CN107658310A - 降低晶片翘曲的共源极阵列形成方法 - Google Patents

降低晶片翘曲的共源极阵列形成方法 Download PDF

Info

Publication number
CN107658310A
CN107658310A CN201710775887.5A CN201710775887A CN107658310A CN 107658310 A CN107658310 A CN 107658310A CN 201710775887 A CN201710775887 A CN 201710775887A CN 107658310 A CN107658310 A CN 107658310A
Authority
CN
China
Prior art keywords
barrier layer
metal gasket
filled
vapor deposition
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710775887.5A
Other languages
English (en)
Other versions
CN107658310B (zh
Inventor
肖莉红
陶谦
胡禺石
吕震宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Memory Technologies Co Ltd
Original Assignee
Yangtze Memory Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Memory Technologies Co Ltd filed Critical Yangtze Memory Technologies Co Ltd
Priority to CN201710775887.5A priority Critical patent/CN107658310B/zh
Publication of CN107658310A publication Critical patent/CN107658310A/zh
Application granted granted Critical
Publication of CN107658310B publication Critical patent/CN107658310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种降低晶片翘曲的共源极阵列形成方法,属于半导体技术领域。所述包括:提供含有待填充区域的主体结构;分别形成阻挡层和金属衬垫,阻挡层覆盖主体结构的上表面及待填充区域的侧壁和底部,金属衬垫覆盖阻挡层;在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,并形成覆盖金属衬垫的掺杂多晶硅层;去除掺杂多晶硅层但未呈现主体结构的上表面后,进行高温退火处理形成硅化物;对硅化物进行补偿掺杂形成共源极阵列。本发明中,采用掺杂多晶硅进行填充形成共源极阵列,大大降低了工艺过程中造成的晶片翘曲、叠层错位等问题;同时通过形成阻挡层和金属衬垫、加之高温退火工艺处理,提升了共源极阵列的导电率。

Description

降低晶片翘曲的共源极阵列形成方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种降低晶片翘曲的共源极阵列形成方法。
背景技术
半导体存储器,对于大多人来说并不陌生,根据其性质分为易失性存储器和非易失性存储器。易失性存储器在缺少外加电源时会丢失存储的数据,其包括静态ARM、动态ARM、同步ARM等等;非易失性存储器,包括只读存储器(ROM)、电可编程ROM、相变RAM、闪存存储器等。
目前,闪存存储器是比较重要的非易失性存储器,其一个常用的架构就是NAND闪存架构。在NAND闪存架构中,两个或者多个存储单元以源极到漏极的方式被耦合在一起成串;其中,多个源极又构成共源极阵列(Array Common Source,简称ACS);现有的ACS通常是使用钨填充形成,在其形成过程中,由于受到严重的压力,造成了各种工艺问题,例如晶片翘曲滑动、光刻变形、叠层错位等等,最终导致了器件的性能下降。
发明内容
为解决现有技术的不足,本发明提供一种降低晶片翘曲的共源极阵列填充方法,包括:
提供含有待填充区域的主体结构;
分别形成阻挡层和金属衬垫,所述阻挡层覆盖所述主体结构的上表面及所述待填充区域的侧壁和底部,所述金属衬垫覆盖所述阻挡层;
在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,并形成覆盖所述金属衬垫的掺杂多晶硅层;
去除所述掺杂多晶硅层但未呈现所述主体结构的上表面后,进行高温退火处理形成硅化物;
对所述硅化物进行补偿掺杂形成共源极阵列。
可选地,形成阻挡层,具体为:通过化学气相沉积的方法沉积氮化钛形成阻挡层;
可选地,形成金属衬垫,具体为:通过化学气相沉积的方法沉积钨、或者镍、或者钴形成金属衬垫。
可选地,所述在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,具体为:
通过低压化学气相沉积的方法和等离子体增强化学气相沉积的方法在含有阻挡层和金属衬垫的待填充区域中沉积多晶硅;
采用离子注入的方式,在沉积的多晶硅中注入杂质形成掺杂多晶硅。
可选地,所述在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,具体为:
采用掺杂法在沉积多晶硅的前驱气体中掺杂杂质,并通过低压化学气相沉积的方法和等离子体增强化学气相沉积的方法在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅。
可选地,采用氩和/或氮稀释的硅烷和氢作为沉积多晶硅的前驱气体。
可选地,所述低压化学气相沉积的方法中,反应室的温度为400度~800度,反应室的压力为0.1托~1托;
可选地,所述等离子体增强化学气相沉积的方法中,反应室的温度为300度~600度。
可选地,所述掺杂多晶硅中掺杂的杂质为磷、或者硼、或者砷。
可选地,所述掺杂多晶硅中,掺杂的杂质浓度为1*1012/cm3~1*1016/cm3
可选地,采用化学机械研磨工艺去除所述掺杂多晶硅层但未呈现所述主体结构的上表面。
可选地,所述高温退火处理的温度为800度~1200度。
本发明的优点在于:
本发明中,采用掺杂多晶硅进行填充形成共源极阵列,大大降低了工艺过程中造成的晶片翘曲、叠层错位等问题;同时通过形成氮化钛阻挡层和金属衬垫、加之高温退火工艺处理,提升了共源极阵列的导电率。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
附图1和附图2为现有技术中形成共源极阵列的结构变化示意图;
附图3为本发明提供的一种降低晶片翘曲的共源极阵列形成方法流程图;
附图4为本发明提供的主体结构的示意图;
附图5和附图6为本发明提供的一种降低晶片翘曲的共源极阵列形成方法中结构变化示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为更清晰的说明本发明中的优点,现对现有技术中共源极阵列的形成方法进行进一步说明,通常地,如图1和图2所示,包括:步骤1、提供含有待填充区域的主体结构;步骤2、形成钛(Ti)阻挡层,钛阻挡层覆盖主体结构的上表面及待填充区域的侧壁和底部;步骤3、在含有钛阻挡层的待填充区域中沉积钨,并形成覆盖钛阻挡层的钨层;步骤4、采用化学机械研磨工艺去除钨层至呈现主体结构的上表面。
其中,步骤2中,还可以为形成氮化钛(TiN)阻挡层;上述步骤2至步骤4中,通常分别在X方向上造成晶片的翘曲程度大于300微米、Y方向上造成晶片的翘曲程度大于150微米。
本发明提供一种降低晶片翘曲的共源极阵列形成方法,如图3至图6所示,包括:
提供含有待填充区域的主体结构;
分别形成阻挡层和金属衬垫,阻挡层覆盖主体结构的上表面及待填充区域的侧壁和底部,金属衬垫覆盖阻挡层;
在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,并形成覆盖金属衬垫的掺杂多晶硅层;
去除掺杂多晶硅层但未呈现主体结构的上表面后,进行高温退火处理形成硅化物;
对硅化物进行补偿掺杂形成共源极阵列。
在本实施例中,主体结构,如图4所示,具体包括:衬底,在衬底上形成的叠层结构,在叠层结构上形成的介电层,形成于叠层结构和介电层间的多个沟道通孔,形成于衬底、叠层结构和介电层间的多个待填充区域。其中,叠层结构具体包括:多层交错堆叠的氧化物层(图中未标记)和氮化物层(图中未标记),且氮化物层形成于相邻的氧化物层之间;优选地,氧化物层为二氧化硅,氮化物层为氮化硅。
进一步地,在本实施例中,对于待填充区域的数量,在本发明中不做具体限定,具体依需求而定,附图仅用于示例;对各待填充区域进行填充后形成共源极阵列(ArrayCommon Source,简称ACS)。
根据本发明的实施方式,形成阻挡层,具体为:通过化学气相沉积的方法沉积氮化钛(TiN)形成阻挡层;
根据本发明的实施方式,形成金属衬垫,具体为:通过化学气相沉积的方法沉积钨(W)、或者镍(Ni)、或者钴(Co)等形成金属衬垫。
