CN107650452A - 一种抗氧化的量子点聚合物光学膜及其制备方法和用途 - Google Patents

一种抗氧化的量子点聚合物光学膜及其制备方法和用途 Download PDF

Info

Publication number
CN107650452A
CN107650452A CN201710008657.6A CN201710008657A CN107650452A CN 107650452 A CN107650452 A CN 107650452A CN 201710008657 A CN201710008657 A CN 201710008657A CN 107650452 A CN107650452 A CN 107650452A
Authority
CN
China
Prior art keywords
quantum dot
film
polymer
light
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710008657.6A
Other languages
English (en)
Other versions
CN107650452B (zh
Inventor
向爱双
徐瑞璋
丁玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Huacai Photoelectric Co ltd
Original Assignee
Wuhan Polyqolor Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polyqolor Technology Ltd filed Critical Wuhan Polyqolor Technology Ltd
Priority to CN201710008657.6A priority Critical patent/CN107650452B/zh
Priority to PCT/CN2018/071561 priority patent/WO2018127129A1/zh
Publication of CN107650452A publication Critical patent/CN107650452A/zh
Application granted granted Critical
Publication of CN107650452B publication Critical patent/CN107650452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Luminescent Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种抗氧化的量子点聚合物光学膜、其制备方法及其在发光、光扩散方面的应用,例如用作光扩散膜,以及照明和显示用的高质量荧光材料等。该聚合物光学膜包含核壳结构的光致发光量子点纳米晶体和具有低氧气渗透率的聚合物,同时也可通过添加光扩散剂达到更好的显示效果。

Description

一种抗氧化的量子点聚合物光学膜及其制备方法和用途
技术领域
本发明涉及一种抗氧化的光致发荧光量子点聚合物光学膜,所述聚合物光学膜包含核壳结构的光致发光的量子点纳米晶体、具有低氧气渗透率的聚合物以及光扩散剂。该光学薄膜应用于发光和光扩散领域,比如用作光扩散膜,以及照明和显示用的高质量荧光材料。
背景技术
液晶显示器被广泛应用在个人电脑、电视、监视器、移动电话、个人数码助手、游戏设备、电子阅读设备、数码相机等类似领域。传统的LCD设备均配备一个背光单元,它们一起将白色的背光转换成所需要的目标显示颜色。
美国专利62159204描述了制备核壳结构光致发光量子点纳米晶体的一步法,该方法所得到的量子点产量大、成本低。按此法合成的核壳结构光致发光量子点纳米晶体具有非常强的荧光(量子效率>70%),同时由于其多面体形状使之能在水中分散很好。但是,该水相量子点在空气环境中易被氧化,使量子效率降低,一般其稳定使用时间在6个月以下。
US2012/0113672、US2014/011837以及许多其他研究表明,在TOPA/TOP和三氢化磷等有机溶剂中合成的量子点对高温、强光、氧气、湿度及其它有害环境极为敏感。关于量子点膜的US 2014/011837,声明了一种具有3层复合结构的量子点薄膜,它包含了在外侧的两张阻隔膜,以阻止湿气和氧气渗透到内层破坏量子点。此外,对量子点表面进行修饰如镀上或嫁接二氧化硅壳、氧化铝壳等隔水隔氧材料,可以让这些量子点具有耐水性能。
CN 201480005245.1公布了一项采用水氧阻隔膜进行封装的量子点膜的发明专利。该发明将油溶性的量子点分散在含丙烯酸、环氧树脂、光固化剂的体系中制成丙烯酸树脂类量子点膜层。由于丙烯酸树脂层的氧气、水气的透过率较高(均大于0.1g/m2·day),此法得到的量子点膜层发光强度不稳定。因此,该发明采用了两层水氧阻隔膜夹一层量子点膜的结构,来提高量子点膜发光稳定性。但该发明所述解决量子点稳定性的方案存在如下问题:一,要求胶水固含量必须是100%,因此限定了胶水选择的范围,可选的胶水基本为UV固化胶水;二,量子点材料在中性或碱性环境更加稳定,但该类胶水是弱酸性的,因此该类胶水在固化前本质上是不利于量子点稳定性的;三,所采用阻隔膜的成本很高,该原材料成本占了整个量子点膜最终产品的一半以上。因此,开发廉价的原材料以及工艺方法来制备量子点膜一直是市场的热门需求。
发明内容
针对现有技术中的上述缺陷,本发明人经过大量的研究和实验,发现当采用低透氧性的聚合物时,不需要采用阻隔膜就能得到性能稳定的量子点薄膜。
本发明涉及一种抗氧化的量子点聚合物光学膜,所述光学膜包含:两层基膜,夹在两层基膜中间的量子点膜,和一个或两个粘合剂层,所述粘合剂层位于所述基膜和所述量子点膜之间,其特征在于:所述量子点膜包含具有低氧气渗透率的聚合物、核壳结构的光致发光的量子点纳米晶体和任选存在的光扩散剂。
在本发明中可以使用任何具有低氧气渗透性的聚合物,包括但不限于商业化的乙烯-乙烯醇共聚物、聚乙烯醇(PVA)、树脂、液晶聚合物、聚丙烯酸(PAA)、聚偏二氯乙烯、羟丙甲纤维素、聚胺类(如聚二烯丙基二甲基氯化铵)和双氰胺树脂、絮凝剂、两性高分子、聚丙烯酰胺、聚氧化乙烯以及上述聚合物的改性衍生物,其中的“改性”是为了使上述聚合物的氧气渗透率进一步降低。
在本发明中所使用的核壳结构的光致发光的量子点纳米晶体包括水相合成的量子点和经处理的油相合成的量子点。优选地,相对于所述量子点膜,所述核壳结构的光致发光的量子点纳米晶体的质量为0.01-10%。优选的,所述量子点膜的厚度为10-250μm。
在本发明中可以使用的光扩散剂包括但不限于二氧化硅、二氧化钛、改性有机硅化合物和聚合物胶体粒子,优选的,粒径为0.5-20μm。
关于本发明的聚合物光学膜的制备方法,在使用水相合成的核壳结构的光致发光的量子点纳米晶体的情况下,所述方法包括:
(1)用水或二甲基亚砜作为溶剂溶解具有低氧气渗透率的聚合物;
(2)任选地,将光扩散剂分散入具有低氧气渗透率的聚合物溶液中;
(3)将水相合成的核壳结构的光致发光的量子点纳米晶体分散到所溶聚合物中;
(4)上述混合物经过脱泡工艺,形成铸膜液;
(5)在基膜上流延,干燥成膜;
(6)将另一基膜通过粘合剂层覆盖在上述形成的量子点膜上。
或者,在步骤(6)中,剥离掉步骤(5)中的基膜,通过粘合剂层分别将两层基膜覆盖在剥离后的量子点膜的相对面上。
而在使用油相合成的核壳结构的光致发光的量子点纳米晶体和低氧气渗透率的聚合物的情况下,所述方法包括:
(1)将油相合成的核壳结构的光致发光的量子点纳米晶体进行预处理,所述预处理包括将量子点纳米晶体混合入疏水的聚合物中,制成量子点粉末,或者在量子点纳米晶体中加入选自抗氧化剂和阻氧材料中的一种或多种以进一步提高油相量子点稳定性;
(2)用水或二甲基亚砜作为溶剂溶解具有低氧气渗透率的聚合物;
(3)任选地,将光扩散剂分散入具有低氧气渗透率的聚合物溶液中;
(4)将上述经预处理的油相合成的核壳结构的光致发光的量子点纳米晶体分散到所溶聚合物中;
(5)上述混合物经过脱泡工艺,形成铸膜液;
(6)在基膜上流延,干燥成膜;
(7)将另一基膜通过粘合剂层覆盖在上述形成的量子点膜上。
或者,在步骤(7)中,剥离掉步骤(6)中的基膜,通过粘合剂层分别将两层基膜覆盖在剥离后的量子点膜的相对面上。
本发明所涉及的抗氧化的光致发荧光的聚合物光学膜包含了光扩散剂和核壳结构的光致发光量子点纳米材料,具有高发光量子效率和高光学性能,可应用在荧光和光散射等领域,例如用作光扩散膜、用于发光和显示方面的高质量荧光材料、以及可叠入液晶设备的背光模组中,将本发明应用到蓝色光源的液晶设备中可以得到更广的色域范围。本发明所涉及到的方法,具有经济、节能、环保等特点,并且容易实现工业化生产,批量制备产品。
附图说明
通过阅读以下发明详述并结合附图,本领域技术人员很容易理解本发明的上述目的和优点。
图1(a)和(b)是分别显示本发明所涉及的包含2层PET基膜作为支撑膜的光致发光PVA量子点聚合物光学膜的结构示意图。
图2是显示本发明实施例1中的采用PET基膜作为支撑膜的四层结构PVA量子点聚合物光学膜的拉伸曲线。
图3是显示本发明对比例2的单层PVA量子点聚合物光学膜的拉伸曲线。
具体实施方式
关于本发明中所使用的低氧气渗透率的聚合物,如下表1列出了一些常见聚合物的氧气渗透性数据,其中,可以看出聚乙烯醇(PVA)的氧气渗透性相对较低,因此,聚乙烯醇在本发明的实施方式中被优选使用。
表1:厚度为25μm的结晶聚合物薄膜的氧气渗透性
材料 O2TR(cc/100in2·day) 备注
聚丙烯腈 0.7 单层膜
聚乙烯乙烯醇 <0.12 单层膜
聚乙烯醇 0.02-0.2 在PET上涂聚乙烯醇
PET 4.5 单层膜
定向尼龙 3 单层膜
液晶聚合物 0.04 单层膜
聚二氯乙烯 0.5-1.3 在基膜上涂聚二氯乙烯
对于在本发明中的应用,可以使用氧气渗透性为1.0cc/100in2·day或以下的聚合物,优选氧气渗透性为0.5cc/100in2·day或以下的聚合物。
聚乙烯醇是一种重要的高分子材料,它是由聚醋酸乙烯酯醇解得到的。聚乙烯醇分子具有严格的规整线性结构,分子内含有大量的羟基,因此聚乙烯醇具有极大的亲水性,是一种水溶性高分子材料。由于羟基的存在,聚乙烯醇易形成大量的分子内和分子间氢键,因此,聚乙烯醇分子具有高度的结晶性、化学稳定性、热稳定性、透光性以及良好的光泽和高的机械强度。聚乙烯醇的羟基决定了其亲水性能,为了将聚乙烯醇改性为疏水聚合物,需要从醇解后的羟基(-OH)入手。可以通过共聚改性(如内酯化改性)和后期改性(如缩醛化反应、酯化反应等)来改变聚乙烯醇大分子的化学结构,获得疏水性的聚乙烯醇聚合物材料。
PVA已被广泛应用在显示、食品、医药等领域,例如,PVA被用来生产LCD设备的偏光片(参见US8303867,US20020001700),证明其具有很好的光学性能。此外,由于PVA膜具有良好的气体阻隔性,尤其是对氧气的阻隔性优异等特点,近些年PVA膜被广泛应用于包装等行业(参见US4731266)。工业上生产PVA膜的方法通常是在传送带或平面上流延成膜。更具体的,PVA是以水溶液形式被流延到传送带或平面上,之后加热烘干成膜。
