CN107417909A - 一种氮掺杂碳/聚苯胺复合材料的制备方法 - Google Patents

一种氮掺杂碳/聚苯胺复合材料的制备方法 Download PDF

Info

Publication number
CN107417909A
CN107417909A CN201710341349.5A CN201710341349A CN107417909A CN 107417909 A CN107417909 A CN 107417909A CN 201710341349 A CN201710341349 A CN 201710341349A CN 107417909 A CN107417909 A CN 107417909A
Authority
CN
China
Prior art keywords
nitrogen
doped carbon
polyaniline
composite material
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710341349.5A
Other languages
English (en)
Inventor
孔泳
唐斌
毛辉麾
陶永新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710341349.5A priority Critical patent/CN107417909A/zh
Publication of CN107417909A publication Critical patent/CN107417909A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明涉及一种氮掺杂碳/聚苯胺复合材料的制备方法。包括以下步骤:制备聚苯胺、制备氮掺杂碳、制备氮掺杂碳/聚苯胺复合材料。本发明的有益效果是:氮掺杂碳/聚苯胺复合材料制备方法新颖,拥有更好的导电性,更小的电极电阻,更好的电容性能,且表现出更好的循环稳定性。

Description

一种氮掺杂碳/聚苯胺复合材料的制备方法
技术领域
本发明涉及一种氮掺杂碳/聚苯胺复合材料的制备方法,属于材料合成领域。
技术背景
超级电容器是能够迅速存储电能并且释放电能的元件,它往往拥有循环寿命长、充放电速率快、稳定性高且维护成本低等优势,从而可将其应用在众多能源存储领域。依据工作原理的不同可以将超级电容器划分为两大类:双电层电容器是第一类,赝电容器是第二类。在双电层电容器中,能量主要通过离子在电极-电解液界面的物理吸附这一过程来进行存储。关于赝电容器,能量主要通过超级电容器电极材料发生氧化还原反应来进行存储。
碳材料具备良好的双电层电容,从而可将其用于超级电容器的电极材料。而碳材料中掺杂氧、氮、磷和硫等杂原子可提升其亲水性能,这将更加有利于碳材料表面双电层的构建。此外,杂原子在电能存储和释放过程中可发生氧化还原反应,进而掺杂杂原子的碳材料也具备赝电容特性,因此杂原子的掺杂可进一步地提升碳材料的电容性能。
导电高分子如聚苯胺、聚噻吩、聚吡咯等能够通过材料与电解液接触并产生氧化还原反应,在此过程中储存和释放电荷。在产生氧化反应时,离子会从电解液转移到聚合物的骨架中(也称为p型掺杂)。反之,当产生还原反应时,离子会从聚合物分子链上脱出并且再次返回到电解液中(也称为脱掺杂)。然而,循环充放电过程中离子的掺杂/脱掺杂使得聚合物的结构发生膨胀,破裂,收缩而造成电极材料的不断衰减,最终使电极材料丧失氧化还原活性,因而以导电高分子充当超级电容器的电极材料时,需要考虑的问题是稳定性的提高。
以氮原子掺杂碳和聚苯胺的复合材料来作为超级电容器的电极材料,从而提升材料的亲水性和电容性能。聚苯胺是制备氮掺杂碳材料的前驱体,碳材料则起到支撑框架的作用,提高电极材料的机械性能,通过原位聚合法合成氮掺杂碳/聚苯胺复合材料。
发明内容
本发明的目的是在于提供一种氮掺杂碳/聚苯胺复合材料的制备方法,从而提升比电容性能。
本发明所述一种氮掺杂碳/聚苯胺复合材料的制备方法,包括以下步骤:
a、制备聚苯胺:将苯胺(0.09M)溶于200mL 1M硫酸溶液作为单体溶液。将过硫酸铵(0.12M)充分溶解到200mL 1M的硫酸溶液中作为氧化剂。将氧化剂缓慢滴加到单体溶液中,滴速控制在每滴4s,滴完后均匀搅拌24h。对反应产物用大量去离子水洗涤至滤液无色,所得到的样品置入烘箱中,在60℃条件下真空干燥24h,制备得到聚苯胺。
b、制备氮掺杂碳材料:将制备得到的聚苯胺置于管式炉中,以氮气为保护气,在高温条件下(750℃)煅烧3h,制备氮掺杂碳材料,研磨成粉末状。
c、制备氮掺杂碳/聚苯胺复合材料:配制50mL包含1.15g过硫酸铵的硫酸(1M)溶液作氧化剂,将氧化剂缓慢滴加到50mL含0.25g氮掺杂碳和0.5g苯胺单体的硫酸(1M)溶液中,滴加速度控制在每滴4s,持续搅拌反应4h。用去离子水反复洗涤产物至滤液无色,在60℃条件下真空干燥24h,制备得到氮掺杂碳/聚苯胺的复合材料。
进一步,步骤a中苯胺浓度为0.05~0.1M,氧化剂缓慢滴加到苯胺单体溶液中,滴速控制在每滴3~4s。。
进一步,步骤b中以氮气为保护气,煅烧温度为600~800℃,煅烧时间2~4h。
进一步,步骤c中持续搅拌反应3~5h,产物用去离子水反复洗涤至滤液无色。
本发明的有益效果是:氮掺杂碳/聚苯胺复合材料制备方法新颖,材料拥有更好的导电性,更小的电极电阻,更好的电容性能,且表现出更好的循环稳定性。
具体实施方式
现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例一:
制备氮掺杂碳/聚苯胺复合材料包括以下几个步骤:
(1)将苯胺(0.09M)溶于200mL 1M硫酸溶液作为单体溶液。将过硫酸铵(0.12M)充分溶解到200mL 1M的硫酸溶液中作为氧化剂。将氧化剂缓慢滴加到单体溶液中,滴速控制在每滴4s,滴完后均匀搅拌24h。对反应产物用大量去离子水洗涤至滤液无色,所得到的样品置入烘箱中,在60℃条件下真空干燥24h,制备得到聚苯胺。
(2)将步骤(1)中制备得到的聚苯胺置于管式炉中,以氮气为保护气,在高温条件下(750℃)煅烧3h,制备氮掺杂碳材料,研磨成粉末状。
(3)配制50mL包含1.15g过硫酸铵的硫酸(1M)溶液作氧化剂,将氧化剂缓慢滴加到50mL含0.25g步骤(2)制备得到的氮掺杂碳和0.5g苯胺单体的硫酸(1M)溶液中,滴加速度控制在每滴4s,持续搅拌反应4h。用去离子水反复洗涤产物至滤液无色,在60℃条件下真空干燥24h,制备得到氮掺杂碳/聚苯胺的复合材料。

Claims (4)

1.一种氮掺杂碳/聚苯胺复合材料的制备方法,其特征在于:步骤如下:
a、制备聚苯胺:将苯胺(0.09M)溶于200mL 1M硫酸溶液作为单体溶液。将过硫酸铵(0.12M)充分溶解到200mL 1M的硫酸溶液中作为氧化剂。将氧化剂缓慢滴加到单体溶液中,滴速控制在每滴4s,滴完后均匀搅拌24h。对反应产物用大量去离子水洗涤至滤液无色,所得到的样品置入烘箱中,在60℃条件下真空干燥24h,制备得到聚苯胺。
b、制备氮掺杂碳材料:将制备得到的聚苯胺置于管式炉中,以氮气为保护气,在高温条件下(750℃)煅烧3h,制备氮掺杂碳材料,研磨成粉末状。
c、制备氮掺杂碳/聚苯胺复合材料:配制50mL包含1.15g过硫酸铵的硫酸(1M)溶液作氧化剂,将氧化剂缓慢滴加到50mL含0.25g氮掺杂碳和0.5g苯胺单体的硫酸(1M)溶液中,滴加速度控制在每滴4s,持续搅拌反应4h。用去离子水反复洗涤产物至滤液无色,在60℃条件下真空干燥24h,制备得到氮掺杂碳/聚苯胺的复合材料。
2.根据权利要求1所述一种氮掺杂碳/聚苯胺复合材料的制备方法,其特征是:所述步骤a中苯胺浓度为0.05~0.1M,氧化剂缓慢滴加到苯胺单体溶液中,滴速控制在每滴3~4s。
3.根据权利要求1所述一种氮掺杂碳/聚苯胺复合材料的制备方法,其特征是:所述步骤b中以氮气为保护气,煅烧温度为600~800℃,煅烧时间2~4h。
4.根据权利要求1所述一种氮掺杂碳/聚苯胺复合材料的制备方法,其特征是:所述步骤c中持续搅拌反应3~5h,产物用去离子水反复洗涤至滤液无色。
CN201710341349.5A 2017-05-16 2017-05-16 一种氮掺杂碳/聚苯胺复合材料的制备方法 Pending CN107417909A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710341349.5A CN107417909A (zh) 2017-05-16 2017-05-16 一种氮掺杂碳/聚苯胺复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710341349.5A CN107417909A (zh) 2017-05-16 2017-05-16 一种氮掺杂碳/聚苯胺复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107417909A true CN107417909A (zh) 2017-12-01

Family

ID=60425607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710341349.5A Pending CN107417909A (zh) 2017-05-16 2017-05-16 一种氮掺杂碳/聚苯胺复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107417909A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463023A (zh) * 2020-04-14 2020-07-28 晋江瑞碧科技有限公司 一种氮掺杂纳米孔碳纤维/聚苯胺的制备方法
CN111762773A (zh) * 2020-06-28 2020-10-13 浙江师范大学 一种具有高氮含量氮掺杂碳材料的制备方法
CN111992237A (zh) * 2020-09-05 2020-11-27 福州大学 一种富氮碳材料催化剂、制备方法及其在选择性氧化硫化氢上的应用
CN115041144A (zh) * 2022-05-23 2022-09-13 广州大学 一种聚苯胺氮掺杂碳泡沫、制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495432A (zh) * 2013-09-11 2014-01-08 重庆大学 一种高效稳定的燃料电池催化剂制备方法
CN105439115A (zh) * 2014-08-08 2016-03-30 中国石油化工股份有限公司 一种杂原子掺杂的碳纳米颗粒及其生产方法
CN105931855A (zh) * 2016-06-04 2016-09-07 常州大学 氮硫共掺杂碳-聚苯胺复合材料的合成及应用于超级电容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495432A (zh) * 2013-09-11 2014-01-08 重庆大学 一种高效稳定的燃料电池催化剂制备方法
CN105439115A (zh) * 2014-08-08 2016-03-30 中国石油化工股份有限公司 一种杂原子掺杂的碳纳米颗粒及其生产方法
CN105931855A (zh) * 2016-06-04 2016-09-07 常州大学 氮硫共掺杂碳-聚苯胺复合材料的合成及应用于超级电容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李莉香等: "聚苯胺改性氮掺杂碳纳米管制备及其超级电容器性能", 《物理化学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463023A (zh) * 2020-04-14 2020-07-28 晋江瑞碧科技有限公司 一种氮掺杂纳米孔碳纤维/聚苯胺的制备方法
CN111762773A (zh) * 2020-06-28 2020-10-13 浙江师范大学 一种具有高氮含量氮掺杂碳材料的制备方法
CN111992237A (zh) * 2020-09-05 2020-11-27 福州大学 一种富氮碳材料催化剂、制备方法及其在选择性氧化硫化氢上的应用
CN115041144A (zh) * 2022-05-23 2022-09-13 广州大学 一种聚苯胺氮掺杂碳泡沫、制备方法和应用
CN115041144B (zh) * 2022-05-23 2024-05-03 广州大学 一种聚苯胺氮掺杂碳泡沫、制备方法和应用

Similar Documents

Publication Publication Date Title
CN107417909A (zh) 一种氮掺杂碳/聚苯胺复合材料的制备方法
Laforgue et al. Polythiophene-based supercapacitors
CN106115653A (zh) 一种杂原子掺杂的多孔碳材料的制备方法
CN101719545B (zh) 一种锂硫电池正极复合材料及其制备方法
CN105931855B (zh) 氮硫共掺杂碳-聚苯胺复合材料的合成及应用于超级电容器
CN101492545B (zh) 超级电容器用聚吡咯/聚噻吩衍生物复合导电高分子材料的制备方法
CN105047932A (zh) 一种水系锂离子电池用醌类化合物负极材料及水系锂离子电池
CN105073885B (zh) 导电性高分子微粒分散体的制造方法及使用该导电性高分子微粒分散体的电解电容器的制造方法
CN105720235B (zh) 一种正极、其制备方法及采用该正极的锂电池
CN103151179A (zh) 高比电容的核-壳结构二氧化锰@导电聚合物电极材料及其制法
CN101012309A (zh) 超级电容器用导电高分子电极材料的制备方法
CN107910199A (zh) 一种具有赝电容特性的超级电容器负极材料及其制备方法
CN104852017B (zh) 硫掺杂碳纳米线及其三维网络‑硅复合材料及其制备方法
CN108933275B (zh) 一种用于锂硫电池的可凝胶化体系及其制备方法和应用
CN108623787B (zh) 新型共轭微孔有机聚合物及其合成与应用
CN111223685B (zh) 吡啶酚醛树脂基氮掺杂碳电极材料的制备方法
CN109713239A (zh) 离子掺杂、包覆的镍钴铝酸锂正极材料及其制备方法
CN101714460A (zh) 聚吡咯/聚丙烯酸系复合凝胶电解质的制备方法
CN115241541B (zh) 一种原位热聚合固态锂硫电池的制备方法
Weng et al. Electrochemical properties of novel organodisulfide poly 1, 2-bis (thiophen-3-ylmethyl) disulfane as cathode material for secondary lithium batteries
CN102592837B (zh) 制备超级电容器用四氯合金属季铵盐掺杂聚苯胺电极的方法
CN114824193B (zh) 一种α-Fe2O3引发导电聚合物包覆的锂离子三元正极材料及其制备方法
CN114566628A (zh) 一种植酸掺杂聚吡咯@钒酸盐水系锌离子电池正极材料的制备方法
CN111211327B (zh) 一种用于锂离子电池正极材料的化合物及制备方法和应用
CN109280178A (zh) 一种过渡金属离子配位导电聚合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171201