本发明中,在形成氮化钛阻挡层和金属衬垫的过程中,在X方向上造成晶片的翘曲程度要小于40微米、Y方向上造成晶片的翘曲程度要小于50微米;较现有技术的步骤2中造成的晶片翘曲程度大大减小。
根据本发明的实施方式,在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,具体为:
通过低压化学气相沉积的方法和等离子体增强化学气相沉积的方法在含有阻挡层和金属衬垫的待填充区域中沉积多晶硅;
采用离子注入的方式,在沉积的多晶硅中注入杂质形成掺杂多晶硅。
根据本发明的实施方式,在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,还可以为:
采用掺杂法在沉积多晶硅的前驱气体中掺杂杂质,并通过低压化学气相沉积的方法和等离子体增强化学气相沉积的方法在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅。
其中,上述低压化学气相沉积的方法中,反应室的温度优选为400度~800度,反应室的压力优选为0.1托~1托;等离子体增强化学气相沉积的方法中,反应室的温度优选为300度~600度。
进一步地,根据本发明的实施方式,采用氩(Ar)和/或氮(N2)稀释的硅烷(SiH4)和氢(H2)作为沉积多晶硅的前驱气体。
根据本发明的实施方式,掺杂多晶硅中掺杂的杂质为磷(P)、或者硼(B)、或者砷(As)。
根据本发明的实施方式,掺杂多晶硅中,掺杂的杂质浓度优选为1*1012/cm3~1*1016/cm3
本实施例中,在进行材料填充形成共源极阵列的过程中,采用掺杂多晶硅代替现有技术中的钨(即步骤3)进行填充,工艺工程中晶片的翘曲程度约等于0,即晶片近似保持平坦的状态而未发生翘曲。
根据本发明的实施方式,采用化学机械研磨工艺(Chemical MechanicalPolishing,简称CMP)去除掺杂多晶硅层但未呈现出主体结构的上表面。
在本发明中,采用该方式去除掺杂多晶硅层,较现有技术中去除钨层的方式(步骤4)而言,使得晶片的翘曲程度约等于0,即晶片近似保持平坦的状态而未发生翘曲。
根据本发明的实施方式,高温退火处理的温度为800度~1200度。
进一步地,在本实施例中,通过形成氮化钛阻挡层和金属衬垫,加之高温退火处理形成硅化物,大大提高了共源极阵列(ACS)的导电率,发明人在实际工艺中发现,聚硅的导电率比钨的导电率高10~100倍;其中,形成的硅化物,包括但不限于:WSi、NiSi、CoSi。
根据本发明的实施方式,对硅化物进行补偿掺杂,具体为:通过离子注入的方式,对硅化物进行补偿掺杂磷(P)、或者硼(B)、或者砷(As)。
本发明中,采用掺杂多晶硅进行填充形成共源极阵列,大大降低了工艺过程中造成的晶片翘曲、叠层错位等问题;同时通过形成氮化钛阻挡层和金属衬垫、加之高温退火工艺处理,提升了共源极阵列的导电率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种降低晶片翘曲的共源极阵列形成方法,其特征在于,包括:
提供含有待填充区域的主体结构;
分别形成阻挡层和金属衬垫,所述阻挡层覆盖所述主体结构的上表面及所述待填充区域的侧壁和底部,所述金属衬垫覆盖所述阻挡层;
在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,并形成覆盖所述金属衬垫的掺杂多晶硅层;
去除所述掺杂多晶硅层但未呈现所述主体结构的上表面后,进行高温退火处理形成硅化物;
对所述硅化物进行补偿掺杂形成共源极阵列。
2.根据权利要求1所述的方法,其特征在于,
形成阻挡层,具体为:通过化学气相沉积的方法沉积氮化钛形成阻挡层;
形成金属衬垫,具体为:通过化学气相沉积的方法沉积钨、或者镍、或者钴形成金属衬垫。
3.根据权利要求1所述的方法,其特征在于,所述在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,具体为:
通过低压化学气相沉积的方法和等离子体增强化学气相沉积的方法在含有阻挡层和金属衬垫的待填充区域中沉积多晶硅;
采用离子注入的方式,在沉积的多晶硅中注入杂质形成掺杂多晶硅。
4.根据权利要求1所述的方法,其特征在于,所述在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅,具体为:
采用掺杂法在沉积多晶硅的前驱气体中掺杂杂质,并通过低压化学气相沉积的方法和等离子体增强化学气相沉积的方法在含有阻挡层和金属衬垫的待填充区域中沉积掺杂多晶硅。
5.根据权利要求4所述的方法,其特征在于,采用氩和/或氮稀释的硅烷和氢作为沉积多晶硅的前驱气体。
6.根据权利要求3或4所述的方法,其特征在于,
所述低压化学气相沉积的方法中,反应室的温度为400度~800度,反应室的压力为0.1托~1托;
所述等离子体增强化学气相沉积的方法中,反应室的温度为300度~600度。
7.根据权利要求1所述的方法,其特征在于,所述掺杂多晶硅中掺杂的杂质为磷、或者硼、或者砷。
8.根据权利要求1所述的方法,其特征在于,所述掺杂多晶硅中,掺杂的杂质浓度为1*1012/cm3~1*1016/cm3
9.根据权利要求1所述的方法,其特征在于,采用化学机械研磨工艺去除所述掺杂多晶硅层但未呈现所述主体结构的上表面。
10.根据权利要求1所述的方法,其特征在于,所述高温退火处理的温度为800度~1200度。
CN201710775887.5A 2017-08-31 2017-08-31 降低晶片翘曲的共源极阵列形成方法 Active CN107658310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710775887.5A CN107658310B (zh) 2017-08-31 2017-08-31 降低晶片翘曲的共源极阵列形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710775887.5A CN107658310B (zh) 2017-08-31 2017-08-31 降低晶片翘曲的共源极阵列形成方法

Publications (2)

Publication Number Publication Date
CN107658310A true CN107658310A (zh) 2018-02-02
CN107658310B CN107658310B (zh) 2020-04-14

Family

ID=61128804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710775887.5A Active CN107658310B (zh) 2017-08-31 2017-08-31 降低晶片翘曲的共源极阵列形成方法

Country Status (1)

Country Link
CN (1) CN107658310B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119334A (zh) * 2018-08-24 2019-01-01 长江存储科技有限责任公司 半导体结构的表面修正方法以及3d存储器件的制造方法
CN109860037A (zh) * 2019-01-18 2019-06-07 长江存储科技有限责任公司 3d nand存储器的阵列共源极的形成方法
CN110071112A (zh) * 2019-03-29 2019-07-30 长江存储科技有限责任公司 3d存储器件及其制造方法
CN110620040A (zh) * 2019-09-12 2019-12-27 长江存储科技有限责任公司 一种用于提高生产中工艺稳定性的方法
CN110649032A (zh) * 2019-10-23 2020-01-03 长江存储科技有限责任公司 3d存储器件及其制造方法
CN110808253A (zh) * 2019-10-12 2020-02-18 长江存储科技有限责任公司 三维存储器结构及其制备方法
CN110876280A (zh) * 2019-10-12 2020-03-10 长江存储科技有限责任公司 用于晶片翘曲控制的方法
WO2020082227A1 (en) 2018-10-23 2020-04-30 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device having semiconductor plug formed using backside substrate thinning
CN111370415A (zh) * 2020-03-19 2020-07-03 长江存储科技有限责任公司 三维存储器及其制备方法
CN111477631A (zh) * 2020-04-23 2020-07-31 长江存储科技有限责任公司 一种三维存储器及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171112A1 (en) * 2000-08-11 2002-11-21 Kazuhiro Shimizu Non-volatile semiconductor memory device having memory cell array suitable for high density and high integration
CN103000579A (zh) * 2012-12-14 2013-03-27 复旦大学 一种半导体器件及其制备方法
CN103633012A (zh) * 2012-08-13 2014-03-12 上海华虹宏力半导体制造有限公司 改善硅片翘曲度的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171112A1 (en) * 2000-08-11 2002-11-21 Kazuhiro Shimizu Non-volatile semiconductor memory device having memory cell array suitable for high density and high integration
CN103633012A (zh) * 2012-08-13 2014-03-12 上海华虹宏力半导体制造有限公司 改善硅片翘曲度的方法
CN103000579A (zh) * 2012-12-14 2013-03-27 复旦大学 一种半导体器件及其制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119334B (zh) * 2018-08-24 2021-03-23 长江存储科技有限责任公司 半导体结构的表面修正方法以及3d存储器件的制造方法
CN109119334A (zh) * 2018-08-24 2019-01-01 长江存储科技有限责任公司 半导体结构的表面修正方法以及3d存储器件的制造方法
WO2020082227A1 (en) 2018-10-23 2020-04-30 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device having semiconductor plug formed using backside substrate thinning
CN109860037A (zh) * 2019-01-18 2019-06-07 长江存储科技有限责任公司 3d nand存储器的阵列共源极的形成方法
CN110071112A (zh) * 2019-03-29 2019-07-30 长江存储科技有限责任公司 3d存储器件及其制造方法
CN110620040A (zh) * 2019-09-12 2019-12-27 长江存储科技有限责任公司 一种用于提高生产中工艺稳定性的方法
CN110808253A (zh) * 2019-10-12 2020-02-18 长江存储科技有限责任公司 三维存储器结构及其制备方法
CN110876280A (zh) * 2019-10-12 2020-03-10 长江存储科技有限责任公司 用于晶片翘曲控制的方法
CN110876280B (zh) * 2019-10-12 2022-03-15 长江存储科技有限责任公司 用于晶片翘曲控制的方法
WO2021068222A1 (en) * 2019-10-12 2021-04-15 Yangtze Memory Technologies Co., Ltd. Methods for wafer warpage control
CN110649032A (zh) * 2019-10-23 2020-01-03 长江存储科技有限责任公司 3d存储器件及其制造方法
CN110649032B (zh) * 2019-10-23 2023-11-21 长江存储科技有限责任公司 3d存储器件及其制造方法
CN111370415A (zh) * 2020-03-19 2020-07-03 长江存储科技有限责任公司 三维存储器及其制备方法
CN111370415B (zh) * 2020-03-19 2022-11-22 长江存储科技有限责任公司 三维存储器及其制备方法
CN111477631A (zh) * 2020-04-23 2020-07-31 长江存储科技有限责任公司 一种三维存储器及其制造方法
CN111477631B (zh) * 2020-04-23 2022-04-08 长江存储科技有限责任公司 一种三维存储器及其制造方法

Also Published As

Publication number Publication date
CN107658310B (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
CN107658310A (zh) 降低晶片翘曲的共源极阵列形成方法
US8900999B1 (en) Low temperature high pressure high H2/WF6 ratio W process for 3D NAND application
US8314021B2 (en) Method for fabricating semiconductor device with buried gates
US7563718B2 (en) Method for forming tungsten layer of semiconductor device and method for forming tungsten wiring layer using the same
US9202813B2 (en) Electrode structure, method of fabricating the same, and semiconductor device including the electrode structure
CN108335980A (zh) 半导体器件及其制造方法
CN103050407B (zh) 嵌入式晶体管
CN107481927B (zh) 在三维存储器中形成栅结构的方法及三维存储器
US20120161218A1 (en) Semiconductor device and method for manufacturing the same
JP2013089889A (ja) 半導体装置及びその製造方法
TWI732976B (zh) 形成矽化物的方法
KR100603588B1 (ko) 낮은 콘택 저항을 갖는 반도체 소자 및 그 제조 방법
CN107731850A (zh) 一种高导电性的三维存储器及其形成方法
CN109390317B (zh) 反熔丝结构及其形成方法、半导体器件
CN100454546C (zh) 半导体器件及其制造方法
TW202230483A (zh) 用於氮化鈦膜的處置方法
US9099472B2 (en) Semiconductor constructions, methods of forming conductive structures and methods of forming DRAM cells
KR100463597B1 (ko) 반도체소자의제조방법
CN112018041A (zh) 电容器及其制备方法
JP2007329286A (ja) 半導体装置、およびその製造方法
JP2014187300A (ja) 金属シリサイド層の製造方法
US20220108914A1 (en) Treatment methods for titanium nitride films
US20230209809A1 (en) Methods and apparatuses of controlling cross-layer reactions in semiconductor device
CN106340452A (zh) 金属栅极结构及其制备方法
KR20070035362A (ko) 반도체 소자 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant