结构体的剥离、氮化铝系半导体层结构体内的裂纹的产生、以及多孔质金属膜中的裂纹的产生等的成品率的下降。此外,由于能够形成具有良好的欧姆特性的、n侧接触电极,因此,确认到了元件的工作电压的下降的发光效率的提高。对于本实施例的氮化铝系半导体深紫外发光元件,多孔质金属膜的空孔率为16%,发光峰值波长为260nm,发光效率为13%且较高,成品率为96%且较高。将结果归纳在表1中。
(实施例6)
参照图13,本实施例为,与实施例4同样地,形成了作为脊状条结构的端面放出型的发光器件的半导体激光、超发光二极管等的情况的实施例。不同于实施例4,在本实施例中,基底基板仅一部分区域被剥离。
与实施例4同样地,通过将作为基底基板101的蓝宝石基板插入MOCVD装置,而形成氮化铝系半导体层结构体403,从而获得氮化铝系半导体晶圆401。接下来,与实施例4同样地,在实施了用于第二导电型的层(p型层)的活性化的热处理之后,形成了脊状条结构。
在脊状条结构的形成后,与实施例4同样地,依次实施向导电性支承基板205的氮化铝系半导体晶圆401的接合、基底基板101(蓝宝石基板)自氮化铝系半导体晶圆401的去除、以及第一导电侧电极(第一导电侧接触电极301以及第一导电侧焊盘电极302)的形成。但是,在本实施例中,未去除蓝宝石基板的整个面,而仅去除了一部分。即,激光的照射在欲实施蓝宝石基板的去除的部分。对于要去除的蓝宝石基板,如图13所示,优选为电极条状正上方部分。另外,本实施例的元件为端面发光型,因此,不需要形成光提取结构。
接下来,与实施例4同样地,在于上述晶圆上根据需要,形成了由SiO2等绝缘体构成的分割保护膜和/或电流阻止层等之后,通过劈开来实施出射面的形成,从而晶圆被分割为许多横杠状。在本实施例中,晶圆被分割为宽度800μm的横杠状。
接下来,在发光元件为半导体激光的情况下,在劈开面的一侧实施高反射涂层而成为光反射面,另一侧的面根据用途,实施低反射涂层、保护涂层等,而成为激光出射面。在发光元件为超发光二极管的情况下,为了不引起激光振荡,而在端面实施低反射涂层、形成凹凸形状、实施斜面化处理等,从而形成了端面反射的降低化结构。
在实施了上述的端面处理之后,呈横杠状地被分割为适当的尺寸(本实施例中为0.8mm×0.4mm)的多个芯片。通过芯片分割而获得的端面出射型发光元件芯片被固定在管座上,并在第一导电侧焊盘电极302(n侧焊盘电极)等上实施布线,并且通过紫外线透过树脂等进行密封,从而成为端面出射型深紫外发光元件。
在本实施例中,不会产生因氮化铝系半导体层结构体的剥离、氮化铝系半导体层结构体内的裂纹的产生、以及多孔质金属膜中的裂纹的产生等的成品率的下降。此外,由于能够形成具有良好的欧姆特性的、n侧接触电极,因此,确认到了元件的工作电压的下降和发光效率的提高。对于本实施例的氮化铝系半导体深紫外发光元件,多孔质金属膜的空孔率为15%,发光峰值波长为265nm,发光效率为14%且较高,成品率为96%且较高。将结果归纳在表1中。
【表1】
Figure BDA0001412046200000411
参照上述表1,一种氮化铝系半导体深紫外发光元件,其包括导电性支承基板、具有导电性的大孔结构的多孔质金属膜、及包括发光层的氮化铝系半导体层结构体,且导电性支承基板与氮化铝系半导体层结构体夹着多孔质金属膜以电连接的方式接合,发光峰值波长为220nm以上300nm以下,其中,通过将多孔质金属膜的空孔率设为10%以上50%以下,从而获得发光效率较高且成品率较高的纵型结构的氮化铝系半导体深紫外发光元件。
虽然对本发明的实施方式进行了说明,但是,应该认为此次公开的实施方式通过所有的点进行了例示且并不限制于这些点。本发明的范围通过权利要求书来表示,并且意于包括与权利要求书均等的意味以及范围内的所有的变更。

Claims (5)

1.一种氮化铝系半导体深紫外发光元件,其特征在于,包括:
导电性支承基板、空孔率为10%以上50%以下且具有导电性的大孔结构的多孔质金属膜、包括发光层的氮化铝系半导体层结构体、第一导电侧接触电极及第二导电侧接触电极,
所述氮化铝系半导体层结构体,依次包括第一导电型接触层、第一导电型层、所述发光层、第二导电型层、第二导电型接触层,
所述导电性支承基板与所述氮化铝系半导体层结构体的所述第二导电型接触层夹着所述多孔质金属膜及所述第二导电侧接触电极以电连接的方式接合,
所述氮化铝系半导体深紫外发光元件具有限制第二导电侧即p侧的电流路径的结构,
所述结构是电极条状结构及脊状条结构之一,
在所述电极条状结构中,所述第二导电型接触层的仅一部分形成所述第二导电侧接触电极,未形成有所述第二导电侧接触电极的部分形成有与所述第二导电侧接触电极邻接的绝缘层,
在所述脊状条结构中,替代所述第二导电型接触层的一部分区域形成有与所述第二导电侧接触电极邻接的绝缘层,
所述第一导电侧接触电极的垂直下方具有只形成有所述第二导电侧接触电极的部分,
发光峰值波长为220nm以上300nm以下,
所述氮化铝系半导体深紫外发光元件是从端面发光的受激发射型的半导体激光二极管以及超发光二极管中的一个。
2.如权利要求1所述的氮化铝系半导体深紫外发光元件,其特征在于,
所述第一导电型层及所述第二导电型层分别为具有Al组合不同的AlGaN层的多层结构。
3.如权利要求1或2所述的氮化铝系半导体深紫外发光元件,其特征在于,
所述第一导电型接触层为第一导电型AlxGa1-xN(0<x≤1)接触层,所述第二导电型接触层为第二导电型AlyGa1-yN(0.25≤y≤1)接触层。
4.如权利要求1或2所述的氮化铝系半导体深紫外发光元件,其特征在于,
所述多孔质金属膜为包含银的金属膜。
5.如权利要求1或2所述的氮化铝系半导体深紫外发光元件,其特征在于,
所述导电性支承基板为硅基板。
CN201710851492.9A 2016-09-21 2017-09-19 氮化铝系半导体深紫外发光元件 Expired - Fee Related CN107863426B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-184622 2016-09-21
JP2016184622A JP6431013B2 (ja) 2016-09-21 2016-09-21 窒化アルミニウム系半導体深紫外発光素子

Publications (2)

Publication Number Publication Date
CN107863426A CN107863426A (zh) 2018-03-30
CN107863426B true CN107863426B (zh) 2020-12-08

Family

ID=61620641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710851492.9A Expired - Fee Related CN107863426B (zh) 2016-09-21 2017-09-19 氮化铝系半导体深紫外发光元件

Country Status (3)

Country Link
US (1) US10622530B2 (zh)
JP (1) JP6431013B2 (zh)
CN (1) CN107863426B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102226632B1 (ko) * 2019-06-11 2021-03-11 단국대학교 산학협력단 나노 다공성 기재를 이용하여 외부 방출 효율이 증가된 양자점 발광 소자 및 이의 제조 방법
JP6698925B1 (ja) 2019-08-06 2020-05-27 日機装株式会社 窒化物半導体発光素子
CN110459655A (zh) * 2019-08-21 2019-11-15 苏州紫灿科技有限公司 一种量子垒掺杂的深紫外led及制备方法
JP7141425B2 (ja) * 2020-04-28 2022-09-22 日機装株式会社 窒化物半導体発光素子
CN111599906B (zh) * 2020-05-12 2021-05-18 武汉大学 一种垂直结构深紫外led芯片的制造方法
TWI735263B (zh) * 2020-06-19 2021-08-01 台灣愛司帝科技股份有限公司 紅光晶片承載結構的製作方法
US20230317873A1 (en) * 2020-10-10 2023-10-05 Enkris Semiconductor, Inc. Substrate stripping method for semiconductor structure
KR20220097772A (ko) * 2020-12-31 2022-07-08 삼성디스플레이 주식회사 표시 패널, 이를 구비한 표시 장치, 및 표시 패널의 제조방법
WO2023013374A1 (ja) * 2021-08-03 2023-02-09 国立研究開発法人理化学研究所 紫外発光ダイオードおよびそれを備える電気機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176121A1 (en) * 2008-01-08 2009-07-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electroconductive diffuse reflective film and method of producing the same
CN101875158A (zh) * 2009-04-28 2010-11-03 日立化成工业株式会社 导电性接合材料、采用它的接合方法、以及由其接合的半导体装置
CN102208522A (zh) * 2011-06-20 2011-10-05 厦门市三安光电科技有限公司 一种深紫外半导体发光器件及其制造方法
CN105103310A (zh) * 2013-04-05 2015-11-25 首尔伟傲世有限公司 与生长衬底分离的紫外线发光装置及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4457826B2 (ja) * 2004-09-22 2010-04-28 三菱化学株式会社 窒化物半導体を用いた発光ダイオード
JP4991173B2 (ja) * 2005-04-27 2012-08-01 京セラ株式会社 発光素子搭載用基体ならびにこれを用いた発光装置
US8968608B2 (en) * 2008-01-17 2015-03-03 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
JP5146817B2 (ja) 2008-03-24 2013-02-20 スタンレー電気株式会社 半導体発光素子の製造方法
KR101182920B1 (ko) * 2010-07-05 2012-09-13 엘지이노텍 주식회사 발광 소자 및 그 제조방법
US8860059B2 (en) * 2011-06-20 2014-10-14 Xiamen Sanan Optoelectronics Technology Co., Ltd. Light emitting devices, systems, and methods of manufacturing
JP6048001B2 (ja) * 2012-07-13 2016-12-21 日亜化学工業株式会社 発光装置
JP5792694B2 (ja) 2012-08-14 2015-10-14 株式会社東芝 半導体発光素子
JP2015032798A (ja) * 2013-08-06 2015-02-16 ウシオ電機株式会社 窒化物半導体発光素子の製造方法
JP2015012186A (ja) * 2013-06-28 2015-01-19 富士フイルム株式会社 配線基板および電子デバイス
JP6440392B2 (ja) * 2014-07-10 2018-12-19 シャープ株式会社 半導体発光素子
JP6210562B2 (ja) * 2014-09-30 2017-10-11 ニホンハンダ株式会社 発光ダイオード装置の製造方法
US10847691B2 (en) * 2014-12-11 2020-11-24 Luminus, Inc. LED flip chip structures with extended contact pads formed by sintering silver
JP5877487B1 (ja) * 2014-12-26 2016-03-08 パナソニックIpマネジメント株式会社 発光装置
JP6730082B2 (ja) * 2016-05-02 2020-07-29 日機装株式会社 深紫外発光素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176121A1 (en) * 2008-01-08 2009-07-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electroconductive diffuse reflective film and method of producing the same
CN101875158A (zh) * 2009-04-28 2010-11-03 日立化成工业株式会社 导电性接合材料、采用它的接合方法、以及由其接合的半导体装置
CN102208522A (zh) * 2011-06-20 2011-10-05 厦门市三安光电科技有限公司 一种深紫外半导体发光器件及其制造方法
CN105103310A (zh) * 2013-04-05 2015-11-25 首尔伟傲世有限公司 与生长衬底分离的紫外线发光装置及其制造方法

Also Published As

Publication number Publication date
US10622530B2 (en) 2020-04-14
CN107863426A (zh) 2018-03-30
JP2018049949A (ja) 2018-03-29
JP6431013B2 (ja) 2018-11-28
US20180083173A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
CN107863426B (zh) 氮化铝系半导体深紫外发光元件
CN103762286B (zh) 高光萃取效率发光器件
KR101154494B1 (ko) 질소면의 표면상의 구조물 제조를 통한 고효율 3족 질화물계 발광다이오드
KR101944893B1 (ko) 양극 알루미늄 산화물 층을 포함하는 헤테로구조체
US9224917B2 (en) Light emitting diode having photonic crystal structure and method of fabricating the same
JP5021213B2 (ja) 発光ダイオード及びその製造方法
JP4225510B2 (ja) 化合物半導体発光ダイオードおよびその製造方法
WO2018035322A1 (en) Contact architectures for tunnel junction devices
JP2004281863A (ja) 窒化物半導体素子及びその製造方法
JP2013544436A (ja) Iii族窒化物発光デバイス
JP2009076896A (ja) 半導体発光素子
KR102116152B1 (ko) 실리콘 기판 상에서 성장하는 발광 장치
TW201817034A (zh) 用於發光裝置之反射性結構
JP5164641B2 (ja) 電流狭窄型半導体発光素子の製造方法
JP2009238803A (ja) GaN系半導体基板、その製造方法および半導体素子
WO2007021549A2 (en) Ligh emitting diodes with quantum dots
TW201417333A (zh) 包含定型基板的發光裝置
JP4918245B2 (ja) 発光ダイオード及びその製造方法
KR20150015760A (ko) 발광 소자 제조용 템플릿 및 자외선 발광소자 제조 방법
WO2019189514A1 (ja) 半導体光デバイスの製造方法及び半導体光デバイスの中間体
KR20150089548A (ko) 다공성 GaN층을 포함하는 수직형 발광다이오드 및 이의 제조방법
US11990562B1 (en) Ultraviolet light-emitting devices having enhanced light output
JP4935591B2 (ja) Iii族窒化物半導体光素子を作製する方法、およびフォトルミネッセンススペクトルを測定する方法
JP2013207108A (ja) 発光ダイオード素子およびその製造方法
KR20080050168A (ko) 반도체 단결정 및 반도체 발광소자 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201208

Termination date: 20210919

CF01 Termination of patent right due to non-payment of annual fee