CN107500779B - 一种多孔硅基结构陶瓷及其制备方法 - Google Patents

一种多孔硅基结构陶瓷及其制备方法 Download PDF

Info

Publication number
CN107500779B
CN107500779B CN201710719678.9A CN201710719678A CN107500779B CN 107500779 B CN107500779 B CN 107500779B CN 201710719678 A CN201710719678 A CN 201710719678A CN 107500779 B CN107500779 B CN 107500779B
Authority
CN
China
Prior art keywords
powder
ceramic
mixing
porous silicon
based structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710719678.9A
Other languages
English (en)
Other versions
CN107500779A (zh
Inventor
黄淼俊
邓欣
李练
伍尚华
陈健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710719678.9A priority Critical patent/CN107500779B/zh
Publication of CN107500779A publication Critical patent/CN107500779A/zh
Application granted granted Critical
Publication of CN107500779B publication Critical patent/CN107500779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种多孔硅基结构陶瓷及其制备方法,方法包括:将纳米SiO2粉和C粉球磨混合,得到基础粉体,纳米SiO2粉和C粉的质量比为50~100:0~50;将基础粉体和有机溶剂球磨混合,得到固相含量为50~80wt%的预制浆料;将预制浆料和光引发剂混合,采用光固化增材制造技术成型,得到陶瓷素坯,在真空气氛下排胶后,再在氩气和/或氮气气氛下反应烧结,得到多孔硅基结构陶瓷。该法基于光固化增材制造技术,以层层堆叠成型的方式,通过光引发剂的光固化反应和反应烧结,使得多孔硅基结构陶瓷结构可控,且具有较高孔隙率和抗弯强度。该陶瓷的孔隙率为71.1~77.4%,抗弯强度为72.6~109.3MPa。

Description

一种多孔硅基结构陶瓷及其制备方法
技术领域
本发明涉及高性能陶瓷制备技术和增材制造技术领域,具体涉及一种多孔硅基结构陶瓷及其制备方法。
背景技术
高性能硅基结构陶瓷以SiC、Si3N4及其复合材料为主,具有硬度高、强度高、化学性能稳定、导热系数高、热膨胀系数小、耐磨性好、耐热震等优点,已被广泛应用于航空航天、电子、汽车、机械加工、化工冶金、军工等高端技术领域。随着高性能结构陶瓷的功能集成和应用拓展,多孔硅基结构陶瓷在过滤器、催化载体、医疗植入体等特殊领域的应用越来越多,因此,对硅基结构陶瓷的结构和性能的要求也日益苛刻。
传统的多孔硅基结构陶瓷制备技术主要包括挤压成型法(例如无压成型、热压成型、锻压成型和等静压成型等)、添加造孔剂法、发泡法、冷冻干燥法和凝胶注模法等。这些基于传统模具工艺发展的方法容易获得一定孔隙率的硅基结构陶瓷,但是由于受到模具的限制,难以获得复杂形状的陶瓷制件,而且对制件内部的微/纳结构无法精准调控,力学性能往往无法达到预定的要求,还存在工艺配备复杂、制备周期长、成本高等不足。
发明内容
有鉴于此,本发明的目的在于提供一种多孔硅基结构陶瓷及其制备方法,该多孔硅基结构陶瓷的结构可控,且具有较高的孔隙率和抗弯强度。
本发明提供了一种多孔硅基结构陶瓷的制备方法,包括以下步骤:
将纳米SiO2粉和C粉球磨混合,得到基础粉体,所述纳米SiO2粉和C粉的质量比为50~100:0~50;
将所述基础粉体和有机溶剂球磨混合,得到固相含量为50~80wt%的预制浆料;
将所述预制浆料和光引发剂混合,采用光固化增材制造技术成型,得到陶瓷素坯;
将所述陶瓷素坯在真空气氛下排胶后,再在氩气和/或氮气气氛下反应烧结,得到多孔硅基结构陶瓷。
优选地,所述光固化增材制造技术为立体光固化成型技术、数字光处理技术或多喷头打印技术。
优选地,所述采用光固化增材制造技术成型具体包括:
将多孔三维模型文件导入分层软件中,切片分层后形成打印程序,打印时激光功率为10~50W、打印层厚度为10~100μm;
将预制浆料和光引发剂混合后的混合物铺料,打印,使单层浆料固化,再重新铺设混合物进行固化;重复上述的铺料和打印过程,得到陶瓷素坯。
优选地,所述有机溶剂选自聚对苯二甲酰对苯二胺、环氧己烷、环氧丙烯酸酯、1,6-已二醇二丙烯酸酯、环氧环已基甲酸酯、聚乙二醇、正辛醇、异丙醇、醋酸甲酯和醋酸乙酯中的一种或多种。
优选地,所述光引发剂选自安息香双甲醚、二苯基乙酮、羟烷基苯酮、双苯甲酰基苯基氧化膦、二苯甲酮、硫代丙氧基硫杂蒽酮和烷基碘鎓盐中的一种或多种。
优选地,所述排胶的温变过程包括:
以3℃/min~10℃/min的升温速率从室温升温至400℃,再以1℃/min~3℃/min的升温速率从400℃升温至600~800℃,每隔100℃的保温时间为0.5~3h,最后以1~10℃/min的降温速率降至室温。
优选地,所述反应烧结的温变过程包括:
以5℃/min~20℃/min的升温速率从室温升温至600℃,再以1℃/min~5℃/min的升温速率从600℃升温至1300~2500℃,保温时间为1~5h,最后以10℃/min~50℃/min的降温速率降至室温。
优选地,所述反应烧结的气氛为氩气和/或氮气。
本发明提供了一种多孔硅基结构陶瓷,所述多孔硅基结构陶瓷的孔隙率为71~78%。
优选地,所述多孔硅基结构陶瓷包括Si3N4陶瓷、SiC陶瓷和Si3N4-SiC复合陶瓷。
本发明提供了一种多孔硅基结构陶瓷的制备方法,包括以下步骤:将纳米SiO2粉和C粉球磨混合,得到基础粉体,所述纳米SiO2粉和C粉的质量比为50~100:0~50;将所述基础粉体和有机溶剂球磨混合,得到固相含量为50~80wt%的预制浆料;将所述预制浆料和光引发剂混合,采用光固化增材制造技术成型,得到陶瓷素坯;将所述陶瓷素坯在真空气氛下排胶后,再在氩气和/或氮气气氛下反应烧结,得到多孔硅基结构陶瓷。该方法基于光固化增材制造技术,以层层堆叠成型的方式,通过光引发剂的光固化反应和反应烧结,使制得的多孔硅基结构陶瓷的结构可控,且具有较高的孔隙率和抗弯强度。实验结果表明:多孔硅基结构陶瓷的孔隙率为71.1~77.4%,抗弯强度为72.6~109.3MPa。
附图说明
图1为本发明提供的基于增材制造技术和反应烧结的多孔硅基结构陶瓷制备工艺流程图。
具体实施方式
本发明提供了一种多孔硅基结构陶瓷的制备方法,包括以下步骤:
将纳米SiO2粉和C粉球磨混合,得到基础粉体,所述纳米SiO2粉和C粉的质量比为50~100:0~50;
将所述基础粉体和有机溶剂球磨混合,得到固相含量为50~80wt%的预制浆料;
将所述预制浆料和光引发剂混合,采用光固化增材制造技术成型,得到陶瓷素坯;
将所述陶瓷素坯在真空气氛下排胶后,再在氩气和/或氮气气氛下反应烧结,得到多孔硅基结构陶瓷。
该方法基于光固化增材制造技术,以层层堆叠成型的方式,通过光引发剂的光固化反应和反应烧结,使制得的多孔硅基结构陶瓷的结构可控,且具有较高的孔隙率和抗弯强度。
本发明将纳米SiO2粉和C粉球磨混合,得到基础粉体。在本发明中,所述纳米SiO2粉的粒度优选为1nm~500nm;所述C粉的粒度优选为100nm~100μm。所述纳米SiO2粉和C粉的质量比为50~100:0~50,优选为55~80:20~45。所述纳米SiO2粉和C粉球磨混合时的球磨速率优选为100~500rpm,优选为200~400rpm,更优选为300rpm;球磨时间优选为1~5h,更优选为2~4h,最优选为2h;球磨时料球质量比优选为1~2:1,更优选为1.5:1。
得到基础粉体后,本发明将所述基础粉体和有机溶剂球磨混合,得到固相含量为50~80wt%的预制浆料。在本发明中,所述有机溶剂优选选自聚对苯二甲酰对苯二胺、环氧己烷、环氧丙烯酸酯、1,6-已二醇二丙烯酸酯、环氧环已基甲酸酯、聚乙二醇、正辛醇、异丙醇、醋酸甲酯和醋酸乙酯中的一种或多种,更优选选自聚对苯二甲酰对苯二胺、环氧己烷、环氧丙烯酸酯、1,6-已二醇二丙烯酸酯、环氧环已基甲酸酯、正辛醇和醋酸乙酯中的一种或多种;在本发明的具体实施例中,所述有机溶剂为聚对苯二甲酰对苯二胺、环氧己烷、环氧丙烯酸酯、1,6-已二醇二丙烯酸酯、环氧环已基甲酸酯、正辛醇和醋酸乙酯的混合物。预制浆料中固相为基础粉体,其含量为50~80wt%,优选为60~70wt%;所述有机溶剂在预制浆料中的百分比为20~50wt%,优选为30~40wt%。
在本发明中,所述基础粉体和有机溶剂球磨混合时的球磨速率优选为100~500rpm,优选为200~400rpm,更优选为300rpm;球磨时间优选为1~5h,更优选为2~4h,最优选为2h;球磨时料球质量比优选为1~2:1,更优选为1.5:1。
得到预制浆料后,本发明将所述预制浆料和光引发剂混合,采用光固化增材制造技术成型,得到陶瓷素坯。在本发明中,所述光引发剂优选选自安息香双甲醚、二苯基乙酮、羟烷基苯酮、双苯甲酰基苯基氧化膦、二苯甲酮、硫代丙氧基硫杂蒽酮和烷基碘鎓盐中的一种或多种;更优选选自安息香双甲醚、双苯甲酰基苯基氧化膦、二苯甲酮和烷基碘鎓盐中的一种或多种;在本发明的具体实施例中,所述光引发剂为安息香双甲醚。所述光引发剂和预制浆料的质量比优选为0.1~1:100,更优选为0.3~0.7:100,最优选为0.5:100。
在本发明中,所述光固化增材制造技术为立体光固化成型技术、数字光处理技术或多喷头打印技术。本发明采用光固化增材制造技术,可打印出高孔隙率和高连通性的硅基结构陶瓷素坯,打印精度高,结构易控制。
所述采用光固化增材制造技术成型具体优选包括:
将多孔三维模型文件导入分层软件中,切片分层后形成打印程序,打印时激光功率为10~50W、打印层厚度为10~100μm;
将预制浆料和光引发剂混合后的混合物铺料,打印,使单层浆料固化,再重新铺设混合物进行固化;重复上述的铺料和打印过程,得到陶瓷素坯。
在本发明中,打印时所述激光频率优选为10~50W,更优选为30~50W;在本发明的具体实施例中,激光频率为50W。打印层厚度优选为10~100μm,更优选为30~60μm;在本发明的具体实施例中,打印层厚度为50μm。
得到陶瓷素坯后,本发明将所述陶瓷素坯在真空气氛下排胶后,再在氩气和/或氮气气氛下反应烧结,得到多孔硅基结构陶瓷。
在本发明中,所述排胶优选在真空气氛下进行。本发明将陶瓷素坯中通过排胶,将素坯中的有机物分解为C,C可在高温反应烧结阶段与SiO2进一步反应,充分利用了有机物的残余物质,减少了排胶过程失重和结构变化,有效地减少陶瓷素坯热处理前后的体积收缩,而且残余C在坯体中分布均匀,有利于与SiO2充分反应。
在本发明中,所述排胶的温变过程包括:
以3℃/min~10℃/min的升温速率从室温升温至400℃,再以1℃/min~3℃/min的升温速率从400℃升温至600~800℃,每隔100℃的保温时间为0.5~3h,最后以1~10℃/min的降温速率降至室温。
具体的,在本发明的具体实施例中,所述排胶的温变过程包括:
以5℃/min的升温速率从室温升温至400℃,再以2℃/min的升温速率从400℃升温至750℃,每隔100℃的保温时间为1h,最后以5℃/min的降温速率降至室温。
在本发明中,所述反应烧结的温变过程包括:
以5℃/min~20℃/min的升温速率从室温升温至600℃,再以1℃/min~5℃/min的升温速率从600℃升温至1300~2500℃,保温时间为1~5h,最后以10℃/min~50℃/min的降温速率降至室温。
在本发明中,所述反应烧结包括SiO2-C-N2反应和/或SiO2-C反应。具体的,所述SiO2-C-N2反应生成Si3N4陶瓷的烧结气氛为N2,反应烧结温度为1400~1450℃。所述SiO2-C反应生成SiC陶瓷的烧结气氛为Ar,反应烧结温度为1800~2000℃。本发明通过利用SiO2与C/N2的化学反应,通过改变烧结气氛和温度,控制硅基陶瓷的化学成分;采用三维多孔连通结构,有利于热处理过程,陶瓷内外的物质和热量交换,使反应烧结更为充分。
本发明提供了一种多孔硅基结构陶瓷,所述多孔硅基结构陶瓷的孔隙率为71~78%。在本发明中,所述多孔硅基结构陶瓷包括Si3N4陶瓷、SiC陶瓷和Si3N4-SiC复合陶瓷。该多孔硅基结构陶瓷具有孔隙率高、连通性好、力学性能高等优点,在能源、化工、医疗等高端技术领域的应用前景广阔。
图1为本发明提供的基于增材制造技术和反应烧结的多孔硅基结构陶瓷制备工艺流程图;具体包括:
将SiO2粉和C粉混料,得到基础粉体;将有机溶剂搅拌混合,得到预混液;将所述基础粉体和预混液球磨混料,得到预制浆料;导入多孔模型,在设置好的打印参数下生成打印文件;将预制浆料和光引发剂混合后光固化快速成型,然后真空排胶,最后,在N2气氛下高温烧结得到多孔Si3N4陶瓷或在Ar气氛下得到多孔SiC陶瓷。
为了进一步说明本发明,下面结合实施例对本发明提供的一种多孔硅基结构陶瓷及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
将纳米SiO2粉和C粉球磨混合,得到基础粉体,其中纳米SiO2粉为80wt%,C粉为20wt%。将聚对苯二甲酰对苯二胺、环氧己烷、环氧丙烯酸酯、1,6-已二醇二丙烯酸酯、环氧环已基甲酸酯、正辛醇、醋酸乙酯等多种有机溶剂混合,制成光固化有机溶剂,再将基础粉体加入,进行球磨混合(料球比为1.5:1、球磨转速为300rad/min、球磨时间为2h),制备高固相含量的预制浆料,其中有机溶剂的比例为35wt%,基础粉体的比例为65%。采用自上而下的立体光固化成型技术,导入stl类型的多孔三维模型文件,对三维模型进行切片分层,形成二维图像及打印轨迹,生成打印文件,设置打印参数为激光功率50W、打印层厚为50μm。在预制浆料中加入0.5wt%安息香双甲醚作为光引发剂,混合均匀后,放入增材制造设备中,根据打印文件和参数进行快速成型,获得多孔的陶瓷素坯;采用真空气氛对陶瓷素坯进行排胶,煅烧制度为:室温到400℃的升温速率为5℃/min、400℃以上的升温速率为2℃/min、最高煅烧温度为750℃、每隔100℃保温1h、降温速率为5℃/min。将排胶后的陶瓷坯体放入气氛烧结炉中,进行高温反应烧结,煅烧制度为:Ar气氛、600℃以下的升温速率为5℃/min、600℃以上的升温速率为3℃/min、最高煅烧温度为1450℃、保温时间为3h、降温速率为15℃/min,得到多孔硅基结构陶瓷,即多孔SiC陶瓷。
本发明采用阿基米德排水法和三点抗弯强度法,测试实施例1制备的多孔SiC陶瓷,其孔隙率高达77.4%,抗弯强度达到72.6MPa。
实施例2
将纳米SiO2粉和C粉球磨混合,获得基础粉体,其中纳米SiO2粉为55wt%,C粉为45wt%。将聚对苯二甲酰对苯二胺、环氧己烷、环氧丙烯酸酯、1,6-已二醇二丙烯酸酯、环氧环已基甲酸酯、正辛醇、醋酸乙酯等多种有机溶剂混合,制成光固化有机溶剂,再将基础粉体加入,进行球磨混合(料球比为1.5:1、球磨转速为300rad/min、球磨时间为2h),制备高固相含量的预制浆料,其中有机溶剂的比例为35wt%,基础粉体的比例为65%。采用自上而下的立体光固化成型技术,导入stl类型的多孔三维模型文件,对三维模型进行切片分层,形成二维图像及打印轨迹,生成打印文件,其中打印参数为激光功率50W、打印层厚为50μm。在预制浆料中加入0.5wt%安息香双甲醚作为光引发剂,混合均匀后,放入增材制造设备中,根据打印文件和参数进行快速成型,获得多孔的陶瓷素坯;采用真空气氛对陶瓷素坯进行排胶,煅烧制度为:室温到400℃的升温速率为5℃/min、400℃以上的升温速率为2℃/min、最高煅烧温度为750℃、每隔100℃保温1h、降温速率为5℃/min。将排胶后的陶瓷坯体放入气氛烧结炉中,进行高温烧结,煅烧制度为:N2气氛、600℃以下的升温速率为5℃/min、600℃以上的升温速率为3℃/min、最高煅烧温度为1850℃、保温时间为3h、降温速率为15℃/min,得到多孔Si3N4陶瓷。
本发明采用阿基米德排水法和三点抗弯法,测试实施例2制备的多孔Si3N4陶瓷,其孔隙率高达71.7%,抗弯强度达到109.3MPa。
由以上实施例可知,本发明提供了一种多孔硅基结构陶瓷的制备方法,包括以下步骤:将纳米SiO2粉和C粉球磨混合,得到基础粉体,所述纳米SiO2粉和C粉的质量比为50~100:0~50;将所述基础粉体和有机溶剂球磨混合,得到固相含量为50~80wt%的预制浆料;将所述预制浆料和光引发剂混合,采用光固化增材制造技术成型,得到陶瓷素坯;将所述陶瓷素坯在真空气氛下排胶后,再在氩气和/或氮气气氛下反应烧结,得到多孔硅基结构陶瓷。该方法基于光固化增材制造技术,以层层堆叠成型的方式,通过光引发剂的光固化反应和反应烧结,使制得的多孔硅基结构陶瓷的结构可控,且具有较高的孔隙率和抗弯强度。实验结果表明:多孔硅基结构陶瓷的孔隙率为71.1~77.4%,抗弯强度为72.6~109.3MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种多孔硅基结构陶瓷的制备方法,包括以下步骤:
将纳米SiO2粉和C粉球磨混合,得到基础粉体,所述纳米SiO2粉和C粉的质量比为55~80:20~45;
将所述基础粉体和有机溶剂球磨混合,得到固相含量为50~80wt%的预制浆料;
将所述预制浆料和光引发剂混合,采用光固化增材制造技术成型,得到陶瓷素坯;
将所述陶瓷素坯在真空气氛下排胶后,再在氩气和/或氮气气氛下反应烧结,得到多孔硅基结构陶瓷;
所述采用光固化增材制造技术成型具体包括:
将多孔三维模型文件导入分层软件中,切片分层后形成打印程序,打印时激光功率为10~50W、打印层厚度为10~100μm;
将预制浆料和光引发剂混合后的混合物铺料,打印,使单层浆料固化,再重新铺设混合物进行固化;重复上述的铺料和打印过程,得到陶瓷素坯;
所述有机溶剂为聚对苯二甲酰对苯二胺、环氧己烷、环氧丙烯酸酯、1,6-已二醇二丙烯酸酯、环氧环已基甲酸酯、正辛醇和醋酸乙酯的混合物;
所述光引发剂选自安息香双甲醚、二苯基乙酮、羟烷基苯酮、双苯甲酰基苯基氧化膦、二苯甲酮、硫代丙氧基硫杂蒽酮和烷基碘鎓盐中的一种或多种;
所述排胶的温变过程包括:
以3℃/min~10℃/min的升温速率从室温升温至400℃,再以1℃/min~3℃/min的升温速率从400℃升温至600~800℃,每隔100℃的保温时间为0.5~3h,最后以1~10℃/min的降温速率降至室温;
所述反应烧结的温变过程包括:
以5℃/min~20℃/min的升温速率从室温升温至600℃,再以1℃/min~5℃/min的升温速率从600℃升温至1300~2500℃,保温时间为1~5h,最后以10℃/min~50℃/min的降温速率降至室温。
2.根据权利要求1所述的制备方法,其特征在于,所述光固化增材制造技术为立体光固化成型技术、数字光处理技术或多喷头打印技术。
3.根据权利要求1所述的制备方法,其特征在于,所述多孔硅基结构陶瓷包括Si3N4陶瓷、SiC陶瓷和Si3N4-SiC复合陶瓷。
CN201710719678.9A 2017-08-21 2017-08-21 一种多孔硅基结构陶瓷及其制备方法 Active CN107500779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710719678.9A CN107500779B (zh) 2017-08-21 2017-08-21 一种多孔硅基结构陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710719678.9A CN107500779B (zh) 2017-08-21 2017-08-21 一种多孔硅基结构陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN107500779A CN107500779A (zh) 2017-12-22
CN107500779B true CN107500779B (zh) 2020-10-23

Family

ID=60691377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710719678.9A Active CN107500779B (zh) 2017-08-21 2017-08-21 一种多孔硅基结构陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN107500779B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500141A (zh) * 2020-11-18 2021-03-16 南京工业大学东海先进硅基材料研究院 光固化成型制备多孔石英陶瓷的方法
CN116462516A (zh) * 2023-03-14 2023-07-21 乐山职业技术学院 一种氮化硅陶瓷及其制备方法
CN116813354A (zh) * 2023-06-06 2023-09-29 东莞理工学院 一种原位制备氮化硅陶瓷的方法、制得的氮化硅陶瓷及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032798A (zh) * 2017-05-31 2017-08-11 清华大学 一种基于光固化快速成型的多孔陶瓷材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032798A (zh) * 2017-05-31 2017-08-11 清华大学 一种基于光固化快速成型的多孔陶瓷材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三维打印结合反应烧结制备多孔氮化硅陶瓷;翁作海;《材料导报B:研究篇》;20130523;第27卷(第4期);第5-10页 *
翁作海.三维打印结合反应烧结制备多孔氮化硅陶瓷.《材料导报B:研究篇》.2013,第27卷(第4期),第5-10页. *

Also Published As

Publication number Publication date
CN107500779A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
CN107353036B (zh) 一种基于增材制造技术的多孔氮化硅陶瓷、其制备方法及其应用
CN107098714B (zh) 一种基于3dp增材制造技术的碳化硅基陶瓷零件制造方法
CN106316440B (zh) 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
Zhou et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes
CN108675798B (zh) 一种氮化硅陶瓷及其制备方法
Zocca et al. SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer
CN108675796B (zh) 一种氮化硅陶瓷浆料、氮化硅陶瓷及其制备方法和应用
CN107500779B (zh) 一种多孔硅基结构陶瓷及其制备方法
CN106242507B (zh) 一种直接成型3d陶瓷打印用粘土泥料及其制备方法和应用
CN102191398B (zh) 一种制备高体积分数铝基碳化硅颗粒增强复合材料方法
CN107200597B (zh) 一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法
CN112521130B (zh) 一种基于3d打印技术的陶瓷零件的制备方法
CN108002842B (zh) 一种复杂形状多孔氮化硅件的制备方法
KR101729054B1 (ko) 분무 건조법을 이용한 알루미나 과립의 제조방법
CN110950651A (zh) 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN104628393A (zh) 一种高性能陶瓷的制备方法
CN107673760B (zh) 一种梯度结构多孔陶瓷材料的制备方法
CN113105244A (zh) 一种挤出成型3d打印碳化硅陶瓷及其制备方法
CN105294111A (zh) 一种氮化硅多孔陶瓷的凝胶注模成型方法
CN103922743A (zh) 具有球形微孔的碳化硅密封环及其制备方法
CN103553585B (zh) 铁氧体陶瓷的制备方法
CN105523773A (zh) 一种凝胶注模成型制备微多孔氮化硅陶瓷的方法
CN113548882A (zh) 一种堇青石陶瓷器件及其制备方法与应用
CN103482981A (zh) 一种多孔氮化硅陶瓷材料的制备方法
JPH02137779A (ja) 多孔質成形体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant