CN107427819B - 用于选择性甲烷化一氧化碳的钌-铼基催化剂 - Google Patents

用于选择性甲烷化一氧化碳的钌-铼基催化剂 Download PDF

Info

Publication number
CN107427819B
CN107427819B CN201680017984.1A CN201680017984A CN107427819B CN 107427819 B CN107427819 B CN 107427819B CN 201680017984 A CN201680017984 A CN 201680017984A CN 107427819 B CN107427819 B CN 107427819B
Authority
CN
China
Prior art keywords
weight
catalytically active
support material
ruthenium
active composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680017984.1A
Other languages
English (en)
Other versions
CN107427819A (zh
Inventor
A·米拉诺夫
E·施瓦布
M·霍夫曼
S·科特尔
S·阿尔特瓦瑟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutberger Chemical And Engineering Co
Original Assignee
Hutberger Chemical And Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutberger Chemical And Engineering Co filed Critical Hutberger Chemical And Engineering Co
Publication of CN107427819A publication Critical patent/CN107427819A/zh
Application granted granted Critical
Publication of CN107427819B publication Critical patent/CN107427819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3706Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3712Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的催化活性组合物,所述组合物包含位于载体材料上的至少一种选自钌、铑、镍和钴的元素作为活性组分和铼作为掺杂剂。本发明的催化剂优选用于在100‑300℃的温度范围内实施甲烷化反应以用于生产用于燃料电池应用的氢气。

Description

用于选择性甲烷化一氧化碳的钌-铼基催化剂
本发明涉及一种催化组合物和一种选择性甲烷化包含氢气和二氧化碳的料流中一氧化碳的方法,特别是用于燃料电池体系中。
低温PEM燃料电池(PEM=聚合物电解质膜)只能使用具有确定质量的氢气或富氢气体运行。特别地,一氧化碳(CO)的浓度是关键参数。这取决于所用的能量载体和所用的重整方法。较高的CO浓度可通过水煤气变换反应来去除,其中进一步形成氢气。
Figure BDA0001417360960000011
由于这是一个平衡反应,作为工艺设计和温度的函数,在气体料流中保留通常为0.25-1.5体积%的CO残余浓度。当使用具有高铜含量的催化剂时,例如可实现将CO去除至2500ppm。然而,为了避免阳极催化剂的中毒,还必须进一步降低富氢气体中的CO含量;此处,指导值最大为10-50ppm。
从气体料流中将所含的CO去除至所需极限值通常在精细纯化步骤中进行。此处,选择性氧化是目前常规的CO去除方法。选择性氧化已高度开发,但具有只有中等选择性和必须精确计量引入空气的缺点,这导致设备的高支出。如果未能精确地遵循氧气与CO的必要比例,则这可导致氢气的高损失。此外,通常不超过20℃的窄温度窗口需要对反应器进行复杂的热管控。此外,由于向气体中加入氧化剂—氧气,存在安全问题。与选择性CO氧化相比,通过与H2反应来除去CO(在CO2存在下的CO选择性甲烷化)由于其就工艺工程而言的不苛刻实施而具有显著的优点。
CO的甲烷化(一氧化碳氢化成甲烷)根据如下反应方程式进行:
CO+3H2→CH4+H2O ΔH=-206.2kJ/mol
作为竞争反应,二氧化碳转化成甲烷:
CO2+4H2→CH4+2H2O ΔH=-164.9kJ/mol
选择性CO甲烷化的特殊挑战是CO应优先于CO2氢化,因为后者将消耗更多的氢气。重整产物中的CO浓度为约2500-15 000ppm,而CO2含量为0约15-25体积%,这比CO含量高一个数量级。因此,CO选择性催化剂对于实现例如PEM燃料电池所需的低CO浓度是必不可少的。
CO的选择性甲烷化已为人所知很长时间了。CO首先在镍催化剂上甲烷化,然而必须事先洗去CO2。1968年,Baker等提出了用于选择性CO甲烷化的钌催化剂(US 3 615 164),其中使用位于氧化铝载体材料上的钌或铑催化剂。同样地,使用含钌催化剂在125-300℃的温度下选择性甲烷化包含氢气、二氧化碳和一氧化碳的气体混合物中的CO已描述在Chemical Abstracts,第74卷,1971年,第35106u期中。1972年的US 3 663 162请求保护用于该反应的阮内镍催化剂。
在EP-A-1174486中,将甲烷化步骤与用于选择性氧化的单元组合,其目的是降低氧气消耗和降低CO2的甲烷化程度。用于甲烷化的催化剂包括位于氧化铝载体上的Ru、Pt、Rh、Pd或Ni。
在WO 98/13294中,将处于不同温度水平下的两个甲烷化步骤连接。据称此时的优点是在高温步骤没有或较少的CO2甲烷化,然而大部分的一氧化碳被除去。在随后的低温甲烷化中,除去残留的CO。使用了位于铝载体上的贵金属催化剂,特别是Ru。
WO 97/43207描述了选择性氧化的第一步骤与随后的使用铑作为活性组分的甲烷化步骤的组合。据称使用该组合,这两种工艺能在最佳条件下运行。
此外,更近的专利申请,例如EP-A-1246286使用了主要基于钌或镍的常规催化剂,其中出于更简单的结构和更好处理的目的,将用于选择性氧化的单元的甲烷化反应器安装在下游作为气体净化的最后工艺步骤。
JP-A-2002/068707涉及施加在选自铝、钛、硅或锆的氧化物的耐火无机氧化物上的甲烷化催化剂。
EP-A-1707261描述了一种使用包含位于由混合金属氧化物组成的载体上的钌且掺杂有镧系元素的催化剂来选择性氧化CO的方法。
US 7 560 496描述了一种使用包含位于碳基载体材料上的钌、铑、镍和/或钴作为活性组分和至少一种选自铁、铌、锰、钼和锆的其他掺杂剂的催化剂在CO2存在下选择性甲烷化CO的方法。
WO 2008/101875涉及一种用于选择性甲烷化包含氢气和二氧化碳的料流中的一氧化碳的催化活性组合物,其特征在于其包含钌作为活性组分和镧-铈-锆氧化物作为载体材料。
US-A-2005/0096211描述了在由位于β-沸石、丝光沸石和八面沸石上的Ru、Rh、Ni或组合构成的催化剂上选择性甲烷化。尽管以此方式实现了低于100ppm的所需CO浓度,然而在催化剂显示其活性的高于190℃的温度下,选择性降至显著低于50%。由于CO2的氢化每摩尔除去的氢气为CO氢化的3/2倍,因此对非常高的选择性的要求是非常重要的。此外,仅在170-180℃的非常小的温度窗口内才能获得合理的催化活性。
现有技术的方法不能令人满意地降低CO含量,同时节约CO2含量。迄今为止开发的催化剂不能以足够的选择性工作,或仅在非常窄的温度范围内有效。特别地,非常窄的温度范围使得“选择性甲烷化”概念的工业实施非常困难。这是因为一旦选择性降低,就会发生反应器的加热,这导致CO2进一步甲烷化,因此导致处理单元的热“失控”。因此,反应的放热性导致热点。因此,必须能在宽温度窗口内操作。另一问题是当将整料用作催化剂成型体时整料中的绝热温升,这种情况是实践中经常遇到的。
特别是对于燃料电池的应用而言,在宽温度窗口内供入的富氢气体中所需的最大CO含量和所需的高选择性(CO而非CO2的甲烷化)表明合适的抗失活催化剂仍具有巨大的发展潜力。
因此,本发明的目的是提供一种用于选择性CO甲烷化的催化剂,其在宽温度范围内保持其选择性和活性。
根据本发明,所述目的通过使用包含位于合适载体材料上的钌、铑、镍或钴或其混合物作为活性组分和铼作为掺杂元素的催化活性组合物来选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳实现。
令人惊讶地发现,包含位于合适载体材料上的钌、铑、镍或钴或其混合物作为活性组分和铼作为掺杂元素的催化剂能确保在约100-300℃的宽温度范围内在长时间内以几乎恒定的选择性来甲烷化CO。常规催化剂的选择性随温度升高和运行时间延长而显示出显著的降低。使用本发明的催化剂需要显著更少的调节费用,因为不必那么严格地遵循CO甲烷化中的温度窗口。此外,将也可在高温下良好工作的催化剂直接安装在约220-280℃下运行的纯化步骤(TTC-低温转化)的下游。
因此,本发明提供了一种用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的催化活性组合物,其包含位于载体材料上的至少一种选自钌、铑、镍和钴的元素作为活性组分和铼作为掺杂剂。
本发明的实施方案可由权利要求书、说明书和实施例中得出。不言而喻,本发明主题的上述特征以及仍有待于下文解释的特征不仅可以以在每种情况下指出的组合形式使用,而且可以以其他组合形式使用,而不超出本发明的范围。
催化活性组合物包含至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分。活性组分优选以氧化物形式存在于催化剂中。然后通过用氢活化原位产生实际的活性组合物。
用例如氢气、氢气-氮气混合物或其他合适的还原剂的非原位预还原同样是可能的。在这种情况下,催化剂的活性组分以金属形式存在。催化剂可以以这种形式安装在反应器中,或者在随后的金属组分表面钝化之后。
根据本发明,合适的载体材料是通常能用于这些目的的催化剂化学中并且具有足够高的BET表面积和适当孔隙率(孔体积)的所有材料。可提及例如选自Al2O3,ZrO2,TiO2,SiC,ZnO,第IIA族金属的氧化物,第IIIB、IVB、VB、VIB族过渡金属的氧化物,稀土金属,硅铝酸盐,沸石,MOF(金属有机骨架)及其混合物。
本发明优选使用的载体为选自Al2O3、ZrO2、TiO2和稀土金属氧化物的该类材料。
本发明特别优选的一种载体材料是氧化镧含量为0.1-15重量%,优选为1-10重量%,特别优选为3-7重量%的镧-铈-锆氧化物(LaCeZr氧化物)。氧化铈的含量为0.1-20重量%,优选为1-17重量%,特别优选为10-16重量%,在每种情况下基于总载体材料的重量。
载体材料的氧化锆含量有利地为30-99.8重量%。在优选的实施方案中,其含量与氧化镧和氧化铈以及任选的如下所述的其他组分的重量比例一起在每种情况下加和为100重量%。
在优选实施方案中,本发明使用的载体是其物理化学性质如BET表面积、孔体积和横向抗压强度具有优选值的载体。
用于本发明催化剂的载体材料的BET表面积为至少10m2/g,有利地至少20m2/g,优选至少40m2/g,特别优选至少60m2/g,非常特别优选至少80m2/g。BET表面积由DIN 66131的方法确定。
载体材料的孔体积有利地为0.05-1.5cm3/g,优选为0.1-1.0cm3/g,特别优选为0.15-0.9cm3/g,特别优选为0.17-0.7cm3/g,特别为0.2-0.6cm3/g。孔体积根据DIN 66133通过水银孔隙率法测定。
在载体材料呈成型体(例如丸粒、挤出物、球形颗粒等)形式的情况下,其抗压强度有利地为至少0.2kgf,优选为至少0.5kgf,特别优选为至少1.0kgf,非常特别优选为至少1.5kgf,特别是至少2.0kgf。横向抗压强度是当在其侧面施加压力时材料稳定性的量度。为此,将材料夹在两个冲头之间(初始力0.5N),然后以1.6mm/分钟的测试速度彼此相对地运动并压碎材料。记录破碎材料所需的力。数据来自至少20个成型体的统计学评估。
本发明所用的载体材料不仅可包含上述组分,而且可包含可在催化剂化学中通常用于这些目的的其他材料,例如氧化铝。具有足够高的BET表面积的粘合剂材料也是合适的。额外使用的这些粘合剂材料的BET表面积有利地为至少120m2/g。这些粘合剂材料的含量应不超过70重量%,优选50重量%,特别优选30重量%,非常特别优选20重量%,在每种情况下基于总载体材料的重量。
根据本发明,载体材料的至少一种上述活性组分的负载量为0.1-20重量%,优选为0.2-10重量%,特别优选为0.3-5重量%,非常特别优选为0.4-4.5重量%,特别为0.5-3重量%。所述量的其他有利范围例如为0.1-10重量%、0.5-5重量%以及0.7-4重量%和1-3重量%。所述数据在每种情况下基于催化活性组合物的总重量。
载体材料的作为掺杂元素的铼的负载量为0.01-20重量%,优选为0.05-10重量%,特别优选为0.07-5重量%,非常特别优选为0.08-4重量%,特别为0.1-3重量%。所述数据在每种情况下基于催化活性组合物的总重量。
本发明催化活性体系的优选组合物包含0.01-20重量%,优选0.07-5重量%,特别优选0.08-4重量%的铼和0.1-20重量%,优选0.5-5重量%,特别优选1-3重量%的钌(基于催化活性组合物的总重量),其位于选自Al2O3、ZrO2、TiO2和稀土金属氧化物的载体上,优选位于由ZrO2组成的载体上。
本发明催化活性体系的另一优选组合物包含0.01-20重量%,优选0.07-5重量%,特别优选0.08-4重量%的铼和0.1-20重量%,优选0.2-10重量%,特别优选0.3-5重量%的钌(基于催化活性组合物的总重量),其位于选自沸石A、β-沸石、丝光沸石、八面沸石、ZSM-5和MOF的载体上。
催化活性体系的另一优选组合物包含0.01-20重量%的铼和0.1-20重量%的钌(基于催化活性组合物的总重量),其位于氧化镧含量为0.1-15重量%,氧化铈含量为0.1-20重量%(基于总载体材料的重量)的镧-铈-锆氧化物载体上。
催化活性体系的另一优选组合物包含0.05-10重量%的铼和0.5-5重量%的钌(基于催化活性组合物的总重量),其位于氧化镧含量为0.1-15重量%,氧化铈含量为0.1-20重量%(在每种情况下基于总载体材料的重量)的镧-铈-锆氧化物载体上。
催化活性体系的另一优选组合物包含0.07-5重量%的铼和0.7-4重量%的钌(基于催化活性组合物的总重量),其位于氧化镧含量为0.1-10重量%,氧化铈含量为0.1-17重量%(在每种情况下基于总载体材料的重量)的镧-铈-锆氧化物载体上。
催化活性体系的特别优选的组合物包含0.08-4重量%的铼和1-3重量%的钌(基于催化活性组合物的总重量),其位于氧化镧含量为3-7重量%,氧化铈含量为10-16重量%(在每种情况下基于总载体材料的重量)的镧-铈-锆氧化物载体上。
在优选实施方案中,本发明的催化剂具有其物理化学性质例如通过XRD确定的相组成、BET表面积、孔体积和横向抗压强度的优选值。
因此,在本发明催化剂的优选实施方案中,在5-80°的2θ范围内记录的XRD图谱至少显示出在26.54°2θ、28.12°2θ、29.90°2θ、34.55°2θ、49.70°2θ、53.90°2θ、59.12°2θ、61.96°2θ、66.42°2θ、73.48°2θ(2θ)处的反射。
XRD分析使用获自Bruker/AXS的D8Advance系列2,使用CuK-α源(在40kV和40mA下具有0.154nm的波长)和θ-θ几何(Bragg-Brentano几何)以反射模式进行。测量在如下测量范围内进行:5-80°(2θ),0.02°步长,3.6秒/步。
在另一优选实施方案中,本发明催化剂的BET表面积为至少10m2/g,有利地为至少20m2/g,优选为至少40m2/g,特别优选为至少60m2/g,非常特别优选为至少80m2/g。BET表面积根据DIN 66131测定。
在另一优选实施方案中,本发明催化剂的孔体积有利地为0.05-1.5cm3/g,优选为0.1-1.0cm3/g,特别优选为0.15-0.9cm3/g,非常特别优选为0.17-0.7cm3/g,特别为0.2-0.6cm3/g。使用根据DIN标准66133的水银孔隙率法来测定孔体积。
在优选实施方案中,本发明的催化剂以成型体(例如丸粒、挤出物、球形颗粒等)的形式存在,成型体的抗压强度有利地为至少0.2kgf,优选为至少0.5kgf,特别优选为至少1.0kgf,非常特别优选为至少1.5kgf,特别是至少2.0kgf。横向抗压强度是当在其侧面施加压力时材料稳定性的量度。为此,将材料夹在两个冲头之间(初始力0.5N),然后以1.6mm/分钟的测试速度彼此相对地运动并压碎材料。记录破碎材料所需的力。数据通过统计学评估至少20个成型体获得。
本发明所用的催化剂组合物的其他实施方案可参见实施例。不言而喻,催化剂的上述特征和仍有待于下文描述的特征不仅可以以指出的组合形式和值范围使用,而且可以以主要权利要求限定的其他组合形式和值范围使用,而不超出本发明的范围。
本发明所用的催化剂以常规方式制备,例如通过将活性组分和任选的掺杂元素(优选以其盐/水合物的形式)引入溶液中,然后以合适的方式将其施加到载体上,例如通过浸渍。然后将催化剂干燥,煅烧,任选还原并任选钝化。
通过浸渍将活性组分施加到载体材料上可以以常规方式进行,例如作为载体涂层施加到整料上。程序和工艺条件描述于例如Handbook of heterogeneous catalysis,第2版,第1卷,VCH Verlagsgesellschaft Weinheim,2008,第57-66页和147-149页中。
一种替代的制备方法包括将载体材料与活性元素和任选掺杂元素的盐/水合物捏合,随后进行挤出,干燥和任选的煅烧,任选的还原和任选的钝化。
此处,载体材料与活性组合物的捏合以及其他工作步骤可使用已知的装置以常规方式进行。
由粉状原料生产成型体可通过本领域技术人员已知的常规方法进行,例如压片、聚集或挤出,尤其是如Handbook of Heterogeneous Catalysis,第1卷,VCHVerlagsgesellschaft Weinheim,1997,第414-417页所述。
在成型或应用中,可添加本领域技术人员已知的助剂,例如粘合剂、润滑剂和/或溶剂。
形成了非常适于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的催化活性组合物。取决于相应的反应条件,以最小的氢气损失实现了气体混合物中CO浓度降至低于10ppm的所需显著降低。
本发明还提供了催化活性组合物用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的用途,其中催化活性组合物包含位于选自Al2O3,ZrO2,TiO2,SiC,ZnO,第IIA族金属的氧化物,第IIIB、IVB、VB、VIB族过渡金属的氧化物,稀土金属氧化物,硅铝酸盐、沸石、MOF(金属有机骨架)及其混合物的载体材料上的至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分和铼作为掺杂剂。
在本发明的催化活性组合物用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的用途的优选实施方案中,使用催化活性组合物,其包含位于载体材料上的至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分和铼作为掺杂剂,其中载体材料的活性组分总负载量为0.1-20重量%,铼负载量为0.01-20重量%,在每种情况下基于催化活性组合物的总重量,并且载体材料包含一种或多种选自Al2O3,ZrO2,TiO2,SiC,ZnO,第IIA金属的氧化物,第IIIB、IVB、VB、VIB族过渡金属的氧化物,稀土金属氧化物,硅铝酸盐,沸石,MOF(金属有机骨架)及其混合物。
在本发明的催化活性组合物用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的用途的特别优选的实施方案中,使用催化活性组合物,其包含位于载体材料上的至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分和铼作为掺杂剂,其中载体材料的活性组分总负载量为0.1-20重量%,优选为0.2-10重量%,特别优选为0.3-5重量%,铼的负载量为0.01-20重量%,优选为0.07-5重量%,特别优选为0.08-4重量%,在每种情况下基于催化活性组合物的总重量,并且载体材料优选包含选自沸石A,β-沸石,丝光沸石,八面沸石,ZSM-5和MOF的组分。
在本发明的催化活性组合物用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的用途的另一特别优选的实施方案中,使用催化活性组合物,其包含位于载体材料上的至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分和铼作为掺杂剂,其中载体材料的活性组分总负载量为0.1-20重量%,优选为0.2-10重量%,特别优选为0.3-5重量%,铼的负载量为0.01-20重量%,优选为0.07-5重量%,特别优选为0.08-4重量%,在每种情况下基于催化活性组合物的总重量,并且载体材料优选包含镧-铈-锆氧化物,其中载体材料的氧化镧含量为0.1-15重量%,氧化铈含量为0.1-20重量%,氧化锆含量为30-99.8重量%,基于总载体材料的重量。
本发明同样提供了一种选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的方法,其中使用包含位于选自Al2O3,ZrO2,TiO2,SiC,ZnO,第IIA族金属的氧化物,第IIIB、IVB、VB、VIB族过渡金属的氧化物,稀土金属氧化物,硅铝酸盐,沸石,MOF(金属有机骨架)及其混合物的载体材料上的选自至少一种钌、铑、镍和钴,优选钌的元素作为活性成分和铼作为掺杂剂的催化活性组合物。
在本发明的选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的方法的优选实施方案中,使用催化活性组合物,其包含位于载体材料上的至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分和铼作为掺杂剂,其中载体材料的活性组分总负载量为0.1-20重量%,铼的负载量为0.01-20重量%,在每种情况下基于催化活性组合物的总重量,并且载体材料包含一种或多种选自Al2O3,ZrO2,TiO2,SiC,ZnO,第IIA族金属的氧化物,第IIIB、IVB、VB、VIB族过渡金属的氧化物,稀土金属氧化物,硅铝酸盐,沸石,MOF(金属有机骨架)及其混合物的组分。
在本发明的选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的方法的特别优选的实施方案中,使用的催化活性组合物,其包含位于载体材料上的至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分和铼作为掺杂剂,其中载体材料的活性组分总负载量为0.1-20重量%,优选为0.2-10重量%,特别优选为0.3-5重量%,铼的负载量为0.01-20重量%,优选为0.07-5重量%,特别优选为0.08-4重量%,在每种情况下基于催化活性组合物的总重量,并且载体材料优选包含选自沸石A、β-沸石、丝光沸石、八面沸石、ZSM-5和MOF的组分。
在本发明的选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的方法的另一特别优选的实施方案中,使用催化活性组合物,其包含位于载体材料上的至少一种选自钌、铑、镍和钴,优选钌的元素作为活性组分和铼作为掺杂剂,其中载体材料的活性组分总负载量为0.1-20重量%,优选为0.2-10重量%,特别优选为0.3-5重量%,铼的负载量为0.01-20重量%,优选为0.07-5重量%,特别优选为0.08-4重量%,在每种情况下基于催化活性组合物的总重量,并且载体材料优选包含镧-铈-锆氧化物,其中载体材料的氧化镧含量为0.1-15重量%,氧化铈含量为0.1-20重量%,氧化锆含量为30-99.8重量%,基于总载体材料的重量。
本发明的选择性甲烷化方法可在优选100-300℃的温度下进行。
在180-260℃温度下选择性甲烷化CO是特别有利的。该温度允许直接热集成至在先的低温转换中。这使得可将本发明的甲烷化步骤直接与低温转化步骤耦合。在该温度范围内高活性与高CO选择性的组合确保催化剂的稳定和首要的热集成操作是可能的。
本发明的方法以GHSV为200-20 000h-1,优选为500-15 000h-1,特别优选为1000-10 000h-1,非常特别优选为2000-7500h-1的操作模式进行。GHSV“气时空速”是反应气体的气体流速的量度,以标准温度和标准压力下的升/升催化剂·小时计。
在本发明的高活性甲烷化催化剂上选择性甲烷化包含氢气和二氧化碳的料流中的一氧化碳的本发明方法在常规装置中在用于实施甲烷化反应的常规条件下(例如如Handbook of heterogeneous catalysis,第2版,第1卷,VCH VerlagsgesellschaftWeinheim,2008,第353页所述)用包含CO和氢气的工艺气体进行,并使其通过催化剂。
适用于甲烷化方法的工艺气体是可通过重整固体、液体和气体燃料制备的合成气。作为优选的燃料,可提及天然气、液化石油气(LPG)、长链烃(汽油,柴油),和醇如甲醇或乙醇。就本发明而言,重整方法是本领域技术人员已知的方法,例如蒸汽重整、部分氧化和自热重整。优选的重整方法是烃如天然气、汽油和柴油的蒸汽重整和自热重整。
因此,所述催化活性组合物非常适于包含氢气和二氧化碳的重整产物料流中的CO精细纯化,特别是用于生产用于燃料电池应用的氢气。
借助于以下实施例来阐述本发明,而不意味着相应的限制。
实施例
实施例1:
将148.1g镧-铈-锆氧化物载体(包含65重量%的ZrO2、15重量%的CeO2、5重量%的La2O3和15重量%的Al2O3)用约30%重量浓度的的RuCl3溶液浸渍,其量设定为使得成品催化剂具有2重量%的Ru作为活性组成。随后将浸渍的载体在旋转管式炉中在120℃下干燥16小时,然后在475℃下煅烧2小时(以4℃/分钟的加热速率)。随后用高铼酸(HReO4)溶液浸渍以此方式获得的钌催化剂,并在120℃下再次干燥16小时。设定高铼酸的浓度,以使得干燥后的成品催化剂包含2重量%的Re作为掺杂剂。成品催化剂的BET表面积为83m2/g*)
实施例2
将148.1g镧-铈-锆氧化物载体(包含65重量%的ZrO2、15重量%的CeO2、5重量%的La2O3和15重量%的Al2O3)用约30%重量浓度的RuCl3溶液浸渍,其量设定为使得成品催化剂具有1重量%的Ru作为活性组成。随后将浸渍的载体在旋转管式炉中在120℃下干燥16小时,然后在475℃下煅烧2小时(以4℃/分钟的加热速率)。随后用高铼酸(HReO4)溶液浸渍以此方式获得的钌催化剂,并在120℃下再次干燥16小时。设定高铼酸的浓度,以使得干燥后的成品催化剂包含1重量%的Re作为掺杂剂。成品催化剂的BET表面积为86m2/g*)
该催化剂的XRD图谱如图1所示。
实施例3
将148.1g镧-铈-锆氧化物载体(包含65重量%的ZrO2、15重量%的CeO2、5重量%的La2O3和15重量%的Al2O3)用约30%重量浓度的RuCl3溶液浸渍,其量设定为使得成品催化剂具有2重量%的Ru作为活性组成。随后将浸渍的载体在旋转管式炉中在120℃下干燥16小时,然后在475℃下煅烧2小时(以4℃/分钟的加热速率)。随后用高铼酸(HReO4)溶液浸渍以此方式获得的钌催化剂,并在120℃下再次干燥16小时。设定高铼酸的浓度,以使得干燥后的成品催化剂包含0.5重量%的Re作为掺杂剂。成品催化剂的BET表面积为85m2/g*)
实施例4
将148.1g镧-铈-锆氧化物载体(包含65重量%的ZrO2、15重量%的CeO2、5重量%的La2O3和15重量%的Al2O3)用约30%重量浓度的RuCl3溶液浸渍,其量设定为使得成品催化剂具有2重量%的Ru作为活性组成。随后将浸渍的载体在旋转管式炉中在120℃下干燥16小时,然后在475℃下煅烧2小时(以4℃/分钟的加热速率)。随后用高铼酸(HReO4)溶液浸渍以此方式获得的钌催化剂,并在120℃下再次干燥16小时。设定高铼酸的浓度,以使得干燥后的成品催化剂包含0.25重量%的Re作为掺杂剂。成品催化剂的BET表面积为88m2/g*)
实施例5
将148.1g镧-铈-锆氧化物载体(包含65重量%的ZrO2、15重量%的CeO2、5重量%的La2O3和15重量%的Al2O3)用约30%重量浓度的RuCl3溶液浸渍,其量设定为使得成品催化剂具有2重量%的Ru作为活性组成。随后将浸渍的载体在旋转管式炉中在120℃下干燥16小时,然后在475℃下煅烧2小时(以4℃/分钟的加热速率)。随后用高铼酸(HReO4)溶液浸渍以此方式获得的钌催化剂,并在120℃下再次干燥16小时。设定高铼酸的浓度,以使得干燥后的成品催化剂包含0.1重量%的Re作为掺杂剂。成品催化剂的BET表面积为86m2/g*)
*)本发明各催化剂的BET表面积根据DIN 66131测定。
实施例6(对比实施例)
(专利EP 2 125 201 B1实施例7d的再现)
将由70重量%的ZrO2、15重量%的CeO2、5重量%的La2O3和10重量%的Al2O3组成的载体与RuCl3溶液混合,其浓度设定为使得煅烧的最终产品具有2重量%的Ru作为活性组成。
实施例7(对比实施例)
将147gγ-Al2O3载体(0.8mm球体,Sasol GmbH)用约30%重量浓度的RuCl3溶液浸渍,其量设定为使得成品催化剂具有2重量%的Ru作为活性组成。随后将浸渍的载体在旋转管式炉中在120℃下干燥16小时,然后在475℃下煅烧2小时(以4℃/分钟的加热速率)。
表1:实施例1-7的催化剂组成
催化剂 Ru[重量%] Re[重量%] 载体
实施例1 2 2 LaCeZr氧化物
实施例2 2 1 LaCeZr氧化物
实施例3 2 0.5 LaCeZr氧化物
实施例4 2 0.25 LaCeZr氧化物
实施例5 2 0.10 LaCeZr氧化物
实施例6* 2 0 LaCeZr氧化物
实施例7* 2 0 Al<sub>2</sub>O<sub>3</sub>
*对比实施例
实施例8—使用实施例1-7的催化剂进行选择性甲烷化
测试条件:
实验中使用长度为530mm,内径为10mm的电加热固定床管式反应器。
首先安装直径为1.8-2.2mm的5ml滑石球,然后将催化剂混合物置于这些滑石球上。所述催化剂混合物由约20ml催化剂丸粒(1.5×1.5mm)组成。填充反应器的剩余体积的直径为1.8-2.2mm的5ml滑石球作为防护床。
首先在230℃下使用90L/h氮气和10L/h氢气将催化剂还原1小时。选择用于实验的气体组成是甲烷重整后的低温变换步骤的出料所特有的,为22体积%的H2、28体积%的N2、25体积%的H2O、13体积%的CO2、5体积%的CO和0.5体积%的CH4。所有实验均在2巴的压力和5000L·h-1·L-1 催化剂的空速下进行。
在所有气体已设定并且反应器(在230℃下还原之后)已加热至260℃的温度后,开始实验,并且在每种情况下在90天的时间内监测所用的催化剂的选择性。
借助反应器下游的在线GC测定气体的浓度。
使用转化时的参数选择性来评价实验结果。选择性是反应的CO量与形成的甲烷量的比值(以体积%计)。转化率基于CO。
结果:
在上述条件下测量催化剂。在这些实验条件下,对于实施例1-7的所有催化剂,可以实现CO的完全转化(CO含量=0ppm,或低于GC仪器的检测限)。
表2中报告了各实验开始时(开始运行(SOR))和90小时的运行时间(TOS)的CO选择性。
从表2可以看出,当使用实施例6和7的对比催化剂时,在90小时的运行时间后,CO选择性显著下降至18和24%的值,而在实施例1-5的本发明催化剂的情况下,仍观察到46-53%的CO选择性。
表2:CO的选择性甲烷化的结果
Figure BDA0001417360960000141
表3:在260℃下运行90小时后的选择性性能,随后在4小时内在每种情况下以20℃逐步降低温度。所示的选择性值在CO完全转化(0ppm CO)下测定。在不完全转化的情况下,选择性报告为:=不适用(n/a)。(测试条件:T=200-260℃,p=2巴,GHSV=5000h-1,入口气体组成:5%CO、13%CO2、0.5%CH4、22%H2、25%H2O、28%N2)
Figure BDA0001417360960000151
从表3可以看出,实施例1-5的本发明的铼掺杂的钌催化剂在200-260℃的温度范围内显示出比对比实施例6和7的两种无铼催化剂显著更高的CO选择性。

Claims (10)

1.一种用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的催化活性组合物,其包含位于镧-铈-锆氧化物载体材料上的至少一种选自钌、铑、镍和钴的元素作为活性组分和铼作为掺杂剂;
其中活性组分以0.1-20重量%的量存在,铼以0.01-20重量%的量存在,在每种情况下基于催化活性组合物的总量;
其中载体材料呈抗压强度为至少0.2kgf的成型体形式。
2.根据权利要求1的催化活性组合物,其中所述组合物包含钌作为活性组分。
3.根据权利要求1的催化活性组合物,其中所述载体材料包含其量为0.1-15重量%的氧化镧,其量为0.1-20重量%的氧化铈,其量为30-99.8重量%的氧化锆,在每种情况下基于载体材料的总量。
4.一种制备根据权利要求1-3中任一项的催化活性组合物的方法,其包括以下步骤:使活性组分和掺杂剂溶解并通过浸渍将溶液施加至载体材料上。
5.制备根据权利要求1-3中任一项的催化活性组合物的方法,其包括以下步骤:将载体材料与活性组分和掺杂剂的盐和/或水合物捏合,随后挤出并干燥混合物。
6.根据权利要求1-3中任一项的催化活性组合物用于选择性甲烷化包含氢气和二氧化碳的重整产物料流中的一氧化碳的用途。
7.一种选择性甲烷化一氧化碳的方法,其中使用包含位于镧-铈-锆氧化物载体材料上的至少一种选自钌、铑、镍和钴的元素作为活性组分和铼作为掺杂剂的催化活性组合物,
其中活性组分以0.1-20重量%的量存在,铼以0.01-20重量%的量存在,在每种情况下基于催化活性组合物的总量;
其中载体材料呈抗压强度为至少0.2kgf的成型体形式。
8.根据权利要求7的方法,其中甲烷化在100-300℃的温度范围内进行。
9.根据权利要求7的方法,其中其直接紧跟低温转化步骤。
10.根据权利要求1-3中任一项的催化活性组合物在生产用于燃料电池应用的氢气中的工艺步骤中的用途。
CN201680017984.1A 2015-03-26 2016-03-23 用于选择性甲烷化一氧化碳的钌-铼基催化剂 Active CN107427819B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15161099.5 2015-03-26
EP15161099.5A EP3072589A1 (de) 2015-03-26 2015-03-26 Katalysator und Verfahren zur selektiven Methanisierung von Kohlenmonoxid
PCT/EP2016/056418 WO2016151031A1 (de) 2015-03-26 2016-03-23 Ruthenium-rhenium basiertem katalysator und verfahren zur selektiven methanisierung von kohlenmonoxid

Publications (2)

Publication Number Publication Date
CN107427819A CN107427819A (zh) 2017-12-01
CN107427819B true CN107427819B (zh) 2021-08-24

Family

ID=52736958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680017984.1A Active CN107427819B (zh) 2015-03-26 2016-03-23 用于选择性甲烷化一氧化碳的钌-铼基催化剂

Country Status (7)

Country Link
US (1) US10780422B2 (zh)
EP (2) EP3072589A1 (zh)
JP (1) JP6808638B2 (zh)
KR (1) KR102611732B1 (zh)
CN (1) CN107427819B (zh)
CA (1) CA2980254C (zh)
WO (1) WO2016151031A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11529618B2 (en) 2016-11-28 2022-12-20 Basf Se Catalyst composite comprising an alkaline earth metal containing CHA zeolite and use thereof in a process for the conversion of oxygenates to olefins
CN108543534B (zh) * 2018-05-14 2020-12-15 中国矿业大学(北京) 一种用于催化臭氧氧化的催化剂及其制备方法
KR102257706B1 (ko) * 2020-02-24 2021-05-27 아주대학교산학협력단 바이오매스 기반 다공성 탄소 지지체 담지 금속 촉매, 이의 제조 방법 및 상기 촉매를 이용하여 퓨란으로부터 테트라하이드로퓨란을 제조하는 방법
KR102572816B1 (ko) * 2022-07-15 2023-08-31 (주)한빛레이저 산소 동위원소 농축수 제조용 촉매 및 상기 촉매를 이용한 산소 동위원소 농축수의 제조방법
CN117101673B (zh) * 2023-06-19 2024-06-21 广东工业大学 一种Ni-Re双金属基催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567205A (en) * 1984-06-29 1986-01-28 Exxon Research And Engineering Co. Ruthenium catalysts, and use thereof for Fischer-Tropsch synthesis
EP0231401A1 (en) * 1984-06-29 1987-08-12 Exxon Research And Engineering Company Ruthenium-rhenium-titania catalysts, and use thereof for Fischer-Tropsch synthesis
WO2008101875A1 (de) * 2007-02-23 2008-08-28 Basf Se Katalysator und verfahren zur selektiven methanisierung von kohlenmonoxid
CN102151570A (zh) * 2011-03-01 2011-08-17 上海中科高等研究院 一种甲烷-二氧化碳重整反应催化剂及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615164A (en) 1968-01-10 1971-10-26 Bernard S Baker Process for selective removal by methanation of carbon monoxide from a mixture of gases containing carbon dioxide
US3663162A (en) 1969-06-24 1972-05-16 Inst Gas Technology Method for selective methanation of gaseous mixture containing carbon monoxide
GB9609918D0 (en) 1996-05-11 1996-07-17 Johnson Matthey Plc Hydrogen purification
GB9620287D0 (en) 1996-09-28 1996-11-13 Johnson Matthey Plc Carbon monoxide removal
JP3865479B2 (ja) * 1997-09-09 2007-01-10 大阪瓦斯株式会社 一酸化炭素除去システム及び一酸化炭素の除去方法
WO2000053696A1 (fr) 1997-09-09 2000-09-14 Osaka Gas Co., Ltd. Systeme et procede de suppression du monoxyde de carbone
JP4460126B2 (ja) 2000-08-31 2010-05-12 出光興産株式会社 水素含有ガス中の一酸化炭素の除去方法
EP1246286A1 (de) 2001-03-31 2002-10-02 OMG AG & Co. KG Kombinierte Kraft- Wärmeanlage mit Gaserzeugungssystem und Brennstoffzellen sowie Verfahren zu ihrem Betrieb
US20050096211A1 (en) 2003-10-31 2005-05-05 Hiroshi Takeda Catalyst for the conversion of carbon monoxide
US20050096212A1 (en) 2003-10-31 2005-05-05 Hiroshi Takeda Catalyst for the conversion of carbon monoxide
KR100903468B1 (ko) * 2004-12-20 2009-06-18 다나까 기낀조꾸 고교 가부시끼가이샤 디젤 배기가스 처리용 연소촉매 및 디젤 배기가스의처리방법
DE102005003311A1 (de) 2005-01-24 2006-07-27 Basf Ag Katalytisch aktive Zusammensetzung zur selektiven Methanisierung von Kohlenmonoxid und Verfahren zu deren Herstellung
JP4824332B2 (ja) 2005-03-29 2011-11-30 エヌ・イーケムキャット株式会社 一酸化炭素除去用触媒
AR053588A1 (es) * 2005-04-21 2007-05-09 Shell Int Research Catalizador de hidrogenacion y metodo de hidrogenacion
JP5094028B2 (ja) * 2006-03-20 2012-12-12 日揮触媒化成株式会社 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
US8067332B2 (en) 2006-05-03 2011-11-29 Samsung Sdi Co., Ltd. Methanation catalyst, and carbon monoxide removing system, fuel processor, and fuel cell including the same
JPWO2008075761A1 (ja) 2006-12-20 2010-04-15 新日本石油株式会社 一酸化炭素濃度を低減するための触媒
JP4864688B2 (ja) * 2006-12-25 2012-02-01 日揮触媒化成株式会社 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
KR20090119766A (ko) * 2007-03-13 2009-11-19 우미코레 아게 운트 코 카게 일산화탄소의 메탄화를 위한 촉매로서 금속 도핑된 니켈 산화물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567205A (en) * 1984-06-29 1986-01-28 Exxon Research And Engineering Co. Ruthenium catalysts, and use thereof for Fischer-Tropsch synthesis
EP0231401A1 (en) * 1984-06-29 1987-08-12 Exxon Research And Engineering Company Ruthenium-rhenium-titania catalysts, and use thereof for Fischer-Tropsch synthesis
WO2008101875A1 (de) * 2007-02-23 2008-08-28 Basf Se Katalysator und verfahren zur selektiven methanisierung von kohlenmonoxid
CN102151570A (zh) * 2011-03-01 2011-08-17 上海中科高等研究院 一种甲烷-二氧化碳重整反应催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Promoting Effect of V, Mo, W, and Re on the Rate of C-O Bond Dissociation of Adsorbed CO in Methanation on Ru/Al2O3;Thshiaki Mori等;《J.CHEM.SOC.,CHEM.COMMUN》;19840101;第678-679页 *
Thshiaki Mori等.Promoting Effect of V, Mo, W, and Re on the Rate of C-O Bond Dissociation of Adsorbed CO in Methanation on Ru/Al2O3.《J.CHEM.SOC.,CHEM.COMMUN》.1984, *

Also Published As

Publication number Publication date
KR102611732B1 (ko) 2023-12-07
EP3274088A1 (de) 2018-01-31
EP3072589A1 (de) 2016-09-28
US20180085739A1 (en) 2018-03-29
JP6808638B2 (ja) 2021-01-06
JP2018514372A (ja) 2018-06-07
CN107427819A (zh) 2017-12-01
CA2980254C (en) 2023-07-25
US10780422B2 (en) 2020-09-22
CA2980254A1 (en) 2016-09-29
KR20170130561A (ko) 2017-11-28
WO2016151031A1 (de) 2016-09-29

Similar Documents

Publication Publication Date Title
JP5334870B2 (ja) 一酸化炭素のメタン化のための触媒としての金属ドープ酸化ニッケル
CN107427819B (zh) 用于选择性甲烷化一氧化碳的钌-铼基催化剂
Ciambelli et al. Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts
Bion et al. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks
EP1866083B1 (en) Nickel on Ceria/Zirconia catalyst
JP4851655B2 (ja) 水素を含有する気体混合物中の一酸化炭素の転化法およびこのための触媒
Lin et al. In situ calorimetric study: structural effects on adsorption and catalytic performances for CO oxidation over Ir-in-CeO2 and Ir-on-CeO2 catalysts
US20020131915A1 (en) Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
TWI294413B (en) Method for converting co and hydrogen into methane and water
US20070183968A1 (en) Water-gas shift and reforming catalyst and method of reforming alcohol
JP2005529824A (ja) 水−気体転化用白金族金属触媒のメタン化活性の抑制
JP2007252989A (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
CN111589462A (zh) 镍基催化剂、制备方法及用途
US8395009B2 (en) Catalyst for selective methanization of carbon monoxide
WO2003051493A2 (en) Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
KR100448683B1 (ko) 연료전지 자동차용 가솔린 개질촉매 및 이의 제조방법
EP3300800A1 (en) Process for preparing a nickel-based catalyst, the nickel-based catalyst, and use thereof in a steam reforming process
WO2021138223A1 (en) High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
JPS63126551A (ja) メタノ−ル改質用触媒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210305

Address after: Tigershe, Sweden

Applicant after: Hutberger chemical and Engineering Co.

Address before: Ludwigshafen, Germany

Applicant before: BASF Europe Inc.

GR01 Patent grant
GR01 Patent grant