本发明人进一步出人意料地发现,将具有核壳结构的光致发光量子点纳米材料与PVA复合,制备出的量子点复合膜材料具有较高的阻氧性能和光学性能。考虑到PVA是以水相体系存在,当量子点是水相合成的量子点时,其能够在PVA体系中获得良好的分散,但是对于油相合成的量子点而言,为了使其能够均匀地分散于PVA体系中,需要对其进行处理。
本发明人经过大量研究和实验,发现对油相合成的量子点进行表面化学方法修饰,如加入表面活性剂时,可以将油相量子点均匀地分散在水相体系中。
除了表面化学方法修饰之外,为了使油相合成的量子点能够均匀地分散于PVA体系中,本发明人还研究得到了另一种增强油相量子点的耐水性且在水相体系均匀分散的方法。在一种实施方式中,将分子量为15 000-20 000的聚碳酸酯和油相合成的量子点溶解在二氯甲烷溶剂中,混合均匀后挥发掉二氯甲烷溶剂,获得固体的聚碳酸酯和量子点混合物,经过球磨粉碎后获得聚碳酸酯包覆的量子点粉末。采用这种包覆技术后,分散在水相体系的量子点粉末可以阻止水汽和氧气渗透到内层破坏量子点。用DMF等有机溶剂也可以达到相同的目的。
与上述方法类似,为了使油相合成的量子点能够均匀地分散于PVA水相体系中,本发明人还研究得到了另一种增强油相量子点耐水性且在水相体系均匀分散的方法。在一种实施方式中,将分子量为15 000-20 000的聚碳酸酯和油相合成的量子点溶解在二氯甲烷溶剂中,混合均匀后加入乙酸乙酯,此时聚碳酸酯和量子点混合物由于其溶解度差,会迅速沉降成粉末状的聚碳酸酯包覆的量子点固体,挥发掉二氯甲烷和乙酸乙酯溶剂后获得固体的聚碳酸酯和量子点混合物粉末。此聚合物包覆的量子点可阻止水汽和氧气渗透到内层破坏量子点。用DMF、乙醇等其它溶解度差的有机溶剂也可以达到相同的目的。
另外,通过在油相合成的量子点中加入助剂也可以提高油相量子点的稳定性,在本发明的上下文中,助剂是为了增加量子点的抗氧化性或稳定性而添加的物质,例如抗氧化剂、阻氧材料等,其具体例子包括但不限于:聚氧化乙烯(PEO)、苯甲酸钠、戊二醛等。具体的说,本发明所涉及的将核壳结构的光致发光量子点纳米晶体和光扩散剂分散在PVA水溶液中的方法包括,先将光扩散剂与PVA水溶液(或PVA二甲基亚砜溶液)在高速分散机上搅拌,之后按配方比例加入核壳结构的光致发光量子点纳米晶体及助剂,在高速分散机上分散。
光扩散剂是利用高分子聚合技术,通过交联、接枝官能团等手段开发的微球类产品,其在照明行业尤其是LED照明领域得到广泛应用。主要通过在透明塑料基料中加入具有不同折射率的无机或有机扩散粒子,包括SiO2、TiO2、CaCO3、BaSO4和玻璃微珠等无机微粒,以及聚甲基丙烯酸甲酯、聚苯乙烯、硅树脂等有机聚合物微粒,达到提高材料雾度的目的,将点、线光源转换成线、面光源,即在遮住刺眼光源的同时,又能使整个树脂发出更加柔和、美观、高雅的光,达到透光不透明的舒适效果。本发明采用光扩散剂的另一个目的是为了改变光传播的路径来增加量子点对光的吸收。
本发明涉及的量子点聚合物光学膜的制备方法,具体涉及一种流延制膜的方法,其包括将质量百分比(纳米晶体/聚合物)为0.01-10%的量子点纳米晶体与聚合物一起制成溶液,然后流延、烘干成膜,干燥后量子点膜的厚度在10-250μm之间。同时,本发明确认此法可制备得到光学性能稳定且光致发光量子效率高的聚合物光学膜。
本发明所涉及的制膜工艺包括涂膜和干燥成膜过程。
在实验室,涂膜方法为使用涂膜器在PET基膜上,将PVA量子点混合溶液刮涂成厚度均一的湿膜,并在烘箱中干燥成型,得到PVA/PET双层结构薄膜,其中PVA量子点层厚度在10-250μm之间。具体的,先在鼓风烘箱中以60-80℃干燥3-10min,之后于真空干燥箱中以30-50℃干燥3-12h以彻底除水。真空干燥过程中,用氢氧化钾、氧化钙等作为吸水剂。此制膜方法可以制备外观平整,厚度均一的量子点膜,同时可以保证量子点在制备过程中衰减程度较小。
在生产线上,可以采用逗号刮刀、模头、微凹等涂布方式将PVA量子点混合溶液涂在PET基膜上,然后经过烘干单元,温度低于80℃,待溶剂挥发完全,干燥得到PVA/PET双层结构薄膜,其中PVA量子点层厚度在10-250μm之间。
由本发明提供的方法制备得到的低氧气渗透率的单层量子点膜,由于加入了塑化剂助剂例如甘油、酞酸酯等低玻璃化温度的有机物质,其机械强度较低。此外,未经耐水改性的聚乙烯醇单层量子点光学膜在高温高湿条件下由于水汽的侵蚀,会使产品外观受损。为此,本发明通过在单层量子点膜的相对面上设置起支撑作用的两层基膜来改善其机械强度和产品外观。
根据本发明提供的制备方法,可以得到具有4层结构的聚合物光学膜,具体的,所述制备方法包括:(1)在经过表面修饰的基膜上流延水溶性量子点铸膜液;(2)干燥湿膜来制备具有双层结构的薄膜,该膜包含第一基膜如PET、PMMA、PC等和PVA量子点光学膜;(3)在另一张经表面修饰后的支撑膜如PET、PMMA、PC上涂上胶层;(4)复合这两种双层结构膜,形成4层结构的复合薄膜,见图1(a)。所得4层结构复合膜厚度为50-350μm。本发明确认此法可制备得到具有高光致发光量子效率和光扩散性能的4层结构复合量子点聚合物光学膜。所采用的方法中粘结PVA量子层与第二层基膜的胶水可为UV固化胶水、热固化胶水等。实验室制作时,可将基膜覆盖在PVA/基膜组合膜上,PVA量子点层夹在中间,之后用滴管在中间挤涂UV光固化胶水,用压辊将胶水压平并均匀分布在PVA量子点层与基膜之间,将上述制备的复合膜进行紫外曝光处理,使UV光固化胶水固化,得到四层复合结构。生产线上,可将UV胶水涂在第二基膜上,然后贴合PET/PVA量子点层,同时UV固化,得到四层复合结构。所述的UV光固化胶水包括甲基丙烯酸酯类单体及光引发剂组成的混合物,其中光引发剂可在紫外光的激发下产生自由基,并诱导丙烯酸酯类单体进行自由基聚合,形成聚合物,将PVA和PET粘在一起。所述紫外曝光处理所采用的光波能量为8-3000mj/cm2,曝光处理时间根据曝光能量大小而不同,范围为0.1-180s。
根据本发明提供的制备方法,可以得到具有5层结构的聚合物光学膜,其中采用如图1(b)所示的结构来支撑PVA薄膜和隔离外界水汽。具体的,所述制备方法包括:(1)在经过易剥离的基板上流延PVA水溶性量子点铸膜液;(2)干燥湿膜后从基板上剥离得到单层PVA量子点光学膜;(3)在一张经表面修饰后的支撑膜如PET、PMMA、PC上涂上胶层复合PVA量子点光学膜;(4)在另一张经表面修饰后的支撑膜如PET、PMMA、PC上涂上胶层,复合PVA量子点光学膜的另一面,形成如图1(b)所示的5层结构的复合量子点薄膜。所制5层结构复合膜厚度为50-350μm。同理,所采用的方法中粘结PVA量子点层与两层基膜的胶水可为UV固化胶水、热固化胶水等。
实施例
实施例1:包含水相合成量子点+高结晶度PVA组合的聚合物光学膜
首先,将100质量份PVA聚合物(Mowiol 18-98,高结晶度,醇解度98.0mol%,聚合度2700,Sigma-Aldrich提供)和10质量份甘油溶解在水中,温度90℃时溶解需要2h。然后用分散机将7.5质量份粒径为10μm的有机硅粒子(EL202A,涌奇材料提供)分散到PVA溶液中,分散速度1200rpm。最后,将1.0质量份绿色核壳结构光致发光量子点纳米晶体和0.25质量份红色核壳结构光致发光量子点纳米晶体(水相量子点,南京大学邓正涛教授研发组提供,初始量子点发光效率70%)分散到PVA溶液中形成铸膜液,搅拌速度200rpm,该铸膜液含有75%质量份的挥发水份。再将铸膜液在真空中脱气泡12h,随后在75μm的表面附着力大于40达因的PET基膜上流延成型,再在70℃鼓风烘箱中干燥10min,随后在50℃真空干燥箱中干燥3h得到干膜(PVA/PET复合结构薄膜)。
然后,将另一张经过表面修饰后不易剥离的厚度同为75μm的PET基膜覆盖在PVA/PET膜上,使PVA量子点层夹在中间。然后用滴管在中间挤涂UV光固化胶水,用压辊将胶水压平并均匀分布在PVA与PET基膜之间,将上述制备的复合膜进行紫外曝光处理。使用能量为8W/cm2的UV光曝光180s,使胶水固化,得到四层复合结构,该结构如图1(a)所示。
所得复合膜全线透光率为85%,初始光致发光量子效率为70%。样品在85℃温度、85%RH条件下放置100h,全光线透光率为85%,雾度98%,光致发光量子效率为68.5%。
所得四层结构复合膜用万用拉伸机(英斯特朗试验机HY-30080)进行拉伸测试,所得拉伸曲线如图2所示,屈服强度为65MPa。
对比例1:包含复合了光扩散剂的PVA膜(不包含量子点)的聚合物光学膜
与实施例1的方法基本完全一致,不同点为在PVA/PET复合结构薄膜的制备过程中,不加入任何量子点,以及PVA光扩散膜的混合液具有65%质量份数的挥发水份。
所得复合膜全线透光率为85%,雾度80%,光致发光量子效率为0%。样品在85℃温度、85%RH条件下放置100h,全光线透光率为85%,雾度80%,光致发光量子效率为0%。
与对比例1相比,实施例1所得聚合物光学膜的雾度增加了18%,雾度达到98%,说明从聚合物光学膜透过来的光,几乎100%都发生了散射,其最主要的原因是量子点吸收了光源的光,然后向周围均匀发散,量子点此时起到了点光源的作用。
对比例2:只有PVA层的聚合物光学膜
与实施例1的方法基本完全一致,不同点为采用表面张力小于25达因的PET基膜,并在制得PVA/PET复合膜后,将PET基膜剥离,得到只有PVA量子点层的量子点膜。用万用拉伸机(英斯特朗试验机HY-30080)进行拉伸测试,所得拉伸曲线如图3所示,屈服强度为8MPa。
该膜初始光致发光量子效率为70%。样品在85℃温度、85%RH条件下放置100h,样品外观受损,光致发光量子效率为60%。
与对比例2相比,实施例1的四层结构的复合膜的强度上升了7倍左右,对比例2的单层PVA膜非常柔软,作为光学膜不利于在模组中使用,但是采用实施例1中的四层复合结构,可以极大提高光学膜的强度(参考图2与图3),便于使用。此外,由于所使用的醇解度98%的PVA具有一定的水溶性,对比例2由于PVA膜两面没有非水溶性的PET基膜保护,所以在85%相对湿度条件下由于水汽的侵蚀,量子点膜外观受损,但四层结构的复合膜在该条件下外观就没有受损。此外,由于水汽直接侵蚀,对比例2的量子点膜在85%RH条件下100h后发光效率多衰减了8.5个百分点。
实施例2:包含水相合成量子点+低结晶度PVA组合的聚合物光学膜
首先,将100质量份PVA聚合物(Mowiol 4-88,低结晶度,醇解度88.0mol%,聚合度630,Sigma-Aldrich提供)和10质量份甘油溶解在水中,温度90℃时溶解需要0.5h。然后用分散机将7.5质量份粒径为10μm的有机硅粒子(EL202A,涌奇材料提供)分散到PVA溶液中,分散速度1600rpm。最后,将1.0质量份绿色核壳结构光致发光量子点纳米晶体和0.25质量份红色核壳结构光致发光量子点纳米晶体(水相量子点,南京大学邓正涛教授研发组提供,初始量子点发光效率70%)分散到PVA溶液中形成铸膜液,搅拌速度200rpm,该铸膜液含有75%质量份数的挥发水份。再将铸膜液在真空中脱气泡12h,随后在75μm的表面张力大于40达因的PET基膜上流延成型,再在70℃鼓风烘箱中干燥10min,然后在50℃真空干燥箱中干燥3h得到干膜(PVA/PET复合结构薄膜)。
然后,将另一张经过表面修饰后不易剥离的厚度同为75μm的PET基膜覆盖在PVA/PET膜上,使PVA量子点层夹在中间。然后用滴管在中间挤涂UV光固化胶水,用压辊将胶水压平并均匀分布在PVA与PET基膜之间,将上述制备的复合膜进行紫外曝光处理。使用能量为8W/cm2的UV光曝光180s,使胶水固化,得到四层复合结构。
所得复合膜全线透光率为85%,雾度98%,初始光致发光量子效率为70%。样品在85℃温度、85%RH条件下放置100h,全光线透光率为85%,雾度98%,光致发光量子效率为58%。
实施例3:包含油相合成量子点粉末+PVA组合的聚合物光学膜
首先,制备油相合成量子点的粉末,将10质量份分子量为15000-20000的聚碳酸酯和油相合成的量子点材料(1.0质量份绿色量子点,峰位520nm和0.25质量份红色量子点,峰位625nm,均由天津Nanocomy提供)溶解在二氯甲烷溶剂中,混合均匀后挥发掉溶剂,获得固体的聚碳酸酯和量子点混合物,经过球磨粉碎后获得聚合物包覆的油相合成的量子点粉末。
接下来,生产制备复合了上述量子点粉末及光扩散剂的PVA光学膜。
首先,将80质量份的PVA聚合物(醇解度98.0mol%、聚合度2700的PVA)和10质量份数甘油溶解在水中,温度90℃时溶解需要2h。然后用分散机将7.5质量份的粒径为10μm的有机硅粒子分散到PVA溶液中,分散速度1200rpm。最后,将上述制备的油相量子点粉末分散到PVA溶液中形成铸膜液,分散速度1200rpm。该铸膜液含有75%质量份数的挥发水份。再将铸膜液在真空中脱气泡12h,随后在经表面修饰的厚度为75μm的PET基膜上流延成型,再在70℃鼓风烘箱中干燥10min,在50℃真空干燥箱中干燥3h得到干膜。然后,将另一张经过表面修饰后不易剥离的厚度同为75μm的PET基膜覆盖在PVA/PET膜上,使PVA量子点层夹在中间。然后用滴管在中间挤涂UV光固化胶水,用压辊将胶水压平并均匀分布在PVA与PET基膜之间,将上述制备的复合膜进行紫外曝光处理。使用能量为8W/cm2的UV光曝光180s,使胶水固化,得到四层复合结构的聚合物光学膜,其中,量子点层的厚度为40μm。
所得聚合物光学膜的初始光致发光量子效率为72%。样品在85℃温度、85%RH条件下放置100h,光致发光量子效率降为65%。
实施例4:包含油相合成量子点粉末+PVA组合的聚合物光学膜
与实施例3的方法基本完全一致,不同点为选用如下的油相合成的量子点的处理方法:将10质量份分子量为15000-20000的聚碳酸酯和油相合成的量子点材料(1.0质量份绿色量子点,峰位520nm和0.25质量份红色量子点,峰位625nm,均由天津Nanocomy提供)溶解在二氯甲烷溶剂中,混合均匀后加入乙酸乙酯,此时聚碳酸酯和量子点的混合物由于溶解度差,会迅速沉降,分离干燥后获得固体的聚碳酸酯和量子点混合物粉末,此即油相合成的量子点粉末。
所得聚合物光学膜的初始光致发光量子效率为72%。样品在85℃温度、85%RH条件下放置100h,光致发光量子效率降为65%。
实施例4与实施例3获得的聚合物光学膜的光致发光量子效率相同,说明了上述两种对于油相合成的量子点的处理方法未对量子点的性能带来太大影响。
对比例3:包含油相合成的量子点材料+丙烯酸树脂类UV胶水的聚合物光学膜
本着对比和研究的目的,制备了量子点层厚度为40μm的UV胶水量子点膜。该方法使用油相合成的量子点纳米晶体,所采用丙烯酸树脂属于非结晶高分子材料。将7.5质量份(与所有实施例保持相同的总质量含量)的光扩散粒子分散到100质量份含有丙烯酸树脂、环氧树脂和光引发剂的聚合物材料(BTW-504-33,东莞贝特利新材料有限公司提供)中,分散机(Dragon Lab OS20-S)转速1800rpm,转盘直径30mm,分散时间10min。然后,加入1.0质量份绿色量子点(由天津Nanocomy提供,峰位520nm,初始量子点发光效率80%)和0.25质量份红色量子点(由天津Nanocomy提供,峰位625nm,初始量子点发光效率85%),混合形成含有绿色和红色量子点的UV固化胶水。将此量子点胶水涂在厚度为75μm的PET基膜上,贴合另一层厚度为75μm的PET基膜后,在385nm的UV光照下固化得到三层结构的聚合物光学膜。
所得聚合物光学膜的光致发光量子效率为68%。该聚合物光学膜在85℃温度、85%RH条件下放置100h,光致发光量子效率为50%。
与对比例3相比,虽然实施例1和实施例2所使用的量子点材料的初始量子点发光效率较其更低,但是制成聚合物光学膜后,其量子发光效率反而较其更高,主要原因是量子点的量子发光效率跟分散介质的折射率成正比,PVA的折射率较丙烯酸树脂高,导致最终分散在PVA膜中的量子点的发光效率高一些。此外,在85℃温度、85%RH的环境条件下,实施例1的量子点膜的量子点发光效率经过100h只衰减了1.5%,实施例2衰减了12%,而对比例3量子点膜的量子点发光效率衰减了18%。表明具有高结晶度的PVA高分子材料,具有非常优异的阻氧性能;而低结晶度的PVA同样具有一定的氧气阻隔性能,导致量子点发光效率衰减延缓。
与对比例3相比,实施例3的聚合物光学膜的初始光致发光量子效率较其高4个百分点,主要原因是量子点的量子发光效率跟分散介质的折射率成正比,PVA的折射率较丙烯酸树脂高,导致最终分散在PVA膜中的量子点的发光效率高一些。此外,实施例3的量子发光效率更稳定,样品在85℃温度、85%RH条件下100h仅衰减7个百分点,而对比例3的量子发光效率衰减了18个百分点,进一步证明结晶高分子能够提高量子点的稳定性。
实施例5:包含油相合成量子点+聚氧化乙烯(PEO)助剂+PVA的聚合物光学膜
首先,将80质量份PVA聚合物(Mowiol 24-88醇解度88.0mol%,聚合度3200,Sigma-Aldrich提供)、20质量份的PEO(1000000分子量,BASF提供)溶解在水中,温度90℃时溶解需要2.5h。然后用分散机将7.50质量份粒径为10μm的有机硅粒子(EL202A,涌奇材料提供)分散到上述PVA溶液中,分散速度1200rpm。最后,将0.25质量份红色核壳结构光致发光量子点纳米晶体和1.0质量份绿色核壳结构光致发光量子点纳米晶体(均由天津Nanocomy提供)分散到上述PVA溶液中形成铸膜液,搅拌速度800rpm。该铸膜液含有75%质量份数的挥发水份。再将铸膜液在真空中脱气泡12h,随后在经过表面修饰的厚度为75μm的PET基膜上流延成型,再在70℃鼓风烘箱中干燥10min,随后在50℃真空干燥箱中干燥3h得到干膜(PVA/PET复合结构薄膜)。
然后,将另一张经过表面修饰后不易剥离的厚度同为75μm的PET基膜覆盖在PVA/PET膜上,使PVA量子点层夹在中间。然后用滴管在中间挤涂UV光固化胶水,用压辊将胶水压平并均匀分布在PVA与PET基膜之间,将上述制备的复合膜进行紫外曝光处理。使用能量为8W/cm2的UV光曝光180s,使胶水固化,得到四层复合结构的聚合物光学膜。
所得聚合物光学膜的全线透光率为88%,雾度98%,初始光致发光量子效率为77%。样品在85℃温度、85%RH条件下放置100h,光致发光量子效率为72.6%。
与对比例3相比,实施例5的聚合物光学膜的初始量子点效率较其高9个百分点,主要原因是量子点的量子发光效率跟分散介质的折射率成正比,PVA的折射率较丙烯酸树脂高,导致最终分散在PVA膜中的量子点的发光效率高一些,此外,PEO可通过氢键作用与PVA结合,嵌入到PVA的非晶态链段中,形成更加致密的结构,使阻隔性提高。在85℃温度、85%RH的环境条件下,实施例5的聚合物光学膜的量子点发光效率100h衰减了4.4%,而对比例3中聚合物光学膜的量子点发光效率衰减了18%,证明与PEO溶液共混后的PVA高分子材料,具有更好的抗衰减性能。
实施例6:包含油相合成量子点+戊二醛助剂+PVA的聚合物光学膜
首先,将99.5质量份的PVA聚合物(Mowiol 24-88,醇解度88.0mol%,聚合度3200,Sigma-Aldrich提供)溶解在水中,温度90℃时溶解需要2.5h。然后用分散机将7.5质量份粒径为10μm的有机硅粒子(EL202A,涌奇材料提供)分散到上述PVA溶液中,分散速度1200rpm。之后,将0.25质量份红色核壳结构光致发光量子点纳米晶体和1.0质量份绿色核壳结构光致发光量子点纳米晶体(均由天津提供)分散到上述PVA溶液中形成铸膜液,搅拌速度800rpm。最后,将戊二醛盐酸混合液(包含5质量份浓度为10%的戊二醛水溶液和0.5质量份浓度为1.0 mol/L的盐酸水溶液)分散到铸膜液中,搅拌速度500rpm。该铸膜液含有75%质量份数的挥发水份。再将铸膜液在真空中脱气泡12h,随后在经过表面修饰的厚度为75μm的PET基膜上流延成型,再在70℃鼓风烘箱中干燥10min,随后在50℃真空干燥箱中干燥3h得到干膜(PVA/PET复合结构薄膜)。
然后,将另一张经过表面修饰后不易剥离的厚度同为75μm的PET基膜覆盖在PVA/PET膜上,使PVA量子点层夹在中间。然后用滴管在中间挤涂UV光固化胶水,用压辊将胶水压平并均匀分布在PVA与PET基膜之间,将上述制备的复合膜进行紫外曝光处理。使用能量为8W/cm2的UV光曝光180s,使胶水固化,得到四层复合结构的聚合物光学膜。
所得复合膜全线透光率为88%,雾度98%,初始光致发光量子效率为75%。样品在85℃温度、85%RH条件下放置100h,光致发光量子效率为69%。
与对比例3相比,实施例6的聚合物光学膜的初始量子点效率较其高7个百分点,主要原因是量子点的量子发光效率跟分散介质的折射率成正比,PVA的折射率较丙烯酸树脂高,导致最终分散在PVA膜中的量子点的发光效率高一些;此外,戊二醛在盐酸的催化下和PVA发生了缩醛反应,形成了适度的交联结构,使PVA的耐水性得到了提高,水汽难以渗透进PVA内部对量子点造成影响。在85℃温度、85%RH的环境条件下,实施例6的聚合物光学点的量子点发光效率100h衰减了6%,而对比例3的聚合物光学膜的量子点发光效率衰减了18%,证明添加了戊二醛的PVA高分子材料,具有更好的抗衰减性能。
实施例7:包含油相合成量子点+高结晶度PVA组合的聚合物光学膜
首先,将100质量份PVA聚合物(Mowiol 18-98,高结晶度,醇解度98.0mol%,聚合度2700,Sigma-Aldrich提供)和10质量份甘油溶解在二甲基亚砜中,温度90℃时溶解需要5h。其他条件同实施例1,即用分散机将7.5质量份粒径为10μm的有机硅粒子(EL202A,涌奇材料提供)分散到PVA溶液中,分散速度1200rpm。最后,将1.0质量份绿色核壳结构光致发光量子点纳米晶体和0.25质量份红色核壳结构光致发光量子点纳米晶体(油相量子点,南京大学邓正涛教授研发组提供,初始量子点发光效率70%)分散到PVA溶液中形成铸膜液,搅拌速度200rpm。该铸膜液含有75%质量份的挥发二甲基亚砜份。再将铸膜液在真空中脱气泡12h,随后在厚度为75μm的表面附着力大于40达因的PET基膜上流延成型,再在70℃鼓风烘箱中干燥10min,随后在50℃真空干燥箱中干燥3h得到干膜(PVA/PET复合结构薄膜)。
然后,将另一张经过表面修饰后不易剥离的厚度同为75μm的PET基膜覆盖在PVA/PET膜上,使PVA量子点层夹在中间。然后用滴管在中间挤涂UV光固化胶水,用压辊将胶水压平并均匀分布在PVA与PET基膜之间,将上述制备的复合膜进行紫外曝光处理。使用能量为8W/cm2的UV光曝光180s,使胶水固化,得到四层复合结构,该结构如图1(a)所示。
所得复合膜全线透光率为85%,初始光致发光量子效率为70%。样品在85℃温度、85%RH条件下放置100h,全光线透光率为85%,雾度98%,光致发光量子效率为68.5%。
以上所述,仅是用来阐明本发明的个别实施案例而已,并非对本发明作任何形式上的限制。虽然本发明已以个别实施例揭露如上,然而并非用以限定本发明。任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,利用上述揭示的技术内容做出些许的更动或修饰将被视为等同变化的等效实施案例。但凡未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施案例所作的任何简单的修改、等同替换与改进等,均属于本发明技术方案的保护范围之内。

Claims (11)

1.抗氧化的量子点聚合物光学膜,其包含:
两层基膜;
夹在两层基膜中间的量子点膜;和
一个或两个粘合剂层,所述粘合剂层位于所述基膜和所述量子点膜之间;
其特征在于:
所述量子点膜包含具有低氧气渗透率的聚合物、核壳结构的光致发光的量子点纳米晶体、和任选存在的光扩散剂。
2.如权利要求1所述的量子点聚合物光学膜,其中,所述具有低氧气渗透率的聚合物选自由乙烯-乙烯基醇共聚物、聚乙烯醇、树脂、液晶聚合物、聚偏二氯乙烯、聚丙烯酸、羟丙甲纤维素、聚胺类,例如聚二烯丙基二甲基氯化铵、双氰胺树脂、絮凝剂、两性高分子、聚丙烯酰胺、聚氧化乙烯及上述聚合物的改性衍生物组成的组中的一种或多种。
3.如权利要求1或2所述的量子点聚合物光学膜,其中,所述核壳结构的光致发光的量子点纳米晶体选自水相合成的量子点和经处理的油相合成的量子点。
4.如权利要求1-3任一项所述的量子点聚合物光学膜,其中,所述光致发光的量子点纳米晶体的固体含量相对于所述量子点膜的质量为0.01-10%。
5.如权利要求1-4任一项所述的量子点聚合物光学膜,其中,所述量子点膜的厚度为10μm-250μm。
6.如权利要求1-5任一项所述的量子点聚合物光学膜,其中,所述光扩散剂包括选自由二氧化硅、二氧化钛、改性有机硅化合物和聚合物胶体粒子组成的组中的一种或多种,其粒径在0.5-20μm之间。
7.如权利要求1-6任一项所述的量子点聚合物光学膜的制备方法,其中,使用水相合成的核壳结构的光致发光的量子点纳米晶体,所述方法包括:
(1)用水或二甲基亚砜作为溶剂溶解具有低氧气渗透率的聚合物;
(2)任选地,将光扩散剂分散入具有低氧气渗透率的聚合物溶液中;
(3)将水相合成的核壳结构的光致发光的量子点纳米晶体分散到上述聚合物溶液中;
(4)上述混合物经过脱泡工艺,形成铸膜液;
(5)在基膜上流延,干燥成膜;
(6)将另一基膜通过粘合剂层覆盖在上述形成的量子点膜上。
8.如权利要求7所述的制备方法,其中,如下进行步骤(6),剥离掉步骤(5)中的基膜,通过粘合剂层分别将两层基膜覆盖在剥离后的量子点膜的相对面上。
9.如权利要求1-6任一项所述的量子点聚合物光学膜的制备方法,其中,使用油相合成的核壳结构的光致发光的量子点纳米晶体,所述方法包括:
(1)将油相合成的核壳结构的光致发光的量子点纳米晶体进行预处理,所述预处理包括将量子点纳米晶体混合入疏水的聚合物中,制成量子点粉末,或者在量子点纳米晶体中加入选自抗氧化剂和阻氧材料中的一种或多种;
(2)用水或二甲基亚砜作为溶剂溶解具有低氧气渗透率的聚合物;
(3)任选地,将光扩散剂分散入具有低氧气渗透率的聚合物溶液中;
(4)将上述经预处理的油相合成的核壳结构的光致发光的量子点纳米晶体分散到所溶聚合物中;
(5)上述混合物经过脱泡工艺,形成铸膜液;
(6)在基膜上流延,干燥成膜;
(7)将另一基膜通过粘合剂层覆盖在上述形成的量子点膜上。
10.如权利要求9所述的制备方法,如下进行步骤(7),剥离掉步骤(6)中的基膜,通过粘合剂层分别将两层基膜覆盖在剥离后的量子点膜的相对面上。
11.如权利要求1-6任一项所述的量子点聚合物光学膜的用途,其用于发光领域例如LEDs和显示屏。
CN201710008657.6A 2017-01-05 2017-01-05 一种抗氧化的量子点聚合物光学膜及其制备方法和用途 Active CN107650452B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710008657.6A CN107650452B (zh) 2017-01-05 2017-01-05 一种抗氧化的量子点聚合物光学膜及其制备方法和用途
PCT/CN2018/071561 WO2018127129A1 (zh) 2017-01-05 2018-01-05 一种抗氧化的量子点聚合物光学膜及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710008657.6A CN107650452B (zh) 2017-01-05 2017-01-05 一种抗氧化的量子点聚合物光学膜及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN107650452A true CN107650452A (zh) 2018-02-02
CN107650452B CN107650452B (zh) 2019-10-22

Family

ID=61126762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710008657.6A Active CN107650452B (zh) 2017-01-05 2017-01-05 一种抗氧化的量子点聚合物光学膜及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN107650452B (zh)
WO (1) WO2018127129A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108481825A (zh) * 2018-05-22 2018-09-04 惠州市创亿达新材料有限公司 量子点光学功能板及其制备方法
CN109638169A (zh) * 2018-10-29 2019-04-16 纳晶科技股份有限公司 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件
CN109694518A (zh) * 2018-12-27 2019-04-30 四川东方绝缘材料股份有限公司 一种双键聚合物量子点膜及其制备方法
CN110129027A (zh) * 2019-05-31 2019-08-16 苏州星烁纳米科技有限公司 量子点复合膜及其制备方法
CN110311055A (zh) * 2019-07-26 2019-10-08 马鞍山微晶光电材料有限公司 一种复合发光基片及其制备方法和应用
WO2020015432A1 (zh) * 2018-07-20 2020-01-23 纳晶科技股份有限公司 发光器件及其制作方法
CN111040756A (zh) * 2019-12-16 2020-04-21 深圳扑浪创新科技有限公司 一种光学膜及制作方法
CN111349428A (zh) * 2018-12-21 2020-06-30 苏州星烁纳米科技有限公司 荧光纳米材料-聚合物复合体、波长转换元件的制备方法
CN112080029A (zh) * 2019-06-13 2020-12-15 苏州星烁纳米科技有限公司 量子点膜及其制备方法
CN113267922A (zh) * 2020-02-17 2021-08-17 广东普加福光电科技有限公司 一种量子点彩色滤光片及其制备方法
WO2022016785A1 (zh) * 2020-07-24 2022-01-27 Tcl科技集团股份有限公司 掺杂的MXene量子点的制备方法以及光学薄膜和QLED
CN114474940A (zh) * 2022-01-30 2022-05-13 东南大学 一种高稳定自阻隔量子点光学膜及其制备方法和应用
CN115197517A (zh) * 2021-04-13 2022-10-18 致晶科技(北京)有限公司 一种钙钛矿量子点复合光扩散剂及其制备方法和应用
CN115232447A (zh) * 2021-04-22 2022-10-25 友辉光电股份有限公司 量子点光学膜
CN115284513A (zh) * 2022-10-09 2022-11-04 广域兴智能(南通)科技有限公司 一种简化阻隔膜的光转换膜及其制程方式
CN115322428A (zh) * 2021-04-23 2022-11-11 友辉光电股份有限公司 量子点光学膜
CN115197517B (zh) * 2021-04-13 2024-09-24 致晶科技(北京)有限公司 一种钙钛矿量子点复合光扩散剂及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690203A (zh) * 2019-03-14 2020-09-22 苏州星烁纳米科技有限公司 量子点-聚合物复合体的制备方法
CN112574438B (zh) * 2021-02-25 2021-05-11 昆山博益鑫成高分子材料有限公司 核壳结构的钙钛矿量子点聚合物微球的制备方法及其应用
CN114015232B (zh) * 2021-11-17 2023-04-28 桂林电器科学研究院有限公司 用于制备聚酰亚胺反射膜的聚酰胺酸组合物、其制备方法和聚酰亚胺反射膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963022A (zh) * 2015-07-07 2015-10-07 中国科学院重庆绿色智能技术研究院 一种高强度高模量聚乙烯醇-石墨烯量子点复合纤维的制备方法及产物
WO2016040308A1 (en) * 2014-09-08 2016-03-17 Qd Vision, Inc. Quantum dot-containing materials and products including same
CN105754603A (zh) * 2016-05-11 2016-07-13 青岛海信电器股份有限公司 量子点组件及其制备方法和应用
CN105929635A (zh) * 2016-04-29 2016-09-07 京东方科技集团股份有限公司 量子点光刻胶及其制备方法、显示基板和显示装置
CN106190101A (zh) * 2016-07-13 2016-12-07 上海交通大学 具有微结构表面的自支持薄膜及其制备方法
CN106292073A (zh) * 2016-10-09 2017-01-04 纷响新材料科技(上海)有限公司 一种长寿命量子点膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625983B2 (ja) * 2013-12-20 2019-12-25 スリーエム イノベイティブ プロパティズ カンパニー 改善されたエッジ侵入を有する量子ドット物品
WO2016075949A1 (ja) * 2014-11-14 2016-05-19 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置
JP6363487B2 (ja) * 2014-12-10 2018-07-25 富士フイルム株式会社 波長変換部材、バックライトユニット、液晶表示装置、および波長変換部材の製造方法
JP6309472B2 (ja) * 2015-02-06 2018-04-11 富士フイルム株式会社 重合性組成物、波長変換部材、バックライトユニット、および液晶表示装置
CN105870305A (zh) * 2016-04-27 2016-08-17 纳晶科技股份有限公司 量子点膜与其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016040308A1 (en) * 2014-09-08 2016-03-17 Qd Vision, Inc. Quantum dot-containing materials and products including same
CN104963022A (zh) * 2015-07-07 2015-10-07 中国科学院重庆绿色智能技术研究院 一种高强度高模量聚乙烯醇-石墨烯量子点复合纤维的制备方法及产物
CN105929635A (zh) * 2016-04-29 2016-09-07 京东方科技集团股份有限公司 量子点光刻胶及其制备方法、显示基板和显示装置
CN105754603A (zh) * 2016-05-11 2016-07-13 青岛海信电器股份有限公司 量子点组件及其制备方法和应用
CN106190101A (zh) * 2016-07-13 2016-12-07 上海交通大学 具有微结构表面的自支持薄膜及其制备方法
CN106292073A (zh) * 2016-10-09 2017-01-04 纷响新材料科技(上海)有限公司 一种长寿命量子点膜及其制备方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108481825A (zh) * 2018-05-22 2018-09-04 惠州市创亿达新材料有限公司 量子点光学功能板及其制备方法
US12015108B2 (en) 2018-07-20 2024-06-18 Najing Technology Corporation Limited Light emitting device and manufacturing method thereof
TWI781319B (zh) * 2018-07-20 2022-10-21 大陸商納晶科技股份有限公司 發光裝置及其製作方法
WO2020015432A1 (zh) * 2018-07-20 2020-01-23 纳晶科技股份有限公司 发光器件及其制作方法
CN110739385A (zh) * 2018-07-20 2020-01-31 纳晶科技股份有限公司 发光器件及其制作方法
CN109638169A (zh) * 2018-10-29 2019-04-16 纳晶科技股份有限公司 有机阻隔膜、有机阻隔膜的制备方法以及量子点器件
CN111349428A (zh) * 2018-12-21 2020-06-30 苏州星烁纳米科技有限公司 荧光纳米材料-聚合物复合体、波长转换元件的制备方法
CN111349428B (zh) * 2018-12-21 2023-02-28 苏州星烁纳米科技有限公司 荧光纳米材料-聚合物复合体、波长转换元件的制备方法
CN109694518B (zh) * 2018-12-27 2022-01-28 四川东方绝缘材料股份有限公司 一种双键聚合物量子点膜及其制备方法
CN109694518A (zh) * 2018-12-27 2019-04-30 四川东方绝缘材料股份有限公司 一种双键聚合物量子点膜及其制备方法
CN110129027A (zh) * 2019-05-31 2019-08-16 苏州星烁纳米科技有限公司 量子点复合膜及其制备方法
CN110129027B (zh) * 2019-05-31 2022-06-07 苏州星烁纳米科技有限公司 量子点复合膜及其制备方法
CN112080029A (zh) * 2019-06-13 2020-12-15 苏州星烁纳米科技有限公司 量子点膜及其制备方法
CN110311055A (zh) * 2019-07-26 2019-10-08 马鞍山微晶光电材料有限公司 一种复合发光基片及其制备方法和应用
CN111040756A (zh) * 2019-12-16 2020-04-21 深圳扑浪创新科技有限公司 一种光学膜及制作方法
CN113267922A (zh) * 2020-02-17 2021-08-17 广东普加福光电科技有限公司 一种量子点彩色滤光片及其制备方法
WO2022016785A1 (zh) * 2020-07-24 2022-01-27 Tcl科技集团股份有限公司 掺杂的MXene量子点的制备方法以及光学薄膜和QLED
CN115197517A (zh) * 2021-04-13 2022-10-18 致晶科技(北京)有限公司 一种钙钛矿量子点复合光扩散剂及其制备方法和应用
CN115197517B (zh) * 2021-04-13 2024-09-24 致晶科技(北京)有限公司 一种钙钛矿量子点复合光扩散剂及其制备方法和应用
CN115232447A (zh) * 2021-04-22 2022-10-25 友辉光电股份有限公司 量子点光学膜
CN115322428A (zh) * 2021-04-23 2022-11-11 友辉光电股份有限公司 量子点光学膜
CN114474940B (zh) * 2022-01-30 2023-08-25 东南大学 一种高稳定自阻隔量子点光学膜及其制备方法和应用
CN114474940A (zh) * 2022-01-30 2022-05-13 东南大学 一种高稳定自阻隔量子点光学膜及其制备方法和应用
CN115284513A (zh) * 2022-10-09 2022-11-04 广域兴智能(南通)科技有限公司 一种简化阻隔膜的光转换膜及其制程方式

Also Published As

Publication number Publication date
WO2018127129A1 (zh) 2018-07-12
CN107650452B (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN107650452B (zh) 一种抗氧化的量子点聚合物光学膜及其制备方法和用途
JP6448782B2 (ja) 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置
JP6448397B2 (ja) 蛍光体分散組成物及びそれを用いて得られた蛍光成形体、波長変換膜、波長変換部材、バックライトユニット、液晶表示装置
KR102151510B1 (ko) 양자 도트 함유 조성물, 파장 변환 부재, 백라이트 유닛, 및 액정 표시 장치
CN106462006B (zh) 转印材料、液晶面板的制造方法及液晶显示装置的制造方法
CN103777255B (zh) 防眩膜及其制造方法
CN103044996A (zh) 一种无溶剂uv固化光扩散涂层材料、制备方法及其应用
WO2016189827A1 (ja) 重合性組成物、波長変換部材、バックライトユニット、および液晶表示装置
JPH0516002B2 (zh)
CN102076723A (zh) 固化性组合物和其固化物
CN102782530A (zh) 防眩性膜、防眩性膜的制造方法、偏振片和图像显示装置
CN106662690A (zh) 两面带保护膜的偏振板的制造方法
CN108780179A (zh) 带透明树脂层的单侧保护偏振膜的制造方法、带粘合剂层的偏振膜的制造方法、光学层叠体的制造方法
CN108431650A (zh) 光学膜的制造方法
CN115305017A (zh) 一种高折射率光学有机胶水组合物及其制备方法与使用方法
Yu et al. Robust hydrophobic veova10-based colloidal photonic crystals towards fluorescence enhancement of quantum dots
CN108329851A (zh) 一种高油墨填充性全贴合oca及其制备方法
CN110114700A (zh) 波长转换膜及波长转换膜的制造方法
CN108780181A (zh) 带粘合剂层的单侧保护偏振膜的制造方法
JP2007004107A (ja) ブラックスクリーン及びその製造方法
CN106590622A (zh) 改性稀土转光材料高分子聚合物农膜
CN101065690A (zh) 偏振片及其用途
KR101789456B1 (ko) 폴리머 필름, 폴리머 필름의 제조 방법, 편광판 및 액정 표시 장치
CN106526727B (zh) 一种高辉度高雾度复合光学板
CN108780173A (zh) 树脂膜的制造方法和偏振膜的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Anti-oxidative quantum dot polymer optical film and preparation method and application thereof

Effective date of registration: 20191202

Granted publication date: 20191022

Pledgee: Hubei Guo Chuang financing Company limited by guarantee

Pledgor: WUHAN POLYQOLOR TECHNOLOGY Ltd.

Registration number: Y2019420000034

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220415

Granted publication date: 20191022

Pledgee: Hubei Guo Chuang financing Company limited by guarantee

Pledgor: WUHAN POLYQOLOR TECHNOLOGY Ltd.

Registration number: Y2019420000034

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220507

Address after: No. 158, baihequan West Road, Zhashan street, Caidian District, Wuhan City, Hubei Province 430108

Patentee after: Wuhan Huacai photoelectric Co.,Ltd.

Address before: 430075 block 6, Guanggu biological city, No. 999, Gaoxin Avenue, Donghu high tech Development Zone, Hongshan District, Wuhan City, Hubei Province

Patentee before: WUHAN POLYQOLOR TECHNOLOGY Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: An antioxidant quantum dot polymer optical film and its preparation method and application

Effective date of registration: 20230209

Granted publication date: 20191022

Pledgee: Wuhan area branch of Hubei pilot free trade zone of Bank of China Ltd.

Pledgor: Wuhan Huacai photoelectric Co.,Ltd.

Registration number: Y2023420000035