CN107452787B - 沟槽栅极引出结构及其制造方法 - Google Patents

沟槽栅极引出结构及其制造方法 Download PDF

Info

Publication number
CN107452787B
CN107452787B CN201610378876.9A CN201610378876A CN107452787B CN 107452787 B CN107452787 B CN 107452787B CN 201610378876 A CN201610378876 A CN 201610378876A CN 107452787 B CN107452787 B CN 107452787B
Authority
CN
China
Prior art keywords
groove
polysilicon
substrate
layer
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610378876.9A
Other languages
English (en)
Other versions
CN107452787A (zh
Inventor
卞铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Fab2 Co Ltd
Original Assignee
CSMC Technologies Fab2 Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSMC Technologies Fab2 Co Ltd filed Critical CSMC Technologies Fab2 Co Ltd
Priority to CN201610378876.9A priority Critical patent/CN107452787B/zh
Priority to JP2018560711A priority patent/JP6567784B2/ja
Priority to US16/064,522 priority patent/US10475893B2/en
Priority to PCT/CN2017/086136 priority patent/WO2017206812A1/zh
Publication of CN107452787A publication Critical patent/CN107452787A/zh
Application granted granted Critical
Publication of CN107452787B publication Critical patent/CN107452787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及一种沟槽栅极引出结构及其制造方法。所述沟槽栅极引出结构包括衬底、衬底表面的沟槽、以及所述衬底上的第一介质层,还包括沟槽内表面的多晶硅栅极,所述沟槽被所述多晶硅栅极部分填充,故在所述多晶硅栅极上方的沟槽内存在凹陷,所述凹陷内填充有第二介质层,所述沟槽栅极引出结构还包括金属塞,所述金属塞向下穿过所述第一介质层后插入所述第二介质层与所述多晶硅栅极之间,从而与所述多晶硅栅极连接。本发明的多晶硅栅极不需要将沟槽填满,多晶硅淀积的厚度仅与元胞沟槽的宽度设定相关,因此可以大幅降低其厚度,提升多晶硅淀积产能,降低成本。

Description

沟槽栅极引出结构及其制造方法
技术领域
本发明涉及半导体制造技术,特别是涉及一种沟槽栅极引出结构,还涉及一种沟槽栅极引出结构的制造方法。
背景技术
传统的沟槽型VDMOS(垂直双扩散金属氧化物半导体场效应晶体管)产品因成本原因,大多采用加大引出沟槽的端部尺寸,在其上打接触孔的方式将沟槽栅极引出,如图1所示。该方案的优点是可以利用产品工艺已有的光罩(mask)层次进行,无需增加光罩层次成本。但其缺点是引出沟槽端部的尺寸越大,需要淀积的多晶硅就越厚,导致成本增加,从而限制了此传统方案的应用。
发明内容
基于此,有必要针对大尺寸的沟槽栅极淀积的多晶硅较厚,导致成本增加的问题,提供一种沟槽栅极引出结构。
一种沟槽栅极引出结构,包括衬底、衬底表面的沟槽、以及所述衬底上的第一介质层,还包括沟槽内表面的栅氧化层以及栅氧化层上的多晶硅栅极,所述沟槽被所述多晶硅栅极部分填充,故在所述多晶硅栅极的表面存在凹陷,所述凹陷内填充有第二介质层,所述沟槽栅极引出结构还包括金属塞,所述金属塞向下穿过所述第一介质层后插入所述第二介质层与所述多晶硅栅极之间,从而与所述多晶硅栅极连接。
在其中一个实施例中,所述第二介质层是以正硅酸乙酯为反应剂淀积的二氧化硅层。
在其中一个实施例中,所述金属塞为钨塞。
在其中一个实施例中,所述沟槽栅极引出结构应用于垂直双扩散金属氧化物半导体场效应管或横向双扩散金属氧化物半导体场效应管。
在其中一个实施例中,位于所述沟槽内的多晶硅栅极的横截面为U型结构,所述第二介质层填充于所述U型结构内陷的中空部位。
还有必要提供一种沟槽栅极引出结构的制造方法。
一种沟槽栅极引出结构的制造方法,包括:在衬底表面形成沟槽,所述沟槽的内表面形成有栅氧化层;向沟槽内表面填充多晶硅且不将沟槽填满,沟槽内的多晶硅表面形成凹陷;在衬底和沟槽上形成绝缘介质;光刻并刻蚀所述绝缘介质,形成介质孔,使得所述沟槽侧壁的多晶硅露出,且所述绝缘介质被分割为所述衬底上的第一介质层和沟槽内的第二介质层;进行接触孔刻蚀,所述第二介质层四周的多晶硅被部分去除,在所述第二介质层和其两侧的多晶硅之间形成空隙;进行接触孔填充,金属填入所述介质孔和所述空隙内形成与多晶硅栅极连接的金属塞。
在其中一个实施例中,所述在衬底和沟槽上形成绝缘介质的步骤包括:在所述沟槽内淀积绝缘介质;对溢出所述沟槽的绝缘介质进行回刻,将沟槽外所述衬底和多晶硅上的绝缘介质去除;进行多晶硅回刻,将所述沟槽外衬底上的多晶硅去除,使有源区露出;在所述衬底、剩余的多晶硅和绝缘介质上再次淀积绝缘介质。
在其中一个实施例中,所述在所述沟槽内淀积绝缘介质的步骤是以正硅酸乙酯为反应剂化学气相淀积二氧化硅层。
在其中一个实施例中,所述光刻并刻蚀所述绝缘介质的步骤通过对所述绝缘介质进行过量刻蚀以保证所述多晶硅露出。
在其中一个实施例中,所述进行接触孔填充的步骤之后,还包括进行平坦化处理的步骤。
上述沟槽栅极引出结构及其制造方法,多晶硅栅极不需要将沟槽填满,多晶硅淀积的厚度仅与元胞沟槽的宽度设定相关,因此可以大幅降低其厚度,提升多晶硅淀积产能,降低成本。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1是一种传统的沟槽栅极引出结构的示意图;
图2是一实施例中沟槽栅极引出结构的剖面示意图;
图3是一实施例中沟槽栅极引出结构的制造方法的流程图;
图4是一实施例中步骤S320完成后器件的剖视图;
图5a~图5d分别是一实施例中步骤S332~S338完成后器件的剖视图;
图6是一实施例中步骤S330的各子步骤流程图;
图7是步骤S340完成后器件的剖视图;
图8是步骤S350完成后器件的剖视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“竖直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的。
图2是一实施例中沟槽栅极引出结构的剖面示意图。包括衬底10(图中用空白区域表示),衬底10表面的沟槽(未标示),衬底10上的第一介质层22,沟槽内表面的栅氧化层33以及栅氧化层33上的多晶硅栅极31,沟槽内被多晶硅栅极31半包围的第二介质层41,以及向下穿过第一介质层22后插入第二介质层41与多晶硅栅极31之间而与多晶硅栅极31连接的金属塞50。具体地,沟槽被多晶硅栅极31部分填充,故在多晶硅栅极31的表面形成跟随沟槽下凹的凹陷,凹陷内填充有第二介质层41。图2中第二介质层41的下部和上部使用了不同的填充图案,但在一些实施例中,第二介质层41的下部和上部可以为同样材质且在同一步骤中淀积形成,具体会在下文的制造方法中详述。
上述沟槽栅极引出结构,多晶硅栅极31不需要将沟槽填满,多晶硅淀积的厚度仅与元胞沟槽的宽度设定相关,因此可以大幅降低其厚度,提升多晶硅淀积产能,降低成本。
可以理解的,上述沟槽栅极引出结构特别适用于较宽的沟槽,因此其对孔层次的线宽要求也可放宽,光刻可以使用一般的i-line设备替代DUV(深紫外光)设备来制作,降低生产成本。
金属塞50采用与多晶硅栅极31侧面接触的结构,因此其接触面更大,相应的接触电阻更小,导通更可靠。
背景技术提到的图1所示结构的一个缺点是,对于符合某些条件的沟槽尺寸,接触孔容易打穿沟槽端部(即打穿多晶硅栅极)。上述沟槽栅极引出结构,在多晶硅栅极31内形成第二介质层41,可以在接触孔多晶硅刻蚀时起到阻挡层的作用,使得多晶硅栅极31不易被蚀穿。
在图2所示实施例中,位于沟槽内的多晶硅栅极31的横截面为U型结构,第二介质层41填充于U型结构内陷的中空部位。
在其中一个实施例中,金属塞50为钨塞。在其他实施例中,也可以采用本领域习知的其他用作接触孔填充的金属。
在其中一个实施例中,第二介质层41是以正硅酸乙酯(TEOS)为反应剂淀积的二氧化硅层。在其他实施例中,第二介质层41也可以采用其他绝缘介质,例如磷硅玻璃(PSG)/硼磷硅玻璃(BPSG)、氮氧化硅、氮化硅等。
上述沟槽栅极引出结构尤其适用于DMOS器件(包括VDMOS和LDMOS)。可以理解的,该沟槽栅极引出结构同样适用于其他具有沟槽栅极结构的半导体器件。
本发明还提供一种沟槽栅极引出结构的制造方法。图3是一实施例中沟槽栅极引出结构的制造方法的流程图,包括下列步骤:
S310,在衬底表面形成沟槽。
在提供的晶圆衬底表面通过刻蚀形成沟槽。
S320,向沟槽内表面填充多晶硅且不将沟槽填满,沟槽内的多晶硅表面形成凹陷。
通过淀积工艺进行多晶硅的填充,在沟槽内表面淀积一层多晶硅,但不将沟槽填满,从而形成自然凹陷。步骤S320完成后器件的剖视图如图4所示,沟槽内的多晶硅层32的横截面为U型结构。可以理解的,如果是直接进行多晶硅的淀积(即不使用光罩),则在沟槽外的衬底10上同样会形成多晶硅层,但这些沟槽外的多晶硅对多晶硅栅极来说是多余的。如果是通过光刻形成掩膜或阻挡层,则可以只在沟槽内淀积多晶硅,但这样做通常会导致成本上升。
在本实施例中,步骤S310和S320之间还包括在沟槽表面形成栅氧化层33的步骤。多晶硅层32是淀积在栅氧化层33上。栅氧化层的形成可以采用习知的工艺,例如热氧化法生长栅氧化层。
S330,在衬底和沟槽上形成绝缘介质。
如果是只在沟槽内淀积多晶硅,或者将沟槽外的多晶硅去除后,则步骤S330完成后的器件剖视图如图5d所示,可以直接淀积一层绝缘介质40(绝缘介质40包括下方填充图案为方格的部分)。但如前述,本实施例中为了降低成本,多晶硅的淀积是直接进行的,无需增加多晶硅光罩层次成本。因此本实施例中步骤S330具体包括如下子步骤:
S332,在沟槽内淀积绝缘介质。
确保淀积的绝缘介质厚度能够将沟槽填满。在本实施例中是以正硅酸乙酯(TEOS)为反应剂化学气相淀积二氧化硅层作为第二介质层41,步骤S332完成后器件的剖视图如图5a所示。在其他实施例中绝缘介质也可以是其他绝缘材料,例如磷硅玻璃(PSG)/硼磷硅玻璃(BPSG)、氮氧化硅、氮化硅等。
S334,对溢出沟槽的绝缘介质进行回刻,将沟槽外衬底和多晶硅上的绝缘介质去除。
可以使用干法或者湿法刻蚀。需要确保淀积于沟槽外衬底和多晶硅上的绝缘介质被完全去除并露出下方的多晶硅层32,但同时要求保证沟槽开口内仍然留有足量的绝缘介质,以在步骤S336中回刻时对多晶硅层32进行保护。步骤S334完成后器件的剖视图如图5b所示。
S336,进行多晶硅回刻,将沟槽外衬底上的多晶硅去除,使有源区露出。
将有源区暴露出来后进行器件有源区的制作。可以采用本领域习知的有源区制作工艺,因与本发明的发明点无关,且与沟槽栅极引出结构也没什么关系,故此处不赘述。步骤S336完成后器件的剖视图如图5c所示。
由于沟槽内的多晶硅层32较薄(多晶硅未填满而仅仅是在其内壁覆盖了一层),这就导致了多晶硅层32在S336的多晶硅回刻步骤会被大量刻蚀(乃至损伤到其下的栅氧化层33)。第二介质层41的作用主要是作为多晶硅回刻时的阻挡层,保证当多晶硅回刻发生时,沟槽内的多晶硅层32被第二介质层41所保护,不会刻蚀到下方的多晶硅。
S338,在衬底、剩余的多晶硅和绝缘介质上再次淀积绝缘介质。
有源区的制作完成后,在衬底10、剩余的多晶硅层32及第二介质层41上再次淀积绝缘介质。淀积的绝缘介质的厚度应确保其能填满沟槽的开口。步骤S338淀积的绝缘介质可以与步骤S332为相同的材质,也可以为不同的材质,淀积的绝缘介质后续可以作为层间介质(ILD)。由于在本实施例中绝缘介质是分两次淀积(步骤S332和S338),故在图5d中用两种不同的填充图案来区分。
采用如图6所示的方法进行绝缘介质的淀积,则步骤S320、S332、S334、S336、S338都无需进行光刻,不会增加额外的多晶硅光刻层次,不需要相应的光罩(mask),有助于节约成本。
S340,光刻并刻蚀绝缘介质,形成介质孔,绝缘介质被分割为第一、第二介质层。
要求介质孔有一定的过量刻蚀(over etch),确保沟槽侧壁的多晶硅层32可以露出。步骤S340完成后器件的剖视图如图7所示,绝缘介质40被介质孔分割为衬底10上的第一介质层22,以及填充于多晶硅层32的表面形成的凹陷内的第二介质层41。
S350,进行接触孔刻蚀,在第二介质层和其两侧的多晶硅之间形成空隙。
通过刻蚀多晶硅,将第二介质层41四周的多晶硅部分去除,形成多晶硅栅极31,如同样8所示。
S360,进行接触孔填充,金属填入介质孔和空隙内形成与多晶硅栅极连接的金属塞。
参照图2。在其中一个实施例中,金属塞50为钨塞。在其他实施例中,也可以采用本领域习知的其他用作接触孔填充的金属。
本实施例中在金属填充完成后,还需要进行金属塞的回刻及对器件表面进行平坦化处理。
上述沟槽栅极引出结构的制造方法尤其适用于DMOS器件(包括VDMOS和LDMOS)。可以理解的,该制造方法同样适用于其他具有沟槽栅极结构的半导体器件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种沟槽栅极引出结构,包括衬底、衬底表面的沟槽、以及所述衬底上的第一介质层,其特征在于,还包括沟槽内表面的栅氧化层以及栅氧化层上的多晶硅栅极,所述沟槽被所述多晶硅栅极部分填充,故在所述多晶硅栅极的表面存在跟随所述沟槽下凹的凹陷,所述凹陷内填充有第二介质层,所述沟槽栅极引出结构还包括金属塞,所述金属塞向下穿过所述第一介质层后插入所述第二介质层与所述多晶硅栅极之间,从而与所述多晶硅栅极连接。
2.根据权利要求1所述的沟槽栅极引出结构,其特征在于,所述第二介质层是以正硅酸乙酯为反应剂淀积的二氧化硅层。
3.根据权利要求1所述的沟槽栅极引出结构,其特征在于,所述金属塞为钨塞。
4.根据权利要求1所述的沟槽栅极引出结构,其特征在于,所述沟槽栅极引出结构应用于垂直双扩散金属氧化物半导体场效应管或横向双扩散金属氧化物半导体场效应管。
5.根据权利要求1所述的沟槽栅极引出结构,其特征在于,位于所述沟槽内的多晶硅栅极的横截面为U型结构,所述第二介质层填充于所述U型结构内陷的中空部位。
6.一种沟槽栅极引出结构的制造方法,包括:
在衬底表面形成沟槽;所述沟槽的内表面形成有栅氧化层;
向沟槽内表面填充多晶硅且不将沟槽填满,沟槽内的多晶硅表面形成跟随所述沟槽下凹的凹陷;
在衬底和沟槽上形成绝缘介质;
光刻并刻蚀所述绝缘介质,形成介质孔,使得所述沟槽侧壁的多晶硅露出,且所述绝缘介质被分割为所述衬底上的第一介质层和沟槽内的第二介质层;
进行接触孔刻蚀,所述第二介质层四周的多晶硅被部分去除,在所述第二介质层和其两侧的多晶硅之间形成空隙;
进行接触孔填充,金属填入所述介质孔和所述空隙内形成与多晶硅栅极连接的金属塞。
7.根据权利要求6所述的方法,其特征在于,所述在衬底和沟槽上形成绝缘介质的步骤包括:
在所述沟槽内淀积绝缘介质;
对溢出所述沟槽的绝缘介质进行回刻,将沟槽外所述衬底和多晶硅上的绝缘介质去除;
进行多晶硅回刻,将所述沟槽外衬底上的多晶硅去除,使有源区露出;
在所述衬底、剩余的多晶硅和绝缘介质上再次淀积绝缘介质。
8.根据权利要求7所述的方法,其特征在于,所述在所述沟槽内淀积绝缘介质的步骤是以正硅酸乙酯为反应剂化学气相淀积二氧化硅层。
9.根据权利要求6所述的方法,其特征在于,所述光刻并刻蚀所述绝缘介质的步骤通过对所述绝缘介质进行过量刻蚀以保证所述多晶硅露出。
10.根据权利要求6所述的方法,其特征在于,所述进行接触孔填充的步骤之后,还包括进行平坦化处理的步骤。
CN201610378876.9A 2016-05-31 2016-05-31 沟槽栅极引出结构及其制造方法 Active CN107452787B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610378876.9A CN107452787B (zh) 2016-05-31 2016-05-31 沟槽栅极引出结构及其制造方法
JP2018560711A JP6567784B2 (ja) 2016-05-31 2017-05-26 トレンチゲートのリードアウト構造およびそれを製造する方法
US16/064,522 US10475893B2 (en) 2016-05-31 2017-05-26 Trench gate lead-out structure and manufacturing method therefor
PCT/CN2017/086136 WO2017206812A1 (zh) 2016-05-31 2017-05-26 沟槽栅极引出结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610378876.9A CN107452787B (zh) 2016-05-31 2016-05-31 沟槽栅极引出结构及其制造方法

Publications (2)

Publication Number Publication Date
CN107452787A CN107452787A (zh) 2017-12-08
CN107452787B true CN107452787B (zh) 2020-05-12

Family

ID=60479715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610378876.9A Active CN107452787B (zh) 2016-05-31 2016-05-31 沟槽栅极引出结构及其制造方法

Country Status (4)

Country Link
US (1) US10475893B2 (zh)
JP (1) JP6567784B2 (zh)
CN (1) CN107452787B (zh)
WO (1) WO2017206812A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998421B2 (en) 2018-07-16 2021-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing pattern loading in the etch-back of metal gate
CN114078774A (zh) 2020-08-13 2022-02-22 长鑫存储技术有限公司 半导体器件及其制备方法
CN116741731B (zh) * 2023-07-06 2024-02-20 无锡物联网创新中心有限公司 栅极引线结构以及栅极引线的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807574A (zh) * 2010-03-30 2010-08-18 无锡新洁能功率半导体有限公司 一种沟槽型功率mos器件及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035841A (ja) * 2005-07-26 2007-02-08 Toshiba Corp 半導体装置
US9076821B2 (en) * 2007-04-30 2015-07-07 Infineon Technologies Ag Anchoring structure and intermeshing structure
US8022472B2 (en) * 2007-12-04 2011-09-20 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US8269273B2 (en) * 2008-09-25 2012-09-18 Force Mos Technology Co., Ltd. Trench MOSFET with etching buffer layer in trench gate
US20170125531A9 (en) 2009-08-31 2017-05-04 Yeeheng Lee Thicker bottom oxide for reduced miller capacitance in trench metal oxide semiconductor field effect transistor (mosfet)
JP5973730B2 (ja) * 2012-01-05 2016-08-23 ルネサスエレクトロニクス株式会社 Ie型トレンチゲートigbt
CN103426925B (zh) 2012-05-14 2016-06-08 上海华虹宏力半导体制造有限公司 低栅极电荷沟槽功率mos器件及制造方法
KR101589904B1 (ko) 2013-09-20 2016-01-29 산켄덴키 가부시키가이샤 반도체장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807574A (zh) * 2010-03-30 2010-08-18 无锡新洁能功率半导体有限公司 一种沟槽型功率mos器件及其制造方法

Also Published As

Publication number Publication date
CN107452787A (zh) 2017-12-08
JP2019506010A (ja) 2019-02-28
US20190027564A1 (en) 2019-01-24
JP6567784B2 (ja) 2019-08-28
WO2017206812A1 (zh) 2017-12-07
US10475893B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
TWI521710B (zh) 半導體裝置結構及其形成方法
KR20100057203A (ko) 반도체 장치의 배선 구조물 및 이의 형성방법
CN107452787B (zh) 沟槽栅极引出结构及其制造方法
KR100762912B1 (ko) 비대칭의 벌브형 리세스 게이트를 갖는 반도체 소자 및그의 제조방법
US9812352B2 (en) Semiconductor device and method for fabricating the same
TWI557914B (zh) Semiconductor element and manufacturing method thereof
CN109216193B (zh) 半导体器件及其制备方法
US8058128B2 (en) Methods of fabricating recessed channel metal oxide semiconductor (MOS) transistors
CN110867413A (zh) 单扩散区切断的形成方法
JP6766153B2 (ja) トレンチゲート構造およびそれを製造する方法
CN102157435B (zh) 接触孔形成方法
US10978335B2 (en) Method for producing a gate cut structure on an array of semiconductor fins
TWI466181B (zh) 形成具有較小高差之半導體元件導電接觸的方法,形成半導體元件之方法
KR20120076913A (ko) 매몰된 게이트를 갖는 반도체 소자의 콘택 플러그 형성방법
KR20110001594A (ko) 수직채널형 비휘발성 메모리 장치의 제조방법
KR20080000980A (ko) 벌브 타입의 리세스 채널을 갖는 반도체 소자의 제조방법
KR101696983B1 (ko) FinFET 상에 트렌치를 형성하는 방법 및 그 FinFET
KR100667908B1 (ko) 트렌치형 mos 게이트의 제조방법
KR20080087253A (ko) 리세스 게이트 전극 형성 방법
KR100951566B1 (ko) 리세스 게이트를 갖는 반도체 소자의 제조 방법
KR101116286B1 (ko) 매립 게이트를 갖는 반도체 장치 제조 방법
KR101088810B1 (ko) 벌브형 리세스 게이트의 형성방법
KR101036451B1 (ko) 반도체 소자의 스토리지 노드 형성 방법
KR20100071408A (ko) 반도체 소자 및 그 제조 방법
KR100951570B1 (ko) 리세스 게이트를 갖는 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant