CN107399965A - 宽温大电流MnZn铁氧体 - Google Patents

宽温大电流MnZn铁氧体 Download PDF

Info

Publication number
CN107399965A
CN107399965A CN201710496521.4A CN201710496521A CN107399965A CN 107399965 A CN107399965 A CN 107399965A CN 201710496521 A CN201710496521 A CN 201710496521A CN 107399965 A CN107399965 A CN 107399965A
Authority
CN
China
Prior art keywords
weight
percentage
hours
high current
mnzn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710496521.4A
Other languages
English (en)
Other versions
CN107399965B (zh
Inventor
郝利军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Zheng Feng Electronics Co Ltd
Original Assignee
Chongqing Zheng Feng Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Zheng Feng Electronics Co Ltd filed Critical Chongqing Zheng Feng Electronics Co Ltd
Priority to CN201710496521.4A priority Critical patent/CN107399965B/zh
Publication of CN107399965A publication Critical patent/CN107399965A/zh
Application granted granted Critical
Publication of CN107399965B publication Critical patent/CN107399965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种铁氧体材料,具体涉及一种宽温大电流MnZn铁氧体;主料包括重量百分比65.5%~72.5%的Fe2O3,重量百分比9.8%~16.2%的ZnO,剩量为Mn3O4的MnZn铁氧体材料,以主料重量为基准,加入重量百分比0.15%~0.35%Co2O3的副料,加入重量百分比0.02%~0.05%Nb2O5的第一添加剂和重量百分比0.06%~0.15%CaCO3的第二添加剂,还包括制备上述MnZn铁氧体的方法;采用本方案的宽温大电流MnZn铁氧体具有磁导率高、适用温度范围宽的优点。

Description

宽温大电流MnZn铁氧体
技术领域
本发明涉及一种铁氧体材料,具体涉及一种宽温大电流MnZn铁氧体。
背景技术
POE(Power Over Etherent)技术用一条通用以太网电缆同时传输以太网信号和直流电源,将电源和数据集成在同一有线系统当中,在确保现有结构化布线安全的同时保证了现有网络的正常运作。POE以太网供电为用户带来的好处是显而易见的,它节约成本、易于安装和管理、安全性高,还有更多增强的应用,目前已经受到用户的大力欢迎。网络磁环作为POE技术的核心部件,随着POE技术的快速发展,以及网络变压器工作需要,对网络小磁环性能提出了更为苛刻的要求,在大电流18mA~45mA,宽温-40℃~85℃条件下,具有较小的跌幅,并可以稳定工作。目前国内生产POE网络变压器用小磁环主要靠进口日本JFE-203XG2材料,部分厂家用国内鸿斯/赛茂的3k6材料做电磁特性要求低的磁芯,对于POE/POE+用宽温、大电流、小跌幅的网络小磁环高度可靠性工作还无法保证。
发明内容
为了解决上述以前技术问题,提出本发明提供一种解决POE/POE+用宽温、大电流、小跌幅的MnZn网络小磁环性能问题,提供直流叠加电流大于21mA,磁场大于60A/m时,具有常温增量磁导率大于2000,-40℃、85℃增量磁导率大于1200的MnZn铁氧体材料。
本方案中的宽温大电流MnZn铁氧体,主料包括重量百分比65.5%~72.5%的Fe2O3,重量百分比9.8%~16.2%的ZnO,剩量为Mn3O4的MnZn铁氧体材料,以主料重量为基准,加入重量百分比0.15%~0.35%Co2O3的副料,加入重量百分比0.02%~0.05%Nb2O5的第一添加剂和重量百分比0.06%~0.15%CaCO3的第二添加剂。
本发明的优点是:配比设计科学,使得锰锌铁氧体的磁导率达到3200,同时在-40℃~85℃的温度范围内增量磁导率△μi高;在-40℃~85℃的温度范围内增量磁导率△μi高,尤其是在85℃的增量磁导率△μi与传统的材料比较,增量磁导率△μi提高20%~30%。
进一步,所述Fe2O3的重量百分比为67.5%~70.0%。
进一步,所述ZnO的重量百分比为11.0%~13.5%。
进一步,所述Fe2O3的重量百分比为68.13%。
进一步,所述Co2O3的重量百分比为0.25%。
进一步,所述Nb2O5的重量百分比为0.04%。
进一步,所述CaCO3的重量百分比为0.09%。
本发明还提供一种宽温大电流MnZn铁氧体的制备方法,包括以下步骤(1)一次砂磨混合:按原料配比精确称取上述各种原料,采用立式砂磨机进行湿法混合,物料:去离子水:碳素钢球=1:1.2:5,钢球直径φ4.6~6.0mm,砂磨机频率为35FWD,混合时间为30~60分钟;混合烘干过后的粉料粒径控制在0.90~1.50μm范围;(2)预烧,将振磨后的粉料置于一般箱式炉中分三个阶段烧结,即经3~5小时将烧结温度从室温提高到900℃,在900℃下烧结1.5~3小时,再经6~8小时将温度降至150℃;预烧后粉料体积为原体积的76±5%;(3)二次球磨破碎,向预烧后的物料加入Nb2O5和CaCO3,置于行星式球磨机中球磨,物料:去离子水:碳素钢球=1:1:4,球磨时间60~120分钟;(4)造粒,按聚乙烯醇:水=7~9.6:100的比例取量混合,在温度≤100℃下使聚乙烯醇溶解于水中,制得粘合剂;再按照物料:粘合剂=100:12~16的比例取量混合,将混合料粉置于搅拌机中搅拌,在辗片机中辗至少2次,破碎过60目筛,用120目筛去除细粉,水分含量要求在0.36~0.75%;(5)成型,根据产品要求,将颗粒料成型,生坯尺寸为标准环,φ25×15×10,成型坯件密度≥3.15g/cm3;(6)烧结,将成型生坯置于钟罩炉中分五个阶段烧结,即经4~6小时将烧结温度从室温提高到900℃,该阶段无需氮气保护;再经过3~5小时将烧结温度提高到1280℃~1320℃,该阶段需要向炉腔冲入氮气,氧含量控制在0.01%;在1280℃~1320℃下烧结3~6小时,该阶段无需氮气保护;再经3~5小时将温度降至900℃,该阶段需要氮气保护,氧含量从20.6%逐渐降到900℃时的0.001%;最后经过5~8小时将温度降至150℃左右,过程中氧含量控制在0.001%以下。
本发明具有的优点:1、配料设计科学,制作成本低,工艺先进合理,简便易行。使得锰锌铁氧体的磁导率达到3200,同时在-40℃~85℃的温度范围内增量磁导率△μi高,且能稳定生产。2、在-40℃~85℃的温度范围内增量磁导率△μi高,尤其是在85℃的增量磁导率△μi与传统的材料比较,增量磁导率△μi提高20%~30%。3、烧结温度低,传统MnZn材料烧结温度为1320℃以上,新开发的MnZn材料烧结温度低于1320℃,在满足用户要求的同时,能耗低,对提高窑炉和耐火材料的寿命大有益处。
附图说明
图1为本发明宽温大电流MnZn铁氧体实施例生产工艺流程图;
图2为本发明步骤2的烧结曲线;
图3为本发明步骤5的烧结曲线。
具体实施方式
实施例1
本发明提供一种宽温大电流MnZn铁氧体和制备方法,步骤如下:制备样品1~3,(1)将Fe2O3(68.31%以下均为重量百分比)、Mn3O4(20.11%)和ZnO(11.58%)作为主料加入,以主料为基准Co2O3(0.25%)作为副料加入,采用立式砂磨机进行湿法混合,物料:去离子水:碳素钢球=1:1.2:5,钢球直径φ4.6~6.0mm,砂磨机频率为35FWD,混合时间为40分钟;混合烘干过后的粉料粒径控制在0.90~1.50μm范围;(2)将振磨后的粉料置于一般箱式炉中分三个阶段烧结,即经4小时将烧结温度从室温提高到900℃,在900℃下烧结2.5小时,再经7小时将温度降至150℃;预烧后粉料体积为原体积的76±5%;(3)向预烧后的物料加入Nb2O5(重量比0.04%)和CaCO3(重量比0.09%),烘干后置于搅拌机中搅拌,再置于行星式球磨机中球磨,物料:去离子水:碳素钢球=1:1:4,球磨时间90分钟;(4)聚乙烯醇:水=8:100的比例取量混合,在温度≤100℃下使聚乙烯醇溶解于水中,制得粘合剂;再按物料:粘合剂=100:15的比例取量混合,将混合料粉置于搅拌机中搅拌,在辗片机中辗至少2次,破碎过60目筛,用120目筛去除细粉,水分含量要求在0.36~0.75%;(5)取料粉12g以1500kg/cm2的压力成型,到外径25mm、内径15mm、高度7.5mm的圆环形磁心,成型坯件密度≥3.15g/cm3;(将成型生坯置于钟罩炉中分五个阶段烧结,即经5小时将烧结温度从室温提高到900℃,该阶段无需氮气保护;样品1~3再经过4小时将烧结温度分别提高到1280℃、1300℃、1320℃,该阶段需要向炉腔冲入氮气,氧含量控制在0.01%;样品1~3分别在1280℃、1300、1320℃下烧结5小时,该阶段无需氮气保护;再经4小时将温度降至900℃,该阶段需要氮气保护,氧含量从20.6%逐渐降到900℃时的0.001%;最后经过7小时将温度降至150℃左右,过程中氧含量控制在0.001%以下。
下面详细描述实施例1上述的温度曲线。
升温工序:
室温至850℃:升温速度100℃~200℃/小时;氧含量20.60%。
从850℃到1300℃:升温速度80℃~150℃/小时;氧含量由20.60%降低至0.01%,保持90分钟后升高到20.6%。
温度保持工序:
在1300℃保持4.0个小时;氧含量20.60%。
降温工序:
从1300℃到900℃:降温速度100℃~120℃/小时;氧含量由20.60%降低至0.05%。
从900℃到室温:降温速度:120℃~160℃/小时;氧含量控制在0.001%以下。
测定结果:
用WK3260B精密磁性元件分析仪测试磁心的电感值及叠加值并计算出磁导率与增量磁导率,银河GL601DF型高低温试验箱提供-40℃~85℃测试环境。结果列于表1。
表1
实施例2
在MnZn系铁氧体的组成中(均为重量百分比),含Fe2O3(68.13%)、Mn3O4(20.27%)和ZnO(11.60%)作为主料加入,以主料为基准Co2O3(0.25%)作为副料加入,并加入添加剂Nb2O5(0.04%)和CaCO3(0.09%)。采用与实施例1相同的制作方法,制备样品4—6检测结果列于表2。
表2
实施例3
在MnZn系铁氧体的组成中(均为重量百分比),含Fe2O3(68.13%)、Mn3O4(20.14%)和ZnO(11.73%)作为主料加入,以主料为基准Co2O3(0.25%)作为副料加入,并加入添加剂Nb2O5(0.04%)和CaCO3(0.09%)。采用与实施例1相同的制作方法,制备样品7—9检测结果列于表3。
表3
实施例4
在MnZn系铁氧体的组成中(均为重量百分比),含Fe2O3(68.31%)、Mn3O4(20.24%)和ZnO(11.45%)作为主料加入,以主料为基准Co2O3(0.25%)作为副料加入,并加入添加剂Nb2O5(0.04%)和CaCO3(0.09%)。采用与实施例1相同的制作方法,制备样品10—12检测结果列于表4。
表4
实施例5
在MnZn系铁氧体的组成中(均为重量百分比),含主料Fe2O3(65.5%)、Mn3O4(24.7%)和ZnO(9.8%)作为主料加入,以主料为基准Co2O3(0.15%)作为副料加入,添加剂Nb2O5(0.02%)和CaCO3(0.06%)。
制备方法为:(1)将Fe2O3、Mn3O4和ZnO作为主料加入,以主料为基准Co2O3作为副料加入,采用立式砂磨机进行湿法混合,物料:去离子水:碳素钢球=1:1.2:5,钢球直径φ4.6~6.0mm,砂磨机频率为35FWD,混合时间为30分钟;(2)将振磨后的粉料置于一般箱式炉中分三个阶段烧结,即经3小时将烧结温度从室温提高到900℃,在900℃下烧结1.5小时,再经6小时将温度降至150℃;(3)向预烧后的物料加入Nb2O5和CaCO3,烘干后置于搅拌机中搅拌,再置于行星式球磨机中球磨,物料:去离子水:碳素钢球=1:1:4,球磨时间60分钟;(4)聚乙烯醇:水=7:100的比例取量混合,在温度≤100℃下使聚乙烯醇溶解于水中,制得粘合剂;再按物料:粘合剂=100:12的比例取量混合,将混合料粉置于搅拌机中搅拌,在辗片机中辗至少2次,破碎过60目筛,用120目筛去除细粉;(5)取料粉12g以1500kg/cm2的压力成型,到外径25mm、内径15mm、高度7.5mm的圆环形磁心,成型坯件密度≥3.15g/cm3;将成型生坯置于钟罩炉中分五个阶段烧结,即经4小时将烧结温度从室温提高到900℃,该阶段无需氮气保护;再经过3小时将烧结温度提高到1280℃~1320℃,该阶段需要向炉腔冲入氮气,氧含量控制在0.01%;在1280℃~1320℃下烧结3小时,该阶段无需氮气保护;再经3小时将温度降至900℃,最后经过5小时将温度降至150℃左右,过程中氧含量控制在0.001%以下。
表5
实施例6
在MnZn系铁氧体的组成中(均为重量百分比),含主料Fe2O3(72.5%)、Mn3O4(11.3%)和ZnO(16.2%)作为主料加入,以主料为基准Co2O3(0.35%)作为副料加入,添加剂Nb2O5(0.05%)和CaCO3(0.15%)。
制备方法为:制备样品16~18,(1)将Fe2O3、Mn3O4和ZnO作为主料加入,以主料为基准Co2O3作为副料加入,采用立式砂磨机进行湿法混合,物料:去离子水:碳素钢球=1:1.2:5,钢球直径φ4.6~6.0mm,砂磨机频率为35FWD,混合时间为60分钟;(2)将振磨后的粉料置于一般箱式炉中分三个阶段烧结,即经5小时将烧结温度从室温提高到900℃,在900℃下烧结3小时,再经8小时将温度降至150℃;(3)向预烧后的物料加入Nb2O5和CaCO3,烘干后置于搅拌机中搅拌,再置于行星式球磨机中球磨,物料:去离子水:碳素钢球=1:1:4,球磨时间60分钟;(4)聚乙烯醇:水=9.6:100的比例取量混合,在温度≤100℃下使聚乙烯醇溶解于水中,制得粘合剂;再按物料:粘合剂=100:16的比例取量混合,将混合料粉置于搅拌机中搅拌,在辗片机中辗至少2次,破碎过60目筛,用120目筛去除细粉;(5)取料粉12g以1500kg/cm2的压力成型,到外径25mm、内径15mm、高度7.5mm的圆环形磁心,成型坯件密度≥3.15g/cm3;将成型生坯置于钟罩炉中分五个阶段烧结,即经6小时将烧结温度从室温提高到900℃,该阶段无需氮气保护;样品16~18再经过5小时将烧结温度分别提高到1280℃、1300℃、1320℃,该阶段需要向炉腔冲入氮气,氧含量控制在0.01%;样品16~18分别在1280℃、1300℃、1320℃下烧结6小时,该阶段无需氮气保护;再经5小时将温度降至900℃,最后经过8小时将温度降至150℃左右,过程中氧含量控制在0.001%以下。制备样品16~18检测结果列于表6。
表6
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。

Claims (8)

1.宽温大电流MnZn铁氧体,其特征在于:主料包括重量百分比65.5%~72.5%的Fe2O3,重量百分比9.8%~16.2%的ZnO,剩量为Mn3O4的MnZn铁氧体材料,以主料重量为基准,加入重量百分比0.15%~0.35%Co2O3的副料,加入重量百分比0.02%~0.05%Nb2O5的第一添加剂和重量百分比0.06%~0.15%CaCO3的第二添加剂。
2.根据权利要求1所述的宽温大电流MnZn铁氧体,其特征在于:所述Fe2O3的重量百分比为67.5%~70.0%。
3.根据权利要求1所述的宽温大电流MnZn铁氧体,其特征在于:所述ZnO的重量百分比为11.0%~13.5%。
4.根据权利要求2所述的宽温大电流MnZn铁氧体,其特征在于:所述Fe2O3的重量百分比为68.13%。
5.根据权利要求1所述的宽温大电流MnZn铁氧体,其特征在于:所述Co2O3的重量百分比为0.25%。
6.根据权利要求1所述的宽温大电流MnZn铁氧体,其特征在于:所述Nb2O5的重量百分比为0.04%。
7.根据权利要求1所述的宽温大电流MnZn铁氧体,其特征在于:所述CaCO3的重量百分比为0.09%。
8.制备权利要求1所述宽温大电流MnZn铁氧体的方法,其特征在于:包括以下步骤
(1)一次砂磨混合:按原料配比精确称取上述各种原料,采用立式砂磨机进行湿法混合,物料:去离子水:碳素钢球=1:1.2:5,钢球直径φ4.6~6.0mm,砂磨机频率为35FWD,混合时间为30~60分钟;混合烘干过后的粉料粒径控制在0.90~1.50μm范围;
(2)预烧,将振磨后的粉料置于一般箱式炉中分三个阶段烧结,即经3~5小时将烧结温度从室温提高到900℃,在900℃下烧结1.5~3小时,再经6~8小时将温度降至150℃;预烧后粉料体积为原体积的76±5%;
(3)二次球磨破碎,向预烧后的物料加入Nb2O5和CaCO3,置于行星式球磨机中球磨,物料:去离子水:碳素钢球=1:1:4,球磨时间60~120分钟;
(4)造粒,按聚乙烯醇:水=7~9.6:100的比例取量混合,在温度≤100℃下使聚乙烯醇溶解于水中,制得粘合剂;再按照物料:粘合剂=100:12~16的比例取量混合,将混合料粉置于搅拌机中搅拌,在辗片机中辗至少2次,破碎过60目筛,用120目筛去除细粉,水分含量要求在0.36~0.75%;
(5)成型,根据产品要求,将颗粒料成型,生坯尺寸为标准环,φ25×15×10,成型坯件密度≥3.15g/cm3
(6)烧结,将成型生坯置于钟罩炉中分五个阶段烧结,即经4~6小时将烧结温度从室温提高到900℃,该阶段无需氮气保护;再经过3~5小时将烧结温度提高到1280℃~1320℃,该阶段需要向炉腔冲入氮气,氧含量控制在0.01%;在1280℃~1320℃下烧结3~6小时,该阶段无需氮气保护;再经3~5小时将温度降至900℃,该阶段需要氮气保护,氧含量从20.6%逐渐降到900℃时的0.001%;最后经过5~8小时将温度降至150℃左右,过程中氧含量控制在0.001%以下。
CN201710496521.4A 2017-06-26 2017-06-26 宽温大电流MnZn铁氧体 Active CN107399965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710496521.4A CN107399965B (zh) 2017-06-26 2017-06-26 宽温大电流MnZn铁氧体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710496521.4A CN107399965B (zh) 2017-06-26 2017-06-26 宽温大电流MnZn铁氧体

Publications (2)

Publication Number Publication Date
CN107399965A true CN107399965A (zh) 2017-11-28
CN107399965B CN107399965B (zh) 2020-11-06

Family

ID=60405135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710496521.4A Active CN107399965B (zh) 2017-06-26 2017-06-26 宽温大电流MnZn铁氧体

Country Status (1)

Country Link
CN (1) CN107399965B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196958A (zh) * 2022-06-02 2022-10-18 江苏信维感应材料科技有限公司 一种高频宽温MnZn铁氧体及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1560229A2 (en) * 2004-01-30 2005-08-03 TDK Corporation Method for producing Mn-Zn ferrite
CN101038807A (zh) * 2006-02-08 2007-09-19 Tdk株式会社 铁氧体材料
CN101857426A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种宽频高阻抗MnZn铁氧体材料及其制造方法
CN101859622A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种中频低损耗MnZn铁氧体磁芯的制造方法
CN102108022A (zh) * 2009-12-25 2011-06-29 上海宝钢磁业有限公司 一种具有宽温低温度系数的锰锌软磁铁氧体材料及其制备方法
CN102231312A (zh) * 2011-04-16 2011-11-02 江门安磁电子有限公司 一种低THD宽频高磁导率MnZn铁氧体材料及其制造方法
JP2012116700A (ja) * 2010-11-30 2012-06-21 Tdk Corp フェライトコア
CN103117146A (zh) * 2013-02-26 2013-05-22 苏州冠达磁业有限公司 高居里温度低损耗高强度铁氧体磁块及其制备方法
CN104529425A (zh) * 2014-12-19 2015-04-22 江门安磁电子有限公司 一种宽温高磁导率MnZn铁氧体材料及其制造方法
CN106278228A (zh) * 2016-08-16 2017-01-04 绵阳开元磁性材料有限公司 宽温宽频的磁锰锌铁氧体及其制备方法
JP2017045851A (ja) * 2015-08-26 2017-03-02 Tdk株式会社 フェライトコア、電子部品、及び、電源装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1560229A2 (en) * 2004-01-30 2005-08-03 TDK Corporation Method for producing Mn-Zn ferrite
CN101038807A (zh) * 2006-02-08 2007-09-19 Tdk株式会社 铁氧体材料
CN101857426A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种宽频高阻抗MnZn铁氧体材料及其制造方法
CN101859622A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种中频低损耗MnZn铁氧体磁芯的制造方法
CN102108022A (zh) * 2009-12-25 2011-06-29 上海宝钢磁业有限公司 一种具有宽温低温度系数的锰锌软磁铁氧体材料及其制备方法
JP2012116700A (ja) * 2010-11-30 2012-06-21 Tdk Corp フェライトコア
CN102231312A (zh) * 2011-04-16 2011-11-02 江门安磁电子有限公司 一种低THD宽频高磁导率MnZn铁氧体材料及其制造方法
CN103117146A (zh) * 2013-02-26 2013-05-22 苏州冠达磁业有限公司 高居里温度低损耗高强度铁氧体磁块及其制备方法
CN104529425A (zh) * 2014-12-19 2015-04-22 江门安磁电子有限公司 一种宽温高磁导率MnZn铁氧体材料及其制造方法
JP2017045851A (ja) * 2015-08-26 2017-03-02 Tdk株式会社 フェライトコア、電子部品、及び、電源装置
CN106278228A (zh) * 2016-08-16 2017-01-04 绵阳开元磁性材料有限公司 宽温宽频的磁锰锌铁氧体及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196958A (zh) * 2022-06-02 2022-10-18 江苏信维感应材料科技有限公司 一种高频宽温MnZn铁氧体及其制备方法
CN115196958B (zh) * 2022-06-02 2023-08-15 江苏信维感应材料科技有限公司 一种高频宽温MnZn铁氧体及其制备方法

Also Published As

Publication number Publication date
CN107399965B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN107311637B (zh) 一种基于核壳结构晶粒制备低功率损耗锰锌铁氧体的方法
CN108264340A (zh) 一种高居里温度高磁导率锰锌铁氧体材料及其制备方法
CN107778001B (zh) 一种生成纳米晶界高电阻率膜降低镍锌铁氧体功率损耗的方法
CN110156451B (zh) 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
CN104529423B (zh) 一种低温度因数抗应力镍锌铁氧体及其制备方法
CN111233452B (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
JP3964213B2 (ja) 圧粉磁芯及び高周波リアクトルの製造方法
CN110156449A (zh) 一种高可靠性铁氧体材料及其制作方法
CN104200944B (zh) 一种高q值复合软磁材料及其制备方法
CN104591712B (zh) 用于‑20~140℃的低损耗锰锌铁氧体材料及其制造方法
CN108530050A (zh) 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
CN105702410A (zh) 一种软磁磁粉芯的制备方法
CN104402424A (zh) 高饱和磁通密度、高直流叠加、高居里温度的镍锌铁氧体材料及其制备方法
CN102390987A (zh) 一种超低功耗镍锌铁氧体及其制备方法
CN103295766B (zh) 一种含有改性碳化铝的铁磁芯的制作方法
CN107399965A (zh) 宽温大电流MnZn铁氧体
CN107129292B (zh) 一种制备高性能MnZn铁氧体的离子联合替代方法
CN102674821A (zh) 一种制作锰锌软磁功率铁氧体磁芯材料的方法
CN1783362A (zh) 具有超高磁导率锰锌铁氧体粉体的制备方法
CN110342922A (zh) 一种复合铁氧体材料及其制备方法、叠层电感
CN107540362A (zh) 一种用于ups电源的锰锌铁氧体材料及其制备方法
CN113735574A (zh) 一种超高Bs低损耗锰锌铁氧体材料及其制备方法
CN106747394A (zh) 一种高磁导率低功耗铁氧体材料及其制备方法
CN101996728A (zh) 高磁导率低磁滞系数的软磁锰锌铁氧体材料及其制备方法
CN107540365B (zh) 高磁导率镁锌材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant