CN107500802B - 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法 - Google Patents

一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN107500802B
CN107500802B CN201710882516.7A CN201710882516A CN107500802B CN 107500802 B CN107500802 B CN 107500802B CN 201710882516 A CN201710882516 A CN 201710882516A CN 107500802 B CN107500802 B CN 107500802B
Authority
CN
China
Prior art keywords
silicon nitride
heating
nitride ceramic
porous silicon
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710882516.7A
Other languages
English (en)
Other versions
CN107500802A (zh
Inventor
伍尚华
黄容基
蒋强国
伍海东
吴子薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710882516.7A priority Critical patent/CN107500802B/zh
Publication of CN107500802A publication Critical patent/CN107500802A/zh
Application granted granted Critical
Publication of CN107500802B publication Critical patent/CN107500802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本申请属于3D打印技术领域,具体涉及一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法。本发明所提供的氮化硅陶瓷浆料包括:聚氮硅烷液体30份、氮化硅粉体14.5~83份、烧结助剂2.5~9份、光固化树脂7~40份、光引发剂0.2~0.6份和分散剂0~0.9份。本发明还提供了一种多孔氮化硅陶瓷的制备方法,包括:将上述氮化硅陶瓷浆料依次进行光固化成型、脱脂、烧结。采用本发明方案得到的多孔氮化硅陶瓷气孔率和气孔大小可控,气孔均匀排布,尺寸精度高,成型效率高,制备工艺简单优化,可促进多孔氮化硅陶瓷在医疗、化工、电子等领域的应用。

Description

一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法
技术领域
本发明属于3D打印技术领域,具体涉及一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法。
背景技术
氮化硅因其具有优异的综合机械性能,良好的高温力学性能、热稳定性、和抗热震性等,一直受到人们的广泛关注。多孔氮化硅陶瓷材料是当前研究热点,多孔氮化硅陶瓷具有高气孔率、低介电常数、介电性能优异等特点,在航天航空等领域发挥着特殊作用。
目前主要制备多孔陶瓷的方法主要有添加造孔剂和凝胶注模法等,如中国专利ZL201110366340.2(多孔氮化硅陶瓷及其制备方法)公布了一种以硅粉和氮化硅粉为原料通过自蔓延法制备多孔氮化硅陶瓷的方法;中国专利ZL201410095989.9(一种多孔氮化硅陶瓷的制备方法)公布了一种融合凝胶注模耦合添加造孔剂法制备多孔氮化硅陶瓷的方法;中国专利ZL201510761777.4(一种凝胶注模成型制备微多孔氮化硅陶瓷的方法)公布了一种凝胶注模成型制备微多孔氮化硅陶瓷的方法。
然而,上述方法存在多种问题:添加造孔剂的工艺气孔率较低,气孔分布不均匀,发泡工艺条件复杂难控制;凝胶注模法的成本高,零件形状有限,无法实现复杂形状的制备。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法。
本发明的具体技术方案如下:
一种氮化硅陶瓷浆料,包括以下重量组份:
Figure BDA0001419450330000011
Figure BDA0001419450330000021
优选的,所述烧结助剂为MgO、Al2O3和Re2O3中的一种或多种;
其中,Re2O3=Y2O3、La2O3、Ce2O3、Pr2O3、Nd2O3、Pm2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3或Tm2O3
优选的,所述光固化树脂选自1,6-己二醇二丙烯酸酯、季戊四醇四丙烯酸酯、甲基丙烯酸羟乙酯、季戊四醇三丙烯酸酯和三羟甲基丙烷三丙烯酸酯中的一种或多种。
优选的,所述光引发剂选自2-羟基-2-甲基-1-苯基-1-丙酮、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)二苯基氧化膦和2-异丙基硫杂蒽酮中的一种或多种。
本发明还提供了一种多孔氮化硅陶瓷的制备方法,包括以下步骤:
a)将上述氮化硅陶瓷浆料进行光固化成型,得到成型坯体;在所述光固化成型中,控制单层厚度为20~100μm,曝光量为30~400mJ/cm2
b)将所述成型坯体进行加热脱脂,得到脱脂坯体;
c)将所述脱脂坯体进行烧结,得到所述多孔氮化硅陶瓷;
其中,所述烧结包括:在保护气氛条件下,将所述脱脂坯体以5℃/min的升温速率升温至800℃,接着以0.5~3℃/min的升温速率升温至1400~1800℃保温1~5h。
优选的,所述加热脱脂包括:
在真空或保护气氛条件下,将所述成型坯体以0.5~2℃/min的升温速率升温至280℃并保温1~3h,接着以1~2℃/min的速率升温至600℃并保温1~3h,再以0.5~2℃/min的速率升温至800~1000℃并保温1~5h,得到所述脱脂坯体;
优选的,步骤c)在0.1-200MPa的气压下进行。
优选的,所述保护气氛为氨气气氛、氮气气氛或氩气气氛。
综上所述,本发明所提供的氮化硅陶瓷浆料包括:聚氮硅烷液体30份、氮化硅粉体14.5~83份、烧结助剂2.5~9份、光固化树脂7~40份、光引发剂0.2~0.6份和分散剂0~0.9份。本发明还提供了一种多孔氮化硅陶瓷的制备方法,包括:将上述氮化硅陶瓷浆料依次进行光固化成型、脱脂、烧结。采用本发明方案得到的多孔氮化硅陶瓷气孔率和气孔大小可控,气孔均匀排布,尺寸精度高,成型效率高,制备工艺简单优化,可促进多孔氮化硅陶瓷在医疗、化工、电子等领域的应用。
具体实施方式
为了解决传统多孔氮化硅陶瓷制备技术中,无法精确控制多孔氮化硅陶瓷的气孔率,其气孔分布不均匀,而且工艺复杂,也无法实现形状复杂的多孔氮化硅陶瓷零件的制备等技术缺陷。本发明人在做了多种尝试之后,独创性地采用光固化成型技术制备多孔氮化硅陶瓷。
采用光固化成型技术制备多孔氮化硅陶瓷具有多种问题:与常规氧化物陶瓷相比,氮化硅陶瓷的表面特性较为复杂,不容易制备高固相含量、低粘度的陶瓷浆料,具有成型困难和造孔困难的问题;而且其固化深度浅,难以得到合适的单层固化厚度。本发明通过优化的浆料配方,选择合适的热解脱脂烧结工艺(前驱体热解过程中有气体产生,从而形成孔隙),并结合光固化成型技术制备得到具有复杂形状、气孔率合适、气孔分布均匀的氮化硅多孔陶瓷。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例中所采用的BYK-9076、BYK-163和BYK-9077均属于德国毕克助剂系列,BYK-9076为高分子量共聚物烷基铵盐,BYK-9077为含亲和基团的高分子量共聚物,BYK-163为含亲和基团的高分子量嵌段共聚物溶液。
实施例1
(1)制备浆料:将30g聚氮硅烷液体、50g氮化硅粉体和3g烧结助剂混合,然后加入10g光固化树脂和0.5g光引发剂并置于球磨机中球磨混合,得浆料1。
在本实施例中,光固化树脂为1,6-己二醇二丙烯酸酯(HDDA)和季戊四醇四丙烯酸酯(PETTA)的混合物,其混合质量比为1:1;
烧结助剂为Al2O3和Ce2O3,混合质量比为1:1;
光引发剂为苯基双(2,4,6-三甲基苯甲酰基)氧化膦(819)。
(2)成型:将浆料1置于光固化成型设备中并进行光固化处理,按照预设模型形状得到成型坯体1。
在本实施例中,控制单层厚度为20μm,曝光量为200mJ/cm2
(3)脱脂烧结:将成型坯体1置于氨气气氛中,以0.5℃/min的速率升温至280℃并保温3h,接着以1℃/min的速率升温至600℃并保温3h,再以0.5℃/min的速率升温至1000℃并保温5h,得到脱脂坯体1;
将脱脂坯体1置于氩气环境中,气压为0.1MPa,以5℃/min的速率升温至800℃,然后以1℃/min升温至1400℃并保温2h,再以1℃/min降温至800℃后随炉冷却,得多孔氮化硅陶瓷1,气孔率为60~80%。
实施例2
(1)制备浆料:将30g聚氮硅烷液体、83g氮化硅粉体和9g烧结助剂混合,然后加入40g光固化树脂、0.6g光引发剂和0.9g分散剂并置于球磨机中球磨混合,得浆料2。
在本实施例中,光固化树脂为1,6-己二醇二丙烯酸酯(HDDA)和季戊四醇四丙烯酸酯(PETTA)的混合物,其混合质量比为2:1;
烧结助剂为Al2O3和Ce2O3,混合质量比为1:1;
光引发剂为(2,4,6-三甲基苯甲酰基)二苯基氧化膦(TPO);
分散剂为BYK163。
(2)成型:将浆料2置于光固化成型设备中并进行光固化处理,按照预设模型形状得到成型坯体2。
在本实施例中,控制单层厚度为20μm,曝光量为120mJ/cm2
(3)脱脂烧结:将成型坯体2置于氮气气氛中,以2℃/min的速率升温至280℃并保温3h,接着以0.5℃/min的速率升温至600℃并保温3h,再以0.5℃/min的速率升温至1000℃并保温5h,得到脱脂坯体2;
将脱脂坯体2置于氮气环境中,气压为10MPa,以5℃/min的速率升温至800℃,然后以2℃/min升温至1800℃并保温2.5h,再以2℃/min降温至800℃后随炉冷却,得多孔氮化硅陶瓷2,气孔率为5~20%。
实施例3
(1)制备浆料:将30g聚氮硅烷液体、14.5g氮化硅粉体和2.5g烧结助剂混合,然后加入7g光固化树脂、0.2g光引发剂和0.2g分散剂并置于球磨机中球磨混合,得浆料3。
在本实施例中,光固化树脂为三羟甲基丙烷三丙烯酸酯(TMPTA)、季戊四醇三丙烯酸酯(PETA)的混合物,其混合质量比为3:1;
烧结助剂为Al2O3和La2O3,混合质量比为1:2;
光引发剂为819;
分散剂为BYK163和BYK9077,混合质量比为1:1。
(2)成型:将浆料3置于光固化成型设备中并进行光固化处理,按照预设模型形状得到成型坯体3。
在本实施例中,控制单层厚度为50μm,曝光量为300mJ/cm2
(3)脱脂烧结:将成型坯体3置于空气中,以1℃/min的速率升温至280℃并保温2h,接着以1℃/min的速率升温至600℃并保温2h,再以1℃/min的速率升温至900℃并保温3h,得到脱脂坯体3;
将脱脂坯体3置于氨气环境中,气压为5MPa,以5℃/min的速率升温至800℃,然后以2℃/min升温至1750℃并保温2.5h,再以2℃/min降温至800℃后随炉冷却,得多孔氮化硅陶瓷3,气孔率为50~70%。
实施例4
(1)制备浆料:将30g聚氮硅烷液体、36.9g氮化硅粉体和4.1g烧结助剂混合,然后加入10g光固化树脂、0.2g光引发剂和0.4g分散剂并置于球磨机中球磨混合,得浆料4。
在本实施例中,光固化树脂为1,6-己二醇二丙烯酸酯(HDDA)、季戊四醇四丙烯酸酯(PETTA)的混合物,其混合质量比为4:1;
烧结助剂为Al2O3和Lu2O3,混合质量比为1:2;
光引发剂为2-羟基-2-甲基-1-苯基-1-丙酮(1173);
分散剂为BYK9076。
(2)成型:将浆料4置于光固化成型设备中并进行光固化处理,按照预设模型形状得到成型坯体4。
在本实施例中,控制单层厚度为50μm,曝光量为300mJ/cm2
(3)脱脂烧结:将成型坯体4置于氮气中,以1℃/min的速率升温至280℃并保温3h,接着以2℃/min的速率升温至600℃并保温3h,再以1.5℃/min的速率升温至900℃并保温3h,得到脱脂坯体4;
将脱脂坯体4置于氨气环境中,气压为0.1MPa,以5℃/min的速率升温至800℃,然后以1℃/min升温至1750℃并保温3h,再以1℃/min降温至800℃后随炉冷却,得多孔氮化硅陶瓷4,气孔率为40~50%。
实施例5
(1)制备浆料:将30g聚氮硅烷液体、27g氮化硅粉体和3g烧结助剂混合,然后加入20g光固化树脂、0.2g光引发剂和0.3g分散剂并置于球磨机中球磨混合,得浆料5。
在本实施例中,光固化树脂为1,6-己二醇二丙烯酸酯(HDDA)、季戊四醇四丙烯酸酯(PETTA)的混合物,其混合质量比为4:1;
烧结助剂为Al2O3和Nd2O3,混合质量比为1:1;
光引发剂为2-异丙基硫杂蒽酮(ITX);
分散剂为BYK9067。
(2)成型:将浆料5置于光固化成型设备中并进行光固化处理,按照预设模型形状得到成型坯体5。
在本实施例中,控制单层厚度为100μm,曝光量为350mJ/cm2
(3)脱脂烧结:将成型坯体5置于氨气中,以1℃/min的速率升温至280℃并保温2h,接着以1℃/min的速率升温至600℃并保温3h,再以0.5℃/min的速率升温至1000℃并保温5h,得到脱脂坯体5;
将脱脂坯体5置于氩气环境中,气压为1MPa,以5℃/min的速率升温至800℃,然后以2℃/min升温至1750℃并保温1h,再以2℃/min降温至800℃后随炉冷却,得多孔氮化硅陶瓷5,气孔率为30~40%。
实施例6
(1)制备浆料:将30g聚氮硅烷液体、61.75g氮化硅粉体和3.25g烧结助剂混合,然后加入35g光固化树脂、0.6g光引发剂和0.6g分散剂并置于球磨机中球磨混合,得浆料6。
在本实施例中,光固化树脂为1,6-己二醇二丙烯酸酯(HDDA)、季戊四醇四丙烯酸酯(PETTA)的混合物,其混合质量比为4:1;
烧结助剂为MgO;
光引发剂为819和TPO,混合质量比为1:1;
分散剂为BYK9077和BYK9076,混合质量比为1:1。
(2)成型:将浆料6置于光固化成型设备中并进行光固化处理,按照预设模型形状得到成型坯体6。
在本实施例中,控制单层厚度为20μm,曝光量为200mJ/cm2
(3)脱脂烧结:将成型坯体6置于氨气中,以1.5℃/min的速率升温至280℃并保温2.5h,接着以1℃/min的速率升温至600℃并保温2.5h,再以1.5℃/min的速率升温至950℃并保温3.5h,得到脱脂坯体6;
将脱脂坯体6置于氨气环境中,气压为10MPa,以5℃/min的速率升温至800℃,然后以1℃/min升温至1650℃并保温2h,再以1℃/min降温至800℃后随炉冷却,得多孔氮化硅陶瓷6,气孔率为25~40%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种多孔氮化硅陶瓷的制备方法,其特征在于,包括以下步骤:
a)将氮化硅陶瓷浆料进行光固化成型,得到成型坯体;在所述光固化成型中,控制单层厚度为20~100μm,曝光量为30~400mJ/cm2
b)将所述成型坯体进行加热脱脂,得到脱脂坯体;
c)将所述脱脂坯体进行烧结,得到所述多孔氮化硅陶瓷;
其中,所述烧结包括:在保护气氛条件下,将所述脱脂坯体以5℃/min的升温速率升温至800℃,接着以0.5~3℃/min的升温速率升温至1400~1800℃保温1~5h;
所述氮化硅陶瓷浆料包括以下重量组份:
Figure FDA0002725803290000011
2.根据权利要求1所述的制备方法,其特征在于,所述烧结助剂为MgO、Al2O3和Re2O3中的一种或多种;
其中,Re2O3=Y2O3、La2O3、Ce2O3、Pr2O3、Nd2O3、Pm2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3或Tm2O3
3.根据权利要求1所述的制备方法,其特征在于,所述光固化树脂选自1,6-己二醇二丙烯酸酯、季戊四醇四丙烯酸酯、甲基丙烯酸羟乙酯、季戊四醇三丙烯酸酯和三羟甲基丙烷三丙烯酸酯中的一种或多种。
4.根据权利要求1所述的制备方法,其特征在于,所述光引发剂选自2-羟基-2-甲基-1-苯基-1-丙酮、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(2,4,6-三甲基苯甲酰基)二苯基氧化膦和2-异丙基硫杂蒽酮中的一种或多种。
5.根据权利要求1所述的制备方法,其特征在于,所述加热脱脂包括:
在真空或保护气氛条件下,将所述成型坯体以0.5~2℃/min的升温速率升温至280℃并保温1~3h,接着以1~2℃/min的速率升温至600℃并保温1~3h,再以0.5~2℃/min的速率升温至800~1000℃并保温1~5h,得到所述脱脂坯体。
6.根据权利要求1所述的制备方法,其特征在于,步骤c)在0.1-200MPa的气压下进行。
7.根据权利要求1或5所述的制备方法,其特征在于,所述保护气氛为氨气气氛、氮气气氛或氩气气氛。
CN201710882516.7A 2017-09-26 2017-09-26 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法 Active CN107500802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710882516.7A CN107500802B (zh) 2017-09-26 2017-09-26 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710882516.7A CN107500802B (zh) 2017-09-26 2017-09-26 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN107500802A CN107500802A (zh) 2017-12-22
CN107500802B true CN107500802B (zh) 2021-01-26

Family

ID=60699780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710882516.7A Active CN107500802B (zh) 2017-09-26 2017-09-26 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN107500802B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485395A (zh) * 2018-01-15 2019-03-19 杭州创屹机电科技有限公司 一种3d打印高强度陶瓷坯胎的方法
CN108147830A (zh) * 2018-01-17 2018-06-12 龙泉市金宏瓷业有限公司 一种3d打印陶瓷先驱体复合材料及其制备方法
CN108892515B (zh) * 2018-08-03 2021-05-28 广东工业大学 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷及其制备方法
CN110240484B (zh) * 2019-06-18 2021-11-16 西北工业大学 一种3d打印高比表面积高效率催化剂-载体体系的方法
CN110357643A (zh) * 2019-07-25 2019-10-22 航天特种材料及工艺技术研究所 光固化3d打印用氮化硅陶瓷浆料、制备方法及氮化硅陶瓷
CN110483062A (zh) * 2019-08-21 2019-11-22 广东工业大学 一种高性能氮化硅陶瓷及其制备方法和应用
CN110668824A (zh) * 2019-09-20 2020-01-10 西安交通大学 一种光固化3d打印氮化硅陶瓷前驱体、其制备及成形方法
CN110903093A (zh) * 2019-12-18 2020-03-24 上海应用技术大学 3d打印制备氮化硅陶瓷器件的方法
CN111039680A (zh) * 2019-12-26 2020-04-21 西安铂力特增材技术股份有限公司 一种含硅类陶瓷零件的成形方法
CN111302771A (zh) * 2020-02-23 2020-06-19 西北工业大学 一种3d打印陶瓷型芯素坯的两步脱脂方法
CN113800943B (zh) * 2021-08-17 2023-06-20 航天特种材料及工艺技术研究所 基于光固化技术制备孔隙梯度Si3N4基陶瓷材料的方法
CN116477958A (zh) * 2023-04-28 2023-07-25 长沙新立硅材料科技有限公司 一种高纯一体化氮化硅散热基板的制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107158474A (zh) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 光固化3d打印牙科种植体用浆料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107158474A (zh) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 光固化3d打印牙科种植体用浆料及其制备方法和应用

Also Published As

Publication number Publication date
CN107500802A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
CN107500802B (zh) 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法
CN107353036B (zh) 一种基于增材制造技术的多孔氮化硅陶瓷、其制备方法及其应用
CN102807391B (zh) 多孔碳化硅陶瓷的制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN108002842B (zh) 一种复杂形状多孔氮化硅件的制备方法
CN108002843B (zh) 一种基于膏体的高精度多孔氮化硅复杂形状件的制备方法
CN108033801A (zh) 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法
WO2022222778A1 (zh) 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
CN108585917B (zh) 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN106083061B (zh) 一种激光烧结快速成型碳化硅陶瓷的制备方法
CN105645967A (zh) 一种高度定向通孔多孔氮化硅陶瓷材料的制备方法
CN102808100B (zh) 定向孔陶瓷增强金属基复合材料的制备方法
CN105399428A (zh) 一种陶瓷料浆及陶瓷材料3d打印成型方法
CN107935628B (zh) 一种泡沫碳化硅陶瓷及其制备方法
CN107963890B (zh) 一种氮化钛多孔导电陶瓷的制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN106083205B (zh) 一种通过化学气相渗透提高整体式氧化铝基陶瓷铸型高温强度的方法
CN103102172B (zh) 一种碳酸氢铵发泡法制备多孔氮化硅陶瓷的方法
CN107500779B (zh) 一种多孔硅基结构陶瓷及其制备方法
CN107619282B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法
JPH0379306B2 (zh)
CN113548903B (zh) 一种碳化硅增强氮化硅陶瓷及其制备方法
CN107721450A (zh) 一种多孔陶瓷材料的制备方法
CN108147834A (zh) 介电常数可调控的轻质氮化硅天线罩及其制备方法
JP4018488B2 (ja) 無機物多孔質体及びこれを利用した無機物体及びポンプの羽根車,ケーシング又はライナーリング

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant