CN107361741B - 神经刺激器装置 - Google Patents

神经刺激器装置 Download PDF

Info

Publication number
CN107361741B
CN107361741B CN201710196342.9A CN201710196342A CN107361741B CN 107361741 B CN107361741 B CN 107361741B CN 201710196342 A CN201710196342 A CN 201710196342A CN 107361741 B CN107361741 B CN 107361741B
Authority
CN
China
Prior art keywords
stimulation
electrodes
neurostimulator device
spinal cord
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710196342.9A
Other languages
English (en)
Other versions
CN107361741A (zh
Inventor
乔尔·W.·伯迪克
戴聿昌
约翰·F.·纳贝尔
罗伯特·S.·肯恩托
维克多·雷吉·埃杰顿
罗兰·R.·罗伊
于里·格拉西缅科
苏珊·J.·哈尔凯马
乔纳森·霍兹
克劳迪亚·A.·安杰利
曼德雷·S.·南德拉
托马斯·安东尼·德索泰尔
史蒂文·L.·厄普丘奇
道格拉斯·J.·杰克逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
University of California
University of Louisville Research Foundation ULRF
Original Assignee
California Institute of Technology CalTech
University of California
University of Louisville Research Foundation ULRF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Institute of Technology CalTech, University of California, University of Louisville Research Foundation ULRF filed Critical California Institute of Technology CalTech
Publication of CN107361741A publication Critical patent/CN107361741A/zh
Application granted granted Critical
Publication of CN107361741B publication Critical patent/CN107361741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/407Evaluating the spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0553Paddle shaped electrodes, e.g. for laminotomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36067Movement disorders, e.g. tremor or Parkinson disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36103Neuro-rehabilitation; Repair or reorganisation of neural tissue, e.g. after stroke
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36107Sexual dysfunction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/3611Respiration control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1104Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs
    • A61B5/1106Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs to assess neuromuscular blockade, e.g. to estimate depth of anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Abstract

一种神经刺激器装置,包括:刺激组件,可连接到多个电极,其中,所述多个电极被配置为刺激脊髓;一个或更多个传感器;以及至少一个处理器,被配置为通过整合来自所述一个或更多个传感器的数据以及对可通过所述多个电极递送的至少一种复杂刺激模式执行机器学习方法来修改所述至少一种复杂刺激模式,机器学习方法执行高斯过程优化。

Description

神经刺激器装置
本申请是申请日为2012年03月26日、申请号为201280011915.1、发明名称为“神经刺激器”的中国专利申请的分案申请。
相关申请的交叉引用
本申请要求2011年3月24日提交的美国临时申请号61/467,107的权益,该临时申请整体以引用方式并入本文。
关于联邦资助研究或开发的声明
本发明根据国立卫生研究院授予的第EB007615号资助项目在政府支持下完成。政府享有本发明的某些权利。
发明背景
技术领域
本发明整体涉及医用电子医疗治疗装置的领域,并且更具体地涉及用在创伤性和非创伤性损伤或疾病的治疗的神经康复中的可植入刺激器和刺激器系统。
背景技术
现有技术可植入神经刺激器装置已用于向患者递送疗法以治疗与帕金森病相关的和无帕金森病的多种症状或病症,诸如慢性疼痛、癫痫和震颤。可植入刺激器向神经系统的靶向区域递送刺激疗法。应用的疗法通常为设定频率的电脉冲的形式。电流通过发生器产生。发生器和相关的控制模块可由多种机械和电气部件构造。发生器通常被装在由生物相容性材料(诸如钛)制成的外壳内,从而允许由整形脊椎和神经外科领域的普通技术人员经皮下手术置入患者的腹腔或胸壁内。
刺激器通过一条或多条导线被附接到紧邻一条或多条神经、神经的一个或多个部分、一条或多条神经根、脊髓、脑干或脑本身之内而设置的一个或多个电极。导线和电极阵列可以在长度上变化,并且也可由生物相容性材料制成。
在历史上,可植入刺激器及其围绕脊髓、神经根、脊神经和外周神经而设置在脑外的附接电极已用于管理和治疗慢性疼痛;迄今为止,还没有一种得到商业应用或得到批准用于恢复功能。另外,没有一种针对神经系统的永久重建。在神经受损受试者中对恢复功能的尝试过去限于辅助方式,诸如着重于适应残疾的物理疗法和职业疗法。在使用可植入神经刺激器实际恢复损伤神经组织的正常功能能力中已取得很小的进展。
通过任务特定的身体康复训练,已在某些不完全脊髓损伤(“SCI")受试者中证实了令人印象深刻的站立和迈步恢复水平。一项近期的临床试验证实,在严重但不完全损伤后三个月,92%的受试者重新获得了迈步能力,几乎达到功能性步行速度。Dobkin等(2006)Neurology,66(4):484-93。此外,在不完全SCI患者中通过训练可实现运动池(motor pool)激活的改善协调。Field-Fote等(2002)Phys.Ther.,82(7):707-715。
在另一方面,尚无普遍接受的证据可表明患有临床完全SCI的个体可经过训练达到可站立或甚至借助“步行器”移动的程度。Wernig(2005)Arch Phys Med Rehabil.,86(12):2385-238。另外,尚无人证明在运动完全SCI后重新获得随意运动和/或恢复自主、性、血管舒缩和/或改善的认知功能的能力。
因此,存在对被构造成通过电极阵列递送刺激的神经刺激器装置的需要,这种装置将有助于患者在运动不完全SCI或运动完全SCI后重新获得随意运动和/或恢复自主、性、血管舒缩和/或改善的认知功能。本申请提供如通过以下详细说明和附图将显而易见的这些及其他优点。
发明内容
实施方案包括与受试者(例如,人患者或动物)一起使用的神经刺激器装置。神经刺激器装置可与多组电极一起使用。在特定的具体实施中,多组电极可包括多于四组电极。神经刺激器装置可包括可连接到多组电极的刺激组件。刺激组件被构造成当将刺激组件连接到多组电极时向多组电极的每一个递送不同的刺激。神经刺激器装置还可包括被连接到刺激组件的至少一个处理器。至少一个处理器被构造成指导刺激组件向多组电极的每一个递送不同的刺激。神经刺激器装置可被构造成植入受试者(例如,人或动物)体内。递送到多组电极的至少一个的刺激可包括不同于方波或矩形波波形的一种或多种波形。
在其他实施方案中,神经刺激器装置与多个电极和一个或多个传感器一起使用。在此类实施方案中,神经刺激器装置可包括可连接到多个电极的刺激组件。刺激组件被构造成当将刺激组件连接到多个电极时向多个电极的选定电极递送刺激。神经刺激器装置还可包括可连接到一个或多个传感器的传感器接口。传感器接口被构造成当将传感器接口连接到一个或多个传感器时接收来自一个或多个传感器的信号。神经刺激器装置还可包括连接到刺激组件和传感器接口两者的至少一个处理器。至少一个处理器被构造成指导刺激组件向多个电极的选定电极递送至少一种复杂刺激模式并接收来自传感器接口的信号。至少一个处理器还被构造成基于从传感器接口接收的信号修改由刺激组件递送的至少一种复杂刺激模式。在一些实施方案中,刺激组件、传感器接口和至少一个处理器被装在被构造用于植入受试者身体中的壳体内。
至少一种复杂刺激模式可包括第一刺激模式然后是第二刺激模式。在此类实施方案中,第二刺激模式可在将第一刺激模式递送到多个电极的选定电极的第一部分后不到约一微秒被递送到多个电极的选定电极的第二部分。任选地,可将第一刺激模式递送到多个电极的选定电极的第一部分,并将第二刺激模式递送到多个电极的选定电极的第二部分,其中第一部分不同于第二部分。多个电极的选定电极可包括多于四组电极,并且至少一种复杂刺激模式可包括对于每组电极的不同电刺激。
至少一个处理器可被构造成执行机器学习方法(基于从传感器接口接收的信号)以确定一组刺激参数。在此类实施方案中,至少一个处理器可至少部分地基于该组刺激参数修改至少一种复杂刺激模式。任选地,至少一个处理器可被构造成接收和记录来自多个电极的电信号。至少一个处理器可至少部分地基于从多个电极接收的电信号修改至少一种复杂刺激模式。
至少一个处理器可包括以下至少一者:微处理器、微控制器、现场可编程门阵列和数字信号处理引擎。
神经刺激器装置可与计算装置一起使用。在此类实施方案中,至少一个处理器可被构造成将记录的电信号传递给计算装置并从其接收信息。至少一个处理器可被构造成至少部分地基于从计算装置接收的信息修改至少一种复杂刺激模式。任选地,至少一个处理器可被构造成记录从传感器接口接收的信号,将记录的电信号传递给计算装置,并从计算装置接收信息。至少一个处理器可被构造成至少部分地基于从计算装置接收的信息修改至少一种复杂刺激模式。
多个传感器可包括以下至少一者:肌电图传感器、关节角度传感器、加速计、陀螺仪传感器、流量传感器、压力传感器和负荷传感器。
神经刺激器装置的实施方案可与在患者身体一部分中具有神经源性麻痹的受试者一起使用。受试者具有带至少一个选定脊髓回路的脊髓,所述至少一个选定脊髓回路具有代表激活该至少一个选定脊髓回路所需的最低刺激量的第一刺激阈值,以及代表高于其就完全激活该至少一个选定脊髓回路的刺激量的第二刺激阈值。当将至少一个复杂刺激模式施加到患者的脊髓的一部分时,至少一种复杂刺激模式低于第二刺激阈值,使得至少一个选定脊髓回路可通过添加(a)源自患有麻痹的患者身体部分的神经信号和(b)脊椎上信号的至少一者而至少部分地激活。源自患有麻痹的患者身体部分的神经信号可以是通过身体训练诱导的诱导神经信号。诱导神经信号可包括以下至少一者:姿势本体感受信号、运动本体感受信号和脊椎上信号。
在一些实施方案中,当至少部分地激活时,至少一个选定脊髓回路产生改善的神经功能,该改善的神经功能包括以下至少一者:在站立、迈步、伸出、抓握的至少一者中涉及到的肌肉的随意运动,一条腿或双腿的随意改变位置,一条臂或双臂的随意改变位置,受试者膀胱排空,受试者肠排空,姿势活动和自发活动。在一些实施方案中,当至少部分地激活时,至少一个选定脊髓回路产生改善的神经功能,该改善的神经功能包括以下至少一者:受试者膀胱排空、受试者肠排空中至少一者的改善自主控制,心血管功能,呼吸功能,消化功能,体温和代谢过程。在一些实施方案中,当至少部分地激活时,至少一个选定脊髓回路产生改善的神经功能,该改善的神经功能包括以下至少一者:自主功能、性功能、运动功能、血管舒缩功能和认知功能。
任选地,神经刺激器装置可包括被构造成向至少一个处理器供电的至少一个可充电电池,以及被构造成无线接收电力并将接收的电力的至少一部分传递给至少一个可充电电池的无线充电组件。
神经刺激器装置可与多个肌肉电极一起使用。在此类实施方案中,神经刺激器装置可包括连接到至少一个处理器并被构造成向多个肌肉电极递送电刺激的肌肉刺激组件。在此类实施方案中,至少一个处理器可被构造成命令肌肉刺激组件向多个肌肉电极递送电刺激。在可供选择的实施方案中,神经刺激器装置可与被构造成向多个肌肉电极递送电刺激的肌肉刺激装置一起使用。在此类实施方案中,神经刺激器装置可包括连接到至少一个处理器并被构造成指导肌肉刺激装置向多个肌肉电极递送电刺激的接口。
任选地,神经刺激器装置可与至少一个记录电极一起使用。在此类实施方案中,至少一个处理器连接到至少一个记录电极,并被构造成接收和记录从至少一个记录电极接收的电信号。
上述神经刺激器装置可结合到一种或多种系统中。这样的系统的实例可与具有身体组织的受试者以及被设置为采集与受试者相关的生理数据的一个或多个传感器一起使用。系统可包括多个电极、神经刺激器装置和计算装置。多个电极可被布置在可邻近受试者身体组织植入的电极阵列中。电极阵列可邻近脊髓的一部分、一条或多条脊神经、一条或多条神经根、一条或多条外周神经、脑干、脑和末梢器官的至少一者植入。多个电极可包括至少16个电极。电极阵列可沿着受试者脊髓的硬脑膜的一部分植入。电极阵列可以是高密度电极阵列,其中多个电极的相邻电极被设置在彼此的300微米以内。
神经刺激器装置可连接到多个电极并被构造成向其递送复杂刺激模式。计算装置可被构造成向神经刺激器装置传递刺激参数。神经刺激器装置可被构造成至少部分地基于从计算装置接收的刺激参数生成复杂刺激模式。计算装置还可被构造成至少部分地基于由一个或多个传感器采集的生理数据确定刺激参数。刺激参数可识别被递送到多个电极的一对或多对的一个或多个电脉冲的波形、振幅、频率和相对相位。复杂刺激模式的每一种可包括各自被递送到多个电极的不同对的多个不同电信号。
计算装置可被构造成执行可操作以确定刺激参数的机器学习方法。机器学习方法可执行高斯过程优化(Gaussian Process Optimization)。
神经刺激器装置可被构造成至少部分地基于由神经刺激器装置确定的一个或多个刺激参数而生成复杂刺激模式。在此类实施方案中,神经刺激器装置可被构造成执行可操作以确定一个或多个刺激参数的机器学习方法。机器学习方法可执行高斯过程优化。
一个或多个传感器可包括附接到受试者身体或邻近受试者身体设置的表面EMG电极、足力板传感器、鞋内传感器、加速计和陀螺仪传感器的至少一者。一个或多个传感器可包括动作捕捉系统。
神经刺激器装置可连接到一个或多个传感器,并被构造成将由一个或多个传感器采集的生理数据传递到计算装置。计算装置可连接到一个或多个传感器,并被构造成接收来自一个或多个传感器的生理数据。
系统可与具有身体、脊髓和在受试者身体一部分中的神经源性麻痹的受试者一起使用。脊髓具有至少一个选定脊髓回路,至少一个选定脊髓回路具有代表激活该至少一个选定脊髓回路所需的最低刺激量的第一刺激阈值,以及代表高于其就完全激活该至少一个选定脊髓回路的刺激量的第二刺激阈值。系统可包括被构造成对受试者进行身体训练并因而诱导具有麻痹的患者身体部分中的诱导神经信号的训练装置。诱导神经信号低于第一刺激阈值并且不足以激活至少一个选定脊髓回路。复杂刺激模式低于第二刺激阈值,使得至少一个选定脊髓回路可通过添加(a)诱导神经信号的一部分和(b)脊椎上信号的至少一者而至少部分地激活。
任选地,系统可包括连接到神经刺激器装置的至少一个记录电极。在此类实施方案中,神经刺激器装置被构造成接收和记录从至少一个记录电极接收的电信号。至少一个记录电极可设置在电极阵列上。该电极阵列可被视为第一电极阵列,而系统可包括第二电极阵列。至少一个记录电极被设置在第一电极阵列和第二电极阵列的至少一者上。
任选地,系统可包括多个肌肉电极。在这样的实施方案中,神经刺激器装置可包括被构造成向多个肌肉电极递送电刺激的肌肉刺激组件。作为另外一种选择,系统可与多个肌肉电极和被构造成向多个肌肉电极递送电刺激的肌肉刺激装置一起使用。在此类实施方案中,神经刺激器装置可包括被构造成指导肌肉刺激装置向多个肌肉电极递送电刺激的接口。
包括上述神经刺激器装置至少一者的系统的另一个实例与网络和具有身体组织的受试者以及被设置为采集与受试者相关的生理数据的一个或多个传感器一起使用。系统包括多个电极、神经刺激器装置、第一计算装置和远程第二计算装置。多个电极可被布置在可邻近受试者身体组织植入的电极阵列中。神经刺激器装置连接到多个电极并被构造成向其递送复杂刺激模式。第一计算装置连接到网络并被构造成将刺激参数传递给神经刺激器装置。神经刺激器装置被构造成至少部分地基于从第一计算装置接收的刺激参数生成复杂刺激模式。远程第二计算装置连接到网络。第一计算装置被构造成将由一个或多个传感器采集的生理数据传递给第二计算装置。第二计算装置被构造成至少部分地基于由一个或多个传感器采集的生理数据确定刺激参数,并将刺激参数传递给第一计算装置。在一些实施方案中,第一计算装置被构造成从第二计算装置接收指令并将它们传递给神经刺激器装置。第一计算装置可被构造成接收来自神经刺激器装置的数据并将该数据经网络传送给第二计算装置。
附图说明
图1是可植入组件的图解。
图2是结合了图1的可植入组件的系统的图解。
图3A是与图1的可植入组件的神经刺激器装置一起使用的示例性电极阵列的第一实施方案的图解。
图3B是与图1的可植入组件的神经刺激器装置一起使用的示例性电极阵列的第二实施方案的图解。
图4A和图4B是可由图1的可植入组件的神经刺激器装置生成的波形的图解。
图5是可植入组件和外部系统的第一实施方案的框图。
图6A是图5可植入组件的神经刺激器装置的复用器子电路的电路图的最左边部分。
图6B是图5可植入组件的神经刺激器装置的复用器子电路的电路图的最右边部分。
图7是图5可植入组件的神经刺激器装置的刺激器电路的电路图。
图8是图5可植入组件的神经刺激器装置的控制器电路的电路图。
图9是图5可植入组件的神经刺激器装置的无线电力电路的电路图。
图10是可植入组件的第二实施方案的框图。
图11是可植入组件和外部系统的第三实施方案的框图。
图12A是图11可植入组件的神经刺激器装置的刺激器电路和无线收发机的框图。
图12B是图12A的刺激器电路的可供选择实施方案的框图。
图13是与置于硬膜外位置的电极阵列的27个电极的具体实施例一起的哺乳动物脊髓电特性的多室物理模型的图解。
图14是穿过双极激活电极切割的图13所示哺乳动物脊髓模型的横截面,显示了双电极刺激实例的刺激电场的等电位线。
图15显示了在图13和14的刺激脊髓中阵列刺激参数的高斯过程优化的瞬时后悔(regret)(机器学习误差的度量)与学习迭代(标记为“查询数”)的关系。性能不良的“脉冲群(burst)”对应于学习算法向之先前未曾探索但据发现性能不良的参数空间区域的偏移。
图16显示了平均累积后悔与学习迭代的关系。平均累积后悔是后悔性能函数的平滑形式,它能更好地显示在选择最优刺激参数中算法的整体进度。
图17是可在其中实施图2的系统的计算装置的硬件环境和操作环境的示意图。
具体实施方式
本文引用的所有出版物(包括公开的专利申请和授权的专利)均以引用方式并入,与好像每一个别出版物或专利申请具体地且单独地示为以引用方式并入的程度相同。以下描述包括可用于理解所述技术的信息。此描述并非承认本文提供的任何信息都为现有技术,或具体地或隐含地提及的任何出版物都为现有技术。
概述
研究已表明,用于改善脊髓损伤(“SCI")后的功能的最有效的方法是联合不同的策略,因为神经功能缺陷(诸如由SCI导致的那些)是复杂的,并且在患者之中的缺陷情况存在广泛的差异。这些策略包括与电刺激(例如,高密度硬膜外刺激)一起的物理疗法,以及任选一种或多种血清素能药剂、多巴胺能药剂、去甲肾上腺素能药剂、γ-氨基丁酸能药剂(GABAergic agent)和/或甘氨酸能药剂。据信,此类联合策略有助于调节受试者中脊髓回路的电生理学性质,因而它们被本体感受输入激活并间接使用正常情况下不能用于将脑连接到脊髓的脊髓回路随意控制。换句话讲,这些策略利用脊髓回路及其解读本体感受信息并以功能性方式对该本体感受信息作出响应的能力。
图1示出了可植入电极阵列组件100。虽然所示组件100的实施方案被构造成用于植入人受试者102(参见图2),但是可构造实施方案用于其他受试者,诸如其他哺乳动物,包括大鼠,并且此类实施方案也在本发明教义的范围内。受试者102具有脑108、带至少一个选定脊髓回路(未示出)的脊髓110以及在受试者身体一部分中的神经源性麻痹。在本文讨论的实例中,受试者102的脊髓110具有病变112。
以非限制性实例的方式,当激活时,选定的脊髓回路可(a)使得能够实现在站立、迈步、伸出、抓握的至少一者中涉及到的肌肉的随意运动,一条腿或双腿和/或一条臂或双臂的随意改变位置,受试者膀胱排空,受试者肠排空,姿势活动和自发活动;(b)使得能够实现或改善心血管功能、体温和代谢过程至少一者的自主控制;和/或(c)有助于恢复自主功能、性功能、血管舒缩功能和认知功能的至少一者。选定脊髓回路的激活效应将称为“改善的神经功能”。
不受理论的限制,据信,选定的脊髓回路具有代表激活该选定脊髓回路所需的最低刺激量的第一刺激阈值,以及代表高于其完全激活该选定脊髓回路的刺激量的第二刺激阈值,并且添加诱导神经信号对至少一个选定脊髓回路无另外的影响。
麻痹可以是运动完全麻痹或运动不完全麻痹。麻痹可已由被归类为运动完全或运动不完全的SCI导致。麻痹可已由缺血性或创伤性脑损伤导致。麻痹可已由因卒中或急性创伤所造成的缺血性脑损伤导致。以另一个实例的方式,麻痹可已由神经退行性脑损伤导致。神经退行性脑损伤可与帕金森病、亨廷顿舞蹈病、肌张力障碍、阿尔茨海默病、缺血、卒中、肌萎缩性侧索硬化症(ALS)、原发性侧索硬化症(PLS)和脑性麻痹的至少一者相关。
神经信号可在受试者身体的麻痹部分中引起(例如,通过身体训练)。然而,如果诱导神经信号低于第一刺激阈值并且不足以激活至少一个选定脊髓回路,则添加诱导神经信号可对选定脊髓回路具有很小的另外影响或无另外的影响。
组件100被构造成向神经组织(例如,脊髓110的一部分、一条或多条脊神经、一条或多条神经根、一条或多条外周神经、脑干和/或脑108等)施加电刺激。另外,电刺激可施加到其他类型的组织,包括一个或多个末梢器官(例如,膀胱、肾脏、心脏、肝脏等)的组织。为了便于说明,将电刺激描述为递送到身体组织。虽然可将刺激递送到非神经组织的身体组织,但是刺激的靶标通常为通过向身体组织添加刺激而改变的神经系统的组成部分。
递送的电刺激被构造成低于第二刺激阈值,使得选定的脊髓回路可通过添加(a)诱导神经信号(例如,通过身体训练诱导的神经信号)和/或(b)脊椎上信号而至少部分地激活。以非限制性实例的方式,组件100可用于执行2012年1月3日提交的并且名称为"HighDensity Epidural Stimulation for Facilitation of Locomotion,Posture,VoluntaryMovement,and Recovery of Autonomic,Sexual,Vasomotor and Cognitive Functionafter Neurological Injury”的美国专利申请序列号13/342,903中所述的方法,该专利整体以引用方式并入本文。然而,选定的脊髓回路可通过添加除身体训练所诱导的那些之外的神经信号而至少部分激活。
组件100包括一个或多个电极阵列140、一条或多条导线130和神经刺激器装置120。为了便于说明,将一个或多个电极阵列140描述为包括单个电极阵列。然而,通过普通技术人员对本发明教义的应用,可构造包括两个或更多个电极阵列的实施方案。因此,此类实施方案在本发明教义的范围内。神经刺激器装置120生成通过一条或多条导线130递送到电极阵列140的电刺激。取决于具体实施细节,神经刺激器装置120可表征为神经调制器装置。
电极阵列140可使用经设计并批准用于人患者的市售高密度电极阵列而具体实施。以非限制性实例的方式,可以使用Medtronic Specify 5-6-5多电极阵列(结合了16个电极)。合适的电极阵列的实例包括由铂丝和嵌入有机硅中的表面电极而构造的桨形电极(例如,具5-6-5电极配置)。另外,电极阵列140可使用多个电极阵列(例如,以串联或并联布置方式连接到神经刺激器装置120的多个16电极阵列)具体实施。
图3A示出了具有16个电极“E-1”至“E-16”的现有技术电极阵列148。电极阵列140可使用电极阵列148具体实施。现有技术刺激器允许用户(例如,临床医生)将电极“E-1”至“E-16”分成最多四组。每组可包括任意数量的电极。可将具有不同频率和脉冲宽度的刺激递送到这些组。相比之下,神经刺激器装置120可将电极“E-1”至“E-16”分成任意多组。例如,每个电极可被分配到其自己的组。以另一个实例的方式,一个或多个电极可属于多个组。下表A提供了可独立地辨识和刺激的几个组实例。出于示例性说明的目的,还规定了哪些电极用作阳极而哪些电极用作阴极。
组编号 阳极电极 阴极电极
1 1 3
2 1和2 3、4、5和6
3 1、2和3 13、16和15
4 1、2和3 6、7、8和9
表A
另外,现有技术刺激器被构造成仅向电极“E-1”至“E-16”递送矩形波。相比之下并将在下文详细描述,神经刺激器装置120被构造成递送具有不仅仅是矩形波的波形的刺激。
在特定实施方案中,神经刺激器装置120被构造成向电极142的单个选定电极递送刺激和/或使用电极142的单个选定电极作为参比电极。现有技术刺激器不能达到这一水平的可寻址能力。
在一些实施方案中,电极阵列140可使用微细加工技术构造以将多个电极在柔性基板上以阵列构型设置。一种合适的硬膜外阵列制造方法最初针对视网膜刺激阵列而开发(参见例如,Maynard,Annu.Rev.Biomed.Eng.,3:145-168(2001);Weiland和Humayun,IEEEEng.Med.Biol.Mag.,24(5):14-21(2005)以及出于所有目的以引用方式并入本文的美国专利公开2006/0003090和2007/0142878(例如,其中所公开的装置和制造方法))。在多个实施方案中,刺激阵列包含设置在柔性材料(例如,聚对二甲苯(parylene)A、聚对二甲苯C、聚对二甲苯AM、聚对二甲苯F、聚对二甲苯N、聚对二甲苯D或其他柔性基板材料)上的一种或多种生物相容性金属(例如,金、铂、铬、钛、铱、钨和/或其氧化合物和/或合金)。聚对二甲苯具有可用的微细加工聚合物中最低的透水性,以独特适形和均匀的方式沉积,之前已被FDA归类为美国药典(USP)VI类生物相容性材料(使得其能够用于长期植入物)(Wolgemuth,MedicalDevice and Diagnostic Industry,22(8):42-49(2000)),并且具有处于PDMS(通常视为太软)与大多数聚酰亚胺(通常视为太硬)之间的柔韧性(杨氏模量约4GPa(Rodger和Tai,IEEEEng.Med.Biology,24(5):52-57(2005)))。最后,聚对二甲苯的抗撕裂性和断裂伸长率均较大,从而最大程度降低在手术操作下对电极阵列的损坏(Rodger等,Sensors andActuators B-Chemical,117(1):107-114(2006))。
在图3所示的实施方案中,电极阵列140可表征为微电机系统(“MEMS”)装置。虽然图3所示的电极阵列140的具体实施可适用于动物,但是基本几何和制造技术可缩放用于人。电极阵列140被构造成沿着脊髓110(参见图1)植入并向其提供电刺激。例如,电极阵列140可向脊髓110提供硬膜外刺激。电极阵列140允许与现有技术有线植入物相比在刺激位点的选择中具有高自由度和专一性,并触发可导致受试者102中对脊髓110增强的认识和改善的神经功能的不同生物反应。可用于构造电极阵列140的电极阵列的非限制性实例在2012年1月23日提交并且名称为"Parylene-Based Microelectrode Array Implant forSpinal Cord Stimulation"的共同待决美国专利申请号13/356,499中有所描述,该专利申请整体以引用方式并入本文。
转到图3,电极阵列140包括多个电极142(例如,电极A1-A9、B1-B9和C1-C9)以及多根导电迹线144。电极142可在大小方面存在变化,并使用嵌入生物相容性基本上不导电(或绝缘)的材料(例如,柔性聚对二甲苯)中或设置在其上的生物相容性基本上导电的材料(诸如铂、Ag/AgCl等)构造。一条或多条迹线144连接到每个电极142。将不止一条迹线144连接到每个电极142可有助于确保信号到达并从每个电极142接收。换句话讲,冗余可用于改善可靠性。每个电极142具有可在身体组织旁设置的一个或多个导电触点(未示出)。身体组织可包括神经组织(例如,脊髓110、一条或多条脊神经、一条或多条神经根、一条或多条外周神经、脑干和/或脑108等)、其他类型的脊髓组织(例如,脊髓110的硬脑膜)以及末梢器官组织。另外,电极阵列140可被构造成可在此类身体组织旁设置。
电极阵列140可使用本领域技术人员已知的多种方法中的任何方法(例如,椎扳切除术)植入。以非限制性实例的方式,电极142可沿着脊髓110在硬膜外植入(参见图1)。电极142可设置在脊髓110的腰骶区、颈区和胸椎区的一者或多者处(参见图1)。在所示的实施方案中,电极142相对于脑108(参见图1)设置在病变112(参见图1)的远侧。换句话讲,电极142的设置距离脑108比距离病变112更远。
所示的一条或多条导线130包括导电元件。在一些实施方案中,一条或多条导线130包括电极阵列140的每条迹线144的导电元件。以另一个非限制性实例的方式,在一些实施方案中,一条或多条导线130包括电极阵列140的每个电极142的导电元件。组件100的一条或多条导线130将神经刺激器装置120连接到电极阵列140的迹线144,这些迹线各自连接到电极142之一。因此,由神经刺激器装置120生成的信号通过一条或多条导线130传递到迹线144的选定迹线,迹线再将信号传递到电极142的选定电极,电极继而将刺激递送到与电极142的导电触点(未示出)接触的身体组织。一条或多条导线130的长度可以变化。导电元件可使用嵌入生物相容性基本上不导电(或绝缘)的材料(例如,柔性聚对二甲苯)中或被其环绕的生物相容性基本上导电的材料(诸如铂、Ag/AgCl等)构造。任选地,一条或多条导线130可包括一个或多个连接器132和134。在所示的实施方案中,连接器132用于将一条或多条导线130连接到电极阵列140而连接器134用于将一条或多条导线130连接到神经刺激器装置220。
现有技术硬膜外刺激脉冲发生器(例如,设计用于缓解背疼等应用的类型的发生器)无法生成产生改善的神经功能(例如,在严重SCI或/和发生神经运动障碍后的迈步、站立、臂部运动等)所需的刺激信号的复杂模式。例如,为了恢复迈步,可以使用这样一种交变时空电场,它具有在右腿摆动期中峰值出现在脊髓110右侧(例如,在腰骶区中)的振荡,以及在左摆动期中峰值出现在脊髓110左侧(例如,在腰骶区中)的振荡。以另一个实例的方式,为了恢复独自站立,可以使用在电极电压和电极刺激频率两者中的头端-尾端梯度。头端更靠近脑108,而尾端则远离脑108。现有技术刺激器根本未构造成递送此类复杂刺激模式。
现有技术硬膜外刺激脉冲发生器具有其他局限,这些局限限制了它们帮助患者恢复因神经源性麻痹导致的功能丧失的能力。例如,典型的现有技术刺激器向所有激活电极递送具有相同振幅的刺激。一些现有技术刺激器被构造成向四组不同的电极递送具有不同振幅的刺激。另外,典型的现有技术刺激器向所有信道(或电极)递送具有相同频率的刺激。一些现有技术刺激器被构造成向四组信道(或电极)递送具有不同频率的刺激。另外,典型的现有技术刺激器向所有信道(或电极)递送具有相同脉冲宽度的刺激。另外,典型的现有技术刺激器缺乏生成非脉冲波形的能力。
为了实现改善的神经功能(例如,迈步、站立、臂部运动等),必须将比现有技术刺激器生成的类型更复杂的波形递送到一个或多个目标位置。例如,已知的是,具有与主“驱动”脉冲(例如,图4B中所示的驱动脉冲164)不同的振幅和脉冲宽度的非矩形波形(例如,图4A中所示的波形160)和小“前脉冲”(例如,图4B中所示的前脉冲162)可用于选择性募集具有不同纤维直径和不同电特性的神经元。Z.-P.Fang和J.T.Mortimer,“SelectiveActivation of Small Motor Axons by Quasitrapezoidal Current Pulses,”IEEETrans.Biomedical Engineering,38(2):168-174,1991年2月;和W.M.Grill和J.T.Mortimer,“Inversion of the Current-Distance Relationship by TransientDepolarization,”IEEE Trans.Biomedical Engineering,44(1):1-9,1997年1月。因此,这些波形可用于根据需要选择性募集一个或多个感觉/运动回路的不同部分(例如,激活不同的脊髓回路),以实现不同的治疗目标。
为了实现改善的神经功能(例如,迈步、站立、臂部运动等),电刺激发生的时序必须加以仔细控制。例如,迈步所需的刺激电压场的时空特性需要指定和控制整个电极阵列140中电极142之间的相移(刺激波形发生的精确时序)的能力。现有技术刺激器缺乏这种能力。
神经刺激器装置120被构造成生成实现改善神经功能的复杂类型和模式的电刺激。换句话讲,神经刺激器装置120被构造成生成(并递送到电极阵列140)一种或多种“复杂刺激模式”。复杂刺激模式至少具有以下特性:
1.施加到每个电极142的一种类型的刺激(其可包括适当时不向一个或多个选定电极142施加刺激),该刺激类型由包括以下的刺激类型参数限定:波形、振幅、波形周期、波形频率等、可单独寻址的电极142;
2.表明将在何时向每个电极142施加刺激的刺激时序(其限定向电极142施加刺激的顺序),刺激时序由包括以下的时序参数限定:刺激发生、不同电极上波形发生之间的相对延迟、递送刺激的持续时间、不递送刺激的持续时间等;
3.过渡参数,其限定一个波形可如何随着时间平滑变动(或改变)成不同的波形。波形模式之间的此类平滑变化可有助于使得能够实现复杂的运动功能,诸如从坐立过渡成站立。
刺激类型参数、时序参数和过渡参数一起为限定复杂刺激模式的“刺激参数”。神经刺激器装置120向电极阵列140递送复杂刺激模式。因此,电极阵列140被构造成使得可以选择哪一个电极142将接收刺激。在特定实施方案中,电极142可通过神经刺激器装置120单独地寻址。另外,神经刺激器装置120还可被构造成使得递送到电极142选定电极每一个的刺激的频率、波形宽度(或周期)和/或振幅也是可调节的。复杂刺激模式可随时间保持恒定、重复或发生变化。
神经刺激器装置120递送的复杂刺激模式的可配置性(通过改变刺激参数)使得能够识别有效的复杂刺激模式并调节复杂刺激模式以纠正移位和/或初始手术错位。神经刺激器装置120可被构造成向电极142递送多个不同的复杂刺激模式。
神经刺激器装置120是可编程的(例如,由受试者102或医生编程)。神经刺激器装置120可通过被配置成递送安全、有效和/或为靶向特定身体组织而选定的复杂刺激模式的刺激参数和/或控制参数而编程。另外,刺激参数和/或控制参数可针对每个患者进行自定义(例如,基于对手术(植入)前评估和测试的反应)。神经刺激器装置120可具有可变的激活控制,以间歇地或连续地提供复杂刺激模式,并允许调节频率、波形宽度、振幅和持续时间。通过生成此类可自定义的刺激,神经刺激器装置120可用于(a)生成或维持有效和/或最优的复杂刺激模式,和/或(b)在组件100移位和/或在植入期间错位时调节施加刺激的位置(相对于神经组织)。
神经刺激器装置120可被构造成存储、发送和接收数据。发送和接收的数据可通过无线连接155(参见图2)无线传递(例如,使用当前技术,诸如蓝牙、ZigBee、FCC批准的MICS医疗传输频带等)。神经刺激器装置120可被构造成自动调制(例如,配置开环和/或闭环功能)。另外,神经刺激器装置120可被构造成记录由电极142检测的场电位,诸如由脊髓110的背部生成的躯体感觉诱发电位(SSEP)。神经刺激器装置120可被构造成可充电的。
取决于具体实施细节,神经刺激器装置120可被构造成具有以下特性或特征中的一个或多个:
1.使得能够通过外科手术将神经刺激器装置120植入的形状因数;
2.具有可充电电池的电力发生器;
3.辅助备用电池;
4.封装在由一种或多种生物相容性材料制成的气密包装中的电子和/或机械组件;
5.可编程和自动调整的;
6.能够记录场电位;
7.能够以独立的方式或与其他植入或外部装置协调的方式操作;以及
8.能够通过无线技术发送、存储和接收数据。
任选地,神经刺激器装置120可通过连接194(例如,有线、无线连接等)连接到一个或多个传感器188(例如,肌电图(“EMG”)传感器190、关节角度(或挠曲)传感器191、加速计192、陀螺仪传感器、压力传感器、流量传感器、负荷传感器等)。连接(例如,连接194)和传感器188可使用外部组件和/或植入组件具体实施。在包括传感器188的实施方案中,神经刺激器装置120可被构造成基于通过连接194从传感器188接收的信息而修改或调整复杂刺激模式。连接194可使用有线或无线连接具体实施。任选地,神经刺激器装置120可连接到参考线196。在图2中,一条参考线196被设置在肩部附近,另一条参考线196被设置在下背。然而,这不是必要条件。
在其中连接194使用线具体实施的实施方案中,任选地,连接194可包括一个或多个连接器136和138。在所示的实施方案中,连接器136用于将连接194连接到传感器188而连接器138用于将连接194连接到神经刺激器装置220。
对于与体型相对较大的受试者(例如,人)一起使用,以非限制性实例的方式,神经刺激器装置120可为约20mm至约25mm宽、约45mm至约55mm长以及约4mm至约6mm厚。对于与体型相对较小的受试者(例如,大鼠)一起使用,以另一非限制性实例的方式,神经刺激器装置120可为约3mm至约4mm宽、约20mm至约30mm长以及约2mm至约3mm厚。
如之前所述,组件100的放置为皮下的。将电极142设置在目标区域上或附近(例如,图1所示的病变112的远侧)。如果受试者102(参见图2)具有SCI,则可在病变112边缘恰好远侧的目标区域中沿着脊髓110设置电极阵列140。因此,如果麻痹因沿着脊髓110的第一位置处的SCI导致(参见图1),则可相对于受试者脑108沿着脊髓在低于第一位置的第二位置处植入(例如,硬膜外)电极142。电极142可置于脊髓110(参见图1)、一条或多条脊神经、一条或多条神经根、一条或多条外周神经、脑干和/或脑108(参见图1)之中或之上。
复杂刺激模式可包括强直刺激和间歇刺激的至少一者。施加的刺激可存在脉冲。电刺激可包括脊髓110、一条或多条脊神经、一条或多条神经根、一条或多条外周神经、脑干和/或脑108(参见图1)不同区域的同时或相继刺激。组件100施加的复杂刺激模式可低于第二刺激阈值,使得至少一个选定脊髓回路可通过添加受试者102(参见图2)生成的神经信号(例如,通过身体训练引起的神经信号或源于脑108的神经信号)而至少部分地激活。以非限制性实例的方式,受试者102生成的神经信号可通过使受试者经历身体活动或训练而引起(诸如在跑步机170上迈步同时悬在带具172或其他支撑结构中)。受试者102生成的神经信号可在受试者102的麻痹部分中引起。以另一非限制性实例的方式,受试者102生成的神经信号可包括脊椎上信号(或源于脑108的神经信号)。
如上所述,图1所示组件100的实施方案被构造成植入受试者102中(参见图2)。然而,通过本领域普通技术人员对本发明教义的应用,可构造与其他受试者诸如其他哺乳动物(包括大鼠)一起使用的实施方案。组件100可被构造成供长期植入和使用。例如,组件100可用于随着时间的推移刺激一条或多条神经根、一条或多条神经、脊髓110(参见图1)、脑干和/或脑。
可植入组件100(参见图1)可与图2中所示的外部系统180一起使用。转到图2,外部系统180包括可用于编程、收集数据和/或对神经刺激器装置120充电(例如,通过无线连接155)的外部控制单元150。在图2所示的实施方案中,外部控制单元150被构造成手持式的。任选地,外部系统180包括下文详细描述的计算装置152。外部控制单元150可通过连接154(例如,USB连接、无线连接等)而连接到外部计算装置152。
计算装置152可连接到网络156(例如,互联网)并被构造成通过网络与一个或多个远程计算装置(例如,远程计算装置157)发送和接收信息。
在其中计算装置152通过无线通信接口具体实施的实施方案中,可以省去外部控制单元150,而计算装置152可通过无线连接155直接向神经刺激器装置120传送指令。例如,计算装置152可以作为具有常规无线通信接口的移动电话、桌面计算装置等具体实施。在此类实施方案中,计算装置152可使用无线通信协议诸如蓝牙向神经刺激器装置120传送指令。另外,计算装置152可通过无线连接155从神经刺激器装置120接收数据。指令和数据可经网络156向远程计算装置157传送以及从其接收。因此,远程计算装置157可用于经网络156对神经刺激器装置120进行远程编程(通过计算装置152)。
一个或多个外部传感器158可通过(有线和/或无线)连接159连接到计算装置152。另外,动作捕捉系统166可连接到计算装置152。外部传感器158和/或动作捕捉系统166可用于收集关于受试者102的数据供计算装置152和/或神经刺激器装置120分析。
外部传感器158可包括以下至少一者:足压力传感器、足力板、鞋内传感器、加速计、表面EMG传感器、陀螺仪传感器等。外部传感器158可附接到受试者102的身体上或置于其附近。
动作捕捉系统166可包括任何常规动作捕捉系统(例如基于视频的动作捕捉系统),而本发明的教义不限于与任何特定的动作捕捉系统一起使用。
第一实施方案
图5是系统200的第一实施方案的框图。系统200包括基本上与上述组件100相似的可植入组件202和基本上与上述外部系统180相似的外部系统204。因此,将只详细描述与组件100的那些不同的组件202的部件以及与外部系统180的那些不同的外部系统204的部件。为了便于说明,已将相同的参考数字用于标识图1-3和图5中的相同部件。
组件202包括神经刺激器装置220、一条或多条导线130、电极阵列140和连接194。组件202也可包括参考线196(参见图2)。以非限制性实例的方式,组件202可包括图2所示的两条参考线。在所示的实施方案中,连接194包括16条线,每条线连接到一个不同的传感器188(例如,EMG传感器190)。然而,这不是必要条件,并且可在不脱离本发明教义的范围的情况下使用不同数量的连接(例如,线)、不同数量的传感器和/或不同类型的传感器构造实施方案。
在所示的实施方案中,电极阵列140包括27个电极A1-A9、B1-B9和C1-C9。然而,这不是必要条件,并且包括不同数量的电极(例如,16个电极、32个电极、64个电极、256个电极等)的实施方案也在本发明教义的范围内。特定的实施方案包括至少16个电极。
神经刺激器装置220被构造成向电极阵列140中的任何电极142发送刺激信号(例如,“脉冲”)。神经刺激器装置220还被构造成在不同的电极之间非常快速地切换。因此,神经刺激器装置220可有效地向电极阵列140中的电极142的选定电极发送预定模式的脉冲。在一些实施方案中,神经刺激器装置220被构造成生成许多波形,使得可以生成几乎任何脉冲波形。如上所述,电极142可按多于四组布置,每组包括电极中的一个或多个。另外,一个电极可被包括在不止一组中。在包括不止一个电极的组中,可同时地刺激这些电极。
无线连接155可以为两个部件:通信连接155A和电力输送连接155B。
取决于具体实施细节,神经刺激器装置220可被构造成递送具有以下特性的刺激:
1.约±12V的最大电压(例如,恒定电压模式);
2.约±5mA的最大刺激电流(例如,恒定电流模式);
3.约100kHz的最大刺激频率;
4.具有高达约50kHz频率的约0.1ms的最小脉冲宽度;
5.约60kHz(-3dB)的最大记录带宽;
6.约7比特至约12比特的数模转换器(“DAC”)分辨率;
7.约3μs的配置切换时间;
8.每毫秒约100次配置刺激和递送刺激(例如,脉冲)的能力;
9.可同时寻址的电极(例如,任何电极142对可通过多组(例如,多于四组)可同时寻址(例如刺激或从其记录)的电极而寻址);
10.可将若不用于施加刺激的任何电极142选择为一对差异电极并用于记录;
11.通过通信连接155A以约250kBps(ISM频带915MHz)的无线数据传输率发送和/或接收数据;以及
12.约100mW的最大功耗。
在所示的实施方案中,神经刺激器装置220包括复用器子电路230、刺激器电路240、控制器250(连接到图8所示的控制器电路252)以及任选的无线电力电路260。控制器250向复用器子电路230发送三种控制信号:时钟、数据和EN,并从复用器子电路230接收数据A1'-A4'。刺激器电路240向复用器子电路230提供第一刺激信号STIM+和第二刺激信号STIM-。控制器250向刺激器电路240发送控制信号:PWM和模式。控制器250向刺激器电路240发送的控制信号“模式”命令刺激器电路240以恒定电压模式或恒定电流模式运行。控制器250向刺激器电路240发送的控制信号PWM使用脉冲宽度调制来控制刺激器电路240向复用器子电路230发送的作为第一刺激信号STIM+和第二刺激信号STIM-的控制力。因此,控制信号PWM配置复杂刺激模式的至少一部分。然而,复用器子电路230确定哪一电极142和/或连接194接收刺激。因此,复用器子电路230配置复杂刺激模式的至少一部分。然而,刺激器电路240和复用器子电路230均基于从控制器250接收的指令配置复杂刺激模式。
控制器250通过通信连接155A无线连接到外部编程单元150。通信连接155A可被构造成提供双向无线通信,控制器250可经过该通信从外部编程单元150接收系统控制命令和数据以及向外部编程单元150传递状态信息和数据。在一些实施方案中,通信连接155A可包括一个或多个模拟通信信道、一个或多个数字通信信道或其组合。
控制器250从无线电力电路260接收电力(例如,3V)并从无线电力电路260接收电力监测信号PWRMON。无线电力电路260向复用器子电路230提供电力(例如,12V和3V)。无线电力电路260还向刺激器电路240提供电力(例如,12V和3V)。无线电力电路260通过电力传输连接155B从外部编程单元150无线接收电力。
图6A和6B是复用器子电路230的示例性具体实施的电路图。图6A是复用器子电路230的电路图的最左边部分,而图6B是复用器子电路230的电路图的最右边部分。图6A和6B的电路图包括放大器AMP1-AMP4、移位寄存器SR1-SR4(例如,使用NXP半导体74HC164具体实施)和模拟复用器芯片M0-M9。
放大器AMP1-AMP4分别输出数据A1'-A4'。放大器AMP1-AMP4(例如,AnalogDevices AD8224)可作为具有设为200的增益的差分放大器而具体实施。然而,对本领域的普通技术人员显而易见的是,可以使用其他增益值。另外,放大器AMP1-AMP4的增益可通过本领域普通技术人员已知的部件修改而改变。
复用器子电路230将第一刺激信号Stim+和第二刺激信号Stim-路由到电极142和/或连接194的选定项。复用器子电路230还将从电极142和/或连接194的选定项接收的信号路由到放大器AMP1-AMP4。因此,复用器子电路230被构造成在刺激器电路240、放大器AMP1-AMP4、电极142和连接194之间路由信号。
控制器250通过控制信号“时钟”和“数据”将30比特的数据流发送到复用器子电路230,其被馈送进移位寄存器SR1-SR4。移位寄存器SR1-SR4继而控制由控制信号EN实现功能的模拟复用器芯片M0-M9。
复用器芯片M0具有用于从控制器250分别接收第一刺激信号STIM+和第二刺激信号STIM-的输入“Da”和“Db”。复用器芯片M0用于在记录通过断开部件而检测的信号的过程中断开电极142的一个或多个和/或传感器188的一个或多个(例如,EMG传感器190)。复用器芯片M0还用于在施加刺激时选择电极142每一个的极性(或三态)。复用器芯片M0可作为2x(4:1)复用器(例如,Analog Devices ADG1209)而具体实施。
复用器芯片M1-M9互连,以将几乎任何一对电极142或连接194连接到放大器AMP1以及复用器芯片M0的输入“Da”和“Db”(其分别接收第一刺激信号STIM+和第二刺激信号STIM-)。复用器芯片M1-M9可各自使用8:1复用器(例如,Analog Devices ADG1208)具体实施。
对于复用器芯片M1-M9,电路图中各矩形标记中的标签标识与电极142或连接194之一的连接。以字母“E”开始的矩形标记中的每个标签标识与连接到传感器188之一(例如,EMG传感器190之一)的连接194之一的连接。例如,与复用器芯片M1相邻的标签“E1+”标识与第一条线的连接,而与复用器芯片M2相邻的标签“E1-”标识与第二条线的连接。标签“E1+”和“E1-”一起标识第一对连接194的连接。
与复用器芯片M9相邻的标签“G1”和“G2”标识与参考线196(参见图2)的连接。
以非字母“E”或字母“G”的字母开始的矩形标记中的每个标签标识与电极142之一的连接。例如,标签“A3”是指与A列第3行(其中A列在最左边,B列在中间,C列在最右边,第1行在头端,而第9行在尾端)的电极A3(参见图3)的连接。
任选地,一些关键电极可具有不止一个与复用器子电路230的连接。例如,电极A1、B1、C1、A9、B9和C9各自通过不止一个标签标识。
复用器子电路230被设计为以四种模式运行。在第一模式中,复用器子电路230被配置成选择将向其施加单极刺激脉冲的单个电极。在第二模式中,复用器子电路230被配置成选择一对以双极方式刺激的电极142。在第三模式中,复用器子电路230被配置成选择将从其记录的单个电极,其中记录的波形参考接地信号。在第四模式中,复用器子电路230被配置成选择一对将以差异方式从其记录的电极142。
如上所述,神经刺激器装置220可向电极142的任何一个提供选择性刺激。复用器子电路230被构造成在几乎任何一对电极142或连接194之间路由刺激。例如,电极A1可以为阳极,而电极B6为阴极。
复用器子电路230被构造成将从连接194接收的信号路由到放大器AMP1-AMP4以及路由到控制器250(以数据A1'-A4')从而进行记录。相似地,复用器子电路230被构造成将从电极142接收的信号路由到放大器AMP1-AMP4以及路由到控制器250(以数据A1'-A4')从而进行记录。以非限制性实例的方式,复用器子电路230可被构造成将从在同一列中设置的四个电极(例如,电极A1、A3、A5和A7)接收的信号以及从在同一列中设置的第五电极(例如,电极A9)接收的信号路由到控制器250(以放大器AMP1-AMP4输出的数据A1'-A4'),使得从相对于第五个的前四个接收的差分信号可通过控制器250针对每一对电极(例如,第一对包括电极A1和A9,第二对包括电极A3和A9,第三对包括电极A5和A9,以及第四对包括电极A7和A9)进行记录。
如上所述,复用器子电路230从无线电力电路260接收电力(例如,12V和3V)。为了便于说明,省去了向复用器子电路230提供此电力的电力线。电力线可使用一条具有约+12V电压的线、一条具有约+2V至约+6V(例如,+3V)电压的线以及一条地线而具体实施。
复用器子电路230可被构造成在其中控制信号“时钟”和“数据”足够快的实施方案中在不到一微秒内改变配置。这允许第一刺激信号Stim+和第二刺激信号Stim-(从刺激器电路240接收)在约一毫秒内以短脉冲递送到电极142的选定电极,并且还允许放大器AMP1-AMP4快速切换输入信号因而控制器250可在短至约20微秒内有效记录8个或16个信号(而不是只有4个)。在一些实施方案中,控制器250可在短至5微秒内有效记录8个或16个信号(而不是只有4个)。
图7是刺激器电路240的示例性具体实施的电路图。如上所述,刺激器电路240被构造成以两种模式选择性运行:恒定电压模式和恒定电流模式。在图7中,标签“模式1”和“模式2”标识分别与控制器250的插脚“P1_0”和“P1_1”的连接(参见图8)。当将插脚“P1_0”(连接到标为“模式1”的连接)设为接地而插脚“P1_1”(连接到标为“模式2”的连接)为高阻抗时,刺激器电路240处于恒定电压模式。当将插脚“P1_1”(连接到标为“模式2”的连接)设为接地而插脚“P1_0”(连接到标为“模式1”的连接)为高阻抗时,刺激器电路240处于恒定电流模式。
图8是包括控制器250及其周边电路的控制器电路252的示例性具体实施的电路图。控制器250控制复用器子电路230,记录从复用器子电路230接收(以数据A1'-A4')的放大信号,以及监测无线电力(使用从无线电力电路260接收的电力监测信号PWRMON)。控制器250还与外部控制器270通信。在所示的实施方案中,控制器250已使用Texas InstrumentsCC1110具体实施。然而,通过本领域普通技术人员对本发明教义的应用,可以构造其中控制器250使用不同的微控制器、微处理器、现场可编程门阵列(“FPGA”)、数字信号处理(“DSP”)引擎、它们的组合等而加以具体实施的实施方案。
可能期望的是记录从电极阵列140接收的信号(例如,运动诱发电位(MEP))。例如,记录的MEP可有助于评估脊髓110的健康和状态,并可用于监测长期硬膜外刺激下脊髓功能的恢复速率和类型。因此,在一些实施方案中,控制器电路252被构造成记录电极阵列未受到刺激时从电极阵列140接收的电压和电流。在此类实施方案中,控制器电路252还被构造成经通信连接155A(例如,“实时地”)将记录的数据传递到外部编程单元150。在所示的实施方案中,控制器电路252包括被构造成与外部控制器270通信的天线272。控制器电路252可被构造成协调对于电极阵列140的刺激(信号发送)和读取(信号接收)循环。
对于控制植入的神经刺激器装置220的状态,控制器电路252可被构造成测量(和/或控制)刺激的发生的精确时序。控制器电路252可被构造成在所需的时间重置或停止刺激。控制器电路252可被构造成在连续的刺激(例如,脉冲)与连续的刺激模式之间平滑过渡。
对于患者监护和安全性,控制器电路252可被构造成监测电极阻抗和电极/组织界面处的阻抗。尤其值得关注的是相对低频率(例如,10-1000Hz)下的阻抗。控制器电路252可被构造成限制电流和电压。另外,控制器电路252可被构造成当超过电压或电流限值时触发警报(或向计算装置152发送警报消息)。任选地,神经刺激器装置220可在检测到不安全状况时关闭或掉电
外部控制器270可用于对控制器250编程。外部控制器270可以是外部控制单元150(参见图2)的部件。外部控制器270可以使用Texas Instruments CC1111具体实施。外部控制器270可通过连接154(例如,USB连接和/或无线连接)将信息传递到计算装置152以及从其接收信息。
计算装置152可被构造成控制待发送到神经刺激器装置220的数据流。计算装置152可解读从神经刺激器装置220接收的数据流。在一些具体实施中,计算装置152被构造成提供与神经刺激器装置220通信的图形用户界面。用户界面可用于对神经刺激器装置220编程以递送特定的刺激。例如,用户界面可用于使特定的刺激序列排队。作为另外一种选择,计算装置152可执行被构造成确定刺激参数的方法(例如,下述机器学习方法)。在一些实施方案中,用户界面可用于构造由计算装置152执行的方法。用户界面可用于将由神经刺激器装置220记录的信息传递给计算装置152从而进行存储和/或分析。用户界面可用于显示表明内部系统状态(例如刺激参数值的当前选择)和/或运行模式(例如,恒定电压模式、恒定电流模式等)的信息。
图9是任选的无线电力电路260的示例性具体实施的电路图。无线电力电路260被构造成从外部无线电力电路280无线接收电力。无线电力电路260可提供约3V DC(输出VCC)和约12V DC(输出VDD)。如上所述,输出VCC连接到复用器子电路230、刺激器电路240和控制器250,而输出VDD连接到复用器子电路230和刺激器电路240。
外部无线电力电路280可以是外部控制单元150(参见图2)的部件。外部无线电力电路280可使用E类放大器具体实施并被构造成提供可变输出。在所示的实施方案中,外部无线电力电路280通过经电力传输连接155B的电感耦合向无线电力电路260提供电力。无线电力电路260可包括射频(“RF”)充电线圈264,而外部无线电力电路280包括被构造成将电力传输(例如,以电感方式)到RF充电线圈264的RF充电线圈284。任选地,通信信道可以在无线传输上多路复用。
无线电力电路260可连接到一个或多个可使用从外部无线电力电路280接收的电力充电的可充电电池(未示出)。电池可使用可充电多芯锂离子聚合物电池具体实施。
第二实施方案
图10是可植入组件300的框图。为了便于说明,已将相同的参考数字用于标识图1-3、图5和图10中的相同部件。组件300可被构造成通过通信连接155A与外部控制器270通信。任选地,组件300可通过经电力传输连接155B的电感耦合从外部无线电力电路280无线接收电力。
除了向身体组织(例如,神经组织)提供复杂刺激模式外,组件300被构造成还直接向肌肉(未示出)提供电刺激,这将导致肌肉运动(例如,收缩)从而增强通过单独的复杂刺激模式提供的改善神经功能。组件300被构造成向16个或更多个可单独寻址的电极提供一种或多种复杂刺激模式,以便提供改善的神经功能(例如,SCI后改善的运动恢复)。
组件300包括神经刺激器装置320、一条或多条导线130、电极阵列140、连接194(连接到传感器188)以及与(植入的和/或外部的)肌肉电极312的连接310(例如,有线、无线连接等)。组件300也可包括参考线196(参见图2)。以非限制性实例的方式,组件300可包括图2所示的两条参考线。在所示的实施方案中,连接194包括16条线,每条线连接到一个不同的传感器188(例如,EMG传感器190)。然而,这不是必要条件,并且可在不脱离本发明教义的范围的情况下使用不同数量的线、不同数量的EMG传感器和/或不同类型的传感器构造实施方案。
神经刺激器装置320包括控制器322、记录子系统330、监测和控制子系统332、刺激子系统334、肌肉刺激器驱动器336、传感器接口338、无线通信接口340、RF电力接口342和至少一个电源344(例如,可充电电池)。在所示的实施方案中,控制器322已使用微控制器(例如,Texas Instruments CC1110)具体实施。然而,通过普通技术人员对本发明教义的应用,可以构造其中控制器250使用微处理器、FPGA、DSP引擎、它们的组合等而加以具体实施的实施方案。
记录子系统330被构造成记录从电极阵列140中电极142的一个或多个接收的电信号。用于记录的电极可以是与用于提供复杂刺激模式相同的电极,或专门用于记录的不同电极。记录子系统330可连接(直接地或以其他方式)到导线130的一条或多条。在所示的实施方案中,记录子系统330通过监测和控制子系统332连接到导线130。
记录子系统330包括一个或多个放大器346。在所示的实施方案中,放大器346作为具有可编程增益的低噪声放大器(“LNA”)而具体实施。
所示的监测和控制子系统332包括直接连接到导线130的消隐电路350。消隐电路350被构造成当将复杂刺激模式施加到电极142时将记录子系统330(其连接到该消隐电路)从导线130断开以避免损坏放大器346。在消隐电路350与控制器340之间延伸的双向控制和状态线(未示出)控制消隐电路350的行为。
监测和控制子系统332监测神经刺激器装置320的总体活动以及电极阵列140的功能性(例如,可操作性)。监测和控制子系统332通过双向数字与模拟信号和控制线352连接到CPU。在一些实施方案中,监测和控制子系统332包括被构造成监测电极阻抗的电路354。任选地,复用器(未示出)可连接到导线130,从而允许监测和控制子系统332选择性地询问从每个电极接收的信号。复用器(未示出)的输出连接到A/D电路(未示出),使得可使从电极142的一个选定电极接收的信号数字化,并传递到控制器322以评估刺激电路的功能性。监测和控制子系统332可包括被构造成评估电源344的功能性(例如,可操作性)的电路356。
放大器346在消隐电路350处于断开状态时从导线130接收信号。在一些实施方案中,一个不同的放大器346连接到每一条不同的导线130。在其他实施方案中,消隐电路350包括或连接到复用电路,该复用电路具有连接到导线130的输入和消隐系统350的输出。在此类实施方案中,复用电路将电极信号(由控制器322选择)路由到单个放大器346。放大器346通过允许控制器322控制放大器346的增益和行为的双向控制和状态线(未示出)连接到控制器322。
记录子系统330包括使从放大器346接收的输出数字化的模数转换(“A/D”)电路347。在一些实施方案中,单独的A/D电路专门用于每个放大器346的输出。在其他实施方案中,复用电路(未示出)将放大器346中的一个选定放大器的输出路由到单个A/D电路。A/D电路347的输出通过串行或并行数字总线348连接到控制器322。在所示的实施方案中,记录子系统330包括使从A/D电路347接收的输出串行的并行改串行电路349以在总线348上传输。控制和状态线(未示出)将A/D电路347连接到控制器322,从而允许控制器322控制A/D电路347的时序和行为。
刺激子系统334将被描述为经信道递送复杂刺激模式。每个信道对应于电极142之一。将经信道递送的刺激施加到对应的电极142之一。相似地,从电极142之一接收的刺激可经相应的信道接收。然而,在一些实施方案中,两个或更多个电极可物理连接到相同的信道,使得它们的运行通过单个信道来管理。
刺激子系统334被构造成生成如上所述其包括复杂波形(以电压或电流模式)的复杂刺激模式,并在信道的一个或多个的每一个上递送刺激。刺激子系统334通过多条双向线360连接到控制器322,刺激子系统334经这些双向线接收命令和刺激波形信息。刺激子系统334可经线360将电路状态信息传递到控制器322。各输出连接到导线130之一,从而刺激电极阵列140中的电极142的单个。
在所示的实施方案中,刺激子系统334包括数字-模拟转换放大器362,其接收来自控制器322的刺激波形信息。放大器362转而驱动(电压或电流)放大器364。放大器364的输出通过过电压或过电流保护电路366监测并潜在地进行限制。
肌肉刺激器驱动器336被构造成驱动肌肉电极312的一个或多个。作为另外一种选择,肌肉刺激器驱动器336可向单独的驱动系统(未示出)提供接口。肌肉刺激器驱动器336通过双向控制线368连接到控制器322以控制肌肉刺激器驱动器336的运行。
传感器接口338与传感器188的一个或多个(EMG传感器190、关节角度传感器191、加速计192等)连接。取决于具体实施细节,传感器接口338可包括数字信号输入(未示出)、被构造成用于模拟信号线输入的低噪声放大器(未示出)以及连接到A/D电路(未示出)的模拟输入(未示出)。
控制器322可通过通信连接155A无线连接到外部编程单元150。通信连接155A可被构造成提供双向无线通信,控制器322可经过该通信从外部编程单元150接收系统控制命令和数据以及向外部编程单元150传递状态信息和数据。在一些实施方案中,通信连接155A可包括一个或多个模拟通信信道、一个或多个数字通信信道或其组合。
RF电力接口342可通过电力传输连接155B从外部编程单元150无线接收电力。RF电力接口342可包括射频(“RF”)充电线圈372。在此类实施方案中,外部无线电力电路280的RF充电线圈284可被构造成将电力传输(例如,以电感方式)到RF充电线圈272。任选地,通信信道可以在无线传输上多路复用。
电源344可使用一个或多个可充电多芯锂离子聚合物电池具体实施。
第三实施方案
图11是系统400的第一实施方案的框图。系统400包括基本上与上述组件100相似的可植入组件402和基本上与上述外部系统180相似的外部系统404。因此,将只详细描述与组件100的那些不同的组件402的部件以及与外部系统180的那些不同的外部系统404的部件。为了便于说明,已将相同的参考数字用于标识图1-3、图5和图10-12B中的相同组件。
组件402包括神经刺激器装置420、电极阵列140和一条或多条迹线130。神经刺激器装置420通过控制器接口总线437连接到可植入肌肉刺激器包438和EMG模块446。神经刺激器装置420被构造成与可植入肌肉刺激器包438和EMG模块446两者连接并对它们进行控制。以非限制性实例的方式,与系统一起使用的合适的可植入肌肉刺激器包可包括在CaseWestern University开发的网络化刺激系统。
神经刺激器装置420包括收发机430、刺激器电路436、无线电力电路440、电源448(例如,电池)以及EMG模块446和电源448的控制器444。所示的神经刺激器装置420被构造成与单独的EMG模块446连接并对其进行控制。然而,在可供选择的实施方案中,EMG记录和管理能力可被结合到神经刺激器装置420中,如同它们在神经刺激器装置320中(参见图10)。在所示的实施方案中,EMG模块446包括模数转换器(“ADC”)445。由EMG模块446输出并由控制器444接收的数字数据通过控制器接口总线437被发送到刺激器电路436。
收发机430被构造成与经通信连接155A连接到外部控制器270的外部编程单元150的相应收发机432通信。收发机430和432可各自作为医疗植入通信服务(“MICS”)频带收发机而具体实施。以非限制性实例的方式,收发机432可使用连接到2.45GHz收发机的ZL70102MICS频带收发机而具体实施。收发机可被构造成“唤醒”收发机430。以非限制性实例的方式,收发机430可使用ZL70102MICS频带收发机而具体实施。
图12A是示出了收发机430和刺激器电路436的部件的框图。在图12A中,标为“SPI”的连接已使用串行外设接口总线出于示意性目的而具体实施。
参见图12A,刺激器电路436包括中央处理单元(“CPU”)或控制器422、一个或多个数据存储装置460和462、数字-模拟转换器464、模拟开关466和任选的复杂可编程逻辑器件(“CPLD”)468。在所示的实施方案中,控制器422已使用现场可编程门阵列(“FPGA”)具体实施。由EMG模块446输出并由控制器444接收的数字数据通过控制器接口总线437被发送到控制器422。
存储装置460连接到控制器422并被构造成存储控制器422的指令。以非限制性实例的方式,存储装置460可作为FPGA配置的存储器(例如,PROM或非闪存存储器)具体实施。任选的CPLD 468连接在收发机430与存储装置460之间。任选的CPLD 468可被构造成提供对可用于存储对存储在存储装置460上的指令的更新的存储装置460的稳定访问。
存储装置462连接到控制器422并被构造成存储记录的波形数据。以非限制性实例的方式,存储装置462可包括8MB或更大的内存。
数字-模拟转换器464连接到控制器422并被构造成将从控制器接收的数字信号转换成待递送到电极阵列140的模拟信号。数字-模拟转换器464可使用AD5360数字-模拟转换器具体实施。
模拟开关466被设置在数字-模拟转换器464与导线130之间。模拟开关466被构造成基于从控制器422接收的指令调制(例如,选择性打开和关闭开关)从数字-模拟转换器464接收的模拟信号。模拟开关466可包括多个模拟开关(例如,每个信道单独的模拟开关)。任选地,模拟开关466可具有高阻抗模式。模拟开关466可被构造成当神经刺激器装置未向电极142递送刺激时以高阻抗模式运行(响应于命令模拟开关466以高阻抗模式运行的来自控制器422的指令)。模拟开关466可经一条或多条控制线467从控制器422接收指令。
在所示的实施方案中,不将直接刺激肌肉(作为神经刺激的辅助刺激)的能力结合到神经刺激器装置420中,如同在上述和图10所示的神经刺激器装置320中。相反,控制器422通过控制器接口总线437与单独的可植入肌肉刺激器包438通信。任选地,监测和控制子系统(如神经刺激器装置320的监测和控制子系统332)可从神经刺激器装置420中省去。然而,这不是必要条件。
神经刺激器装置420被构造成独立地向多个信道的每一个递送刺激。如上所述,每个信道对应于电极142之一。将经信道递送的刺激施加到对应的电极142之一。在所示的实施方案中,多个信道包括16个信道。然而,这不是必要条件。为了递送刺激,神经刺激器装置420使用一个正信道和一个负信道。
在一些实施方案中,由电极142的一个或多个检测或接收的信号可由神经刺激器装置420经相应的信道接收。
神经刺激器装置420可被构造成控制信道每一个的极性(正或负)或三态(正、负或高Z)。神经刺激器装置420可被构造成递送频率在约0.1Hz至约100Hz范围内的刺激。递送的刺激可具有约-10Vdc至约+10Vdc的振幅其中增量为约0.1Vdc。神经刺激器装置420被构造成生成具有标准波形(例如,正弦、三角、方波等)和/或自定义波形的刺激。可配置神经刺激器装置420的占空比(例如,对于方波波形)。神经刺激器装置420可按规定的增量提供相移(例如,按25微秒的增量)。
神经刺激器装置420可被构造成满足时序要求。例如,神经刺激器装置420可被构造成递送约50μs的最小脉冲宽度并在最小脉冲宽度内更新所有正信道。在此类实施方案中,可以确定最大正信道数量(例如,15个信道)。神经刺激器装置420可被构造成适应最小相移量(例如,25μs相移)。另外,神经刺激器装置420可被构造成在第一时间周期(例如,25μs)中更新一些信道并在第二时间周期(例如,25μs)中休息。神经刺激器装置420可被构造成同时更新输出信道。
神经刺激器装置420可被构造成满足特定的控制要求。例如,可能有用的是对神经刺激器装置420进行构造使得信道输出配置可动态地进行构造。相似地,在一些实施方案中,可对更新时间设置实际的限值(例如,几秒钟的限值)。另外,在一些实施方案中,神经刺激器装置420被构造成通过可调整的自定义波形定义而运行。还可能期望的是对神经刺激器装置420进行构造,使得输出刺激不在输出重新配置期间停止(或漏失)。
在图12A所示的实施方案中,通过EMG模块446(参见图11)的记录以及向电极142递送刺激可单独地(或独立地)完全执行。另外,在一些实施方案中,可将命令或指令独立地或单独地发送到可植入肌肉刺激器包438(或集成的肌肉刺激器系统)。因此,该实施方案可以全双工模式运行。
在可供选择的实施方案中,神经刺激器装置420可连接到与用于递送刺激的电极142无关的EMG传感器190或记录电极(未示出)。在此类实施方案中,前置放大器(未示出)和ADC(未示出)可包括在刺激器电路436中并用于直接向控制器422发送数字EMG或神经记录信号。此类实施方案在记录与刺激之间提供两个完全独立、连续的时间信道,并因此可表征为能以全双工模式运行。任选地,记录电极可结合到电极阵列140和/或单独的电极阵列(未示出)中。
在另一个可供选择的实施方案中,模拟开关466可用于在刺激模式与记录模式之间切换。模拟开关466可接收命令模拟开关466以哪种模式运行的来自控制器422(通过控制线467)的指令。该具体实施可有助于通过使用相同的电极或其子集进行记录和刺激而减少电极数量。该示例性实施方案可表征为能以半双工模式运行。
在图12A所示的实施方案中,刺激器电路436被构造成以恒定电压模式运行。因此,DAC 446(和模拟开关466)的输出为多个(例如,16个)恒定电压信号(或源)。然而,参见图12B,在可供选择的实施方案中,刺激器电路436被构造成在恒定电压模式与恒定电流模式之间切换。在该实施方案中,模拟开关466包括针对每个信道和2-1复用器(“MUX”)的单独的模拟开关(例如,单刀双掷开关)。该实施方案还包括模拟开关470和电路块472。模拟开关470可包括针对每个信道和1-2解复用器(“DEMUX”)的单独的模拟开关(例如,单刀双掷开关)。模拟开关470的输出为选择性递送到模拟开关466或电路块472的多个(例如,16个)恒定电压信号。本质上,模拟开关470和466可被构造成允许将恒定电流信号或恒定电压信号施加到电极阵列140。
电路块472包括电压电流变换器电路和恒流源电路。电路块472从模拟开关470接收多个(例如,16个)恒定电压信号并输出多个(例如,16个)恒定电流信号(或源)。
神经刺激器装置420可被构造成向控制器422提供反馈(从传感器188、记录电极和/或电极142接收的),该控制器可用于修改或调整刺激模式或波形。在其中控制器422使用FPGA具体实施的实施方案中,FPGA可被构造成近乎实时地修改递送到受试者102的复杂刺激模式。另外,控制器422可用于针对不同的受试者自定义复杂刺激模式。
所示的无线电力电路440包括被构造成通过电力传输连接155B接收电力的RF充电线圈449。接收的电力可用于对电源448(例如,电池)充电。
机器学习方法
由于每个患者的损伤或疾病不同,因此据信最佳的刺激模式将在患者中存在很大的差异。此外,据信最优的刺激将因脊髓110的塑性而随时间变化。为此,可对学习系统(例如,计算装置152和/或神经刺激器装置220、320和420之一)编程以“学习”受试者102的“个性化”(或自定义)刺激模式,并随着时间的推移连续地调整此刺激模式。
学习系统从传感器188和/或外部辅助装置的一个或多个接收输入,这些传感器和/或外部辅助装置可与神经刺激器装置220、320或420一起植入和/或临时性地施加到受试者102(例如,在临床环境中)。此类传感器的实例包括EMG传感器190、关节角度传感器191、加速计192等。外部辅助装置可包括支持平台、支架、外部支撑系统(例如,外骨骼系统)、鞋内传感器系统和/或治疗机。从电极142、连接194和/或外部辅助装置接收的信息可用于调谐和/或调整由神经刺激器装置220、320和420递送的复杂刺激模式。
学习系统可执行基于从传感器188接收的信息确定合适的或最优的刺激参数的机器学习方法(下文所述)。据信,可能更高效的是在临床环境中执行更大的刺激调整(例如,使用计算装置152和外部编程单元150)而以持续方式执行更小的调整(微调)(例如,使用神经刺激器装置220、320和420之一)。
在临床环境中,可将大量且灵敏的EMG传感器190以及足压力传感器(未示出)、加速计192和运动跟踪系统(未示出)用于收集关于受试者102响应于特定刺激时的表现的大量数据。对表现的这些评估可被学习系统用于确定合适的和/或最优的刺激参数。为受试者102植入神经刺激器装置220、320和420之一后不久,受试者102将在临床环境中开始身体训练(例如,在跑步机170上行走),这将持续数月,其间学习系统可调谐刺激参数。之后,受试者102可偶尔回到诊所(例如定期地(例如每3个月))以进行更大的“调整”。
如上所述,在诊所之外,神经刺激器装置220、320和420从机上、植入和外部传感系统(例如,电极142、传感器188等)接收信号。该信息可被神经刺激器装置220、320和420之一用于调谐刺激参数。
如上所述,神经刺激器装置220、320和420可各自被构造成提供患者自定义的刺激、补偿电极阵列140手术置入中的误差以及针对脊椎塑性(脊髓功能和连接性的变化)随时间调整刺激。然而,该灵活性也随之带来了在可能的模式和参数的广阔空间中寻找合适的刺激参数(例如,电极阵列刺激电压振幅、刺激电流、刺激频率和刺激波形的模式)的负担。测试此空间中的所有可能参数以寻找合适的和/或最优的参数组合是不切实际的。这样的过程会耗费大量的临床资源,并且还可使受试者102感到灰心。因此,采用机器学习方法更高效地搜索有效的参数组合。随着时间的推移,机器学习方法可用于调整(例如,偶尔、定期、连续、随机、按需等)用于配置刺激的操作参数。
机器学习方法(其力图优化刺激参数)在探索阶段(其中对参数空间进行搜索,并建立与刺激和运动反应相关的回归模型)与利用阶段(其中基于回归模型对刺激参数进行优化)之间交替。对本领域普通技术人员显而易见的是,许多机器学习方法结合了探索和利用阶段并且可通过本领域普通技术人员对本发明教义的应用而对此类方法进行调整以确定合适的或最优的刺激参数。
以非限制性实例的方式,可将高斯过程优化(“GPO”)用于确定刺激参数。C.E.Rasmussen,Gaussian Processes for Machine Learning,MIT Press,2006。GPO是一种主动学习方法,它具有探索和利用可能的刺激参数空间的更新规则,同时构建从刺激到运动表现(例如,迈步、站立、手臂伸出等)的潜在映射的在线回归模型。高斯过程回归(“GPR”)(处于GPO核心的回归建模技术)非常适合于在线使用,因为它只需要极少的计算即可结合每个新的数据点,而没有许多其他机器学习回归技术的大量重新计算。GPR还是非参数的;通过GPO的预测以处于限制设置中的无限数量的模型的集合为基础,而不是来自单一模型,从而允许避免在许多参数回归和机器学习方法中固有的过度拟合困难。
GPR围绕核函数k(‘,’)而用公式表示,该函数可结合关于性能函数的局部形状的现有知识(通过经验以及在之前的硬膜外刺激研究中得出的数据获得),以将从之前探索的刺激模式得出的推论延伸到新的未测试的刺激。给定度量性能(例如,迈步、站立或伸出)的函数,GPO基于两个关键公式以及对合适核函数的选择。核心GPO方程描述以过去的测量值(返回有噪声的性能值Yt={y1,y2,...}的刺激值X={x1,x2,...}的测试)为基础在候选刺激x*下性能函数(在可能刺激的空间中)的预测平均μt(x*)和方差σt2(x*)
μt(x)=k(x,X)[Kt(X,X)+σn 2I]-1Yt
σt 2(x)=k(x,x)-k(x,X)[Kt(X,X)+σn 2I]-1k(X,x)
其中Kt是过去数据的无噪声协方差矩阵,而σn2是用于性能评估的数据的估计噪声协方差。为了使以下两者平衡:探索其中对预期性能了解很少的刺激空间区域,与利用其中我们预期良好性能的区域,GPO使用置信上界更新规则(N.Srinivas,A.Krause,等,“Guassian Process Optimization in the bandit setting:No Regret andExperimental Design,”Proc.Conf.on Machine Learning,Haifa Israel,2010.):
xt+1=argmaxxεX*t(x)+βtσt(x)] (1)
当参数βt随着时间而增大时,并且如果性能函数为高斯过程或具有相对于高斯过程的低再生核希尔伯空间范数(Reproducing Kernel Hibert Space norm),那么给定足够的时间,GPO将以高概率收敛到最优行动。
上述方法是以简单循环而工作的顺序更新方法。将单一已知刺激施加到电极阵列,并且然后使用植入的传感器(诸如连接到连接194的EMG传感器190)和/或使用外部传感器(诸如表面EMG电极、脚踏板力和通过视频监测系统采集的动作捕捉数据)测量患者对刺激的响应。高斯过程系统的平均值和协方差基于单一刺激立即更新,而方程(1)的置信上界程序则选择待评估的下一刺激模式。该过程一直继续,直到达到终止标准,诸如性能的最小增加。
作为另外一种选择,可能期望的是,在一个临床治疗过程中建议施加一批刺激,然后评估该批结果,从而使用整批刺激-响应对来更新回归模型,并然后在下一临床过程中建议待评估的新一批刺激模式。上述置信上界方法可容易地扩展到这一情况。T.Desautels,J.Burdick,和A.Krause,“Parallelizing Exploration-Exploitation Tradeoffs withGaussian Process Bandit Optimization,”(submitted)International Conference onMachine Learning,Edinburgh,Scotland,2012年6月26日-7月1日。该批过程的刺激更新规则可采取以下形式:
xt+1=argmaxxεX*t-B(x)+βtσt(x)] (2)
其中,现在将方程(2)评估B次以产生待评估的一批共B个建议的刺激,但是平均函数μ(x)只在最后一批实验结束时更新,而方差σt(x)则在建议的批次中针对每个项目进行更新。
表征人类运动行为(例如站立或迈步行为)的性能函数的定义可取决于至少两个因素:(1)可以获得什么种类的运动性能数据(例如,基于视频的动作捕捉数据、足压力分布、加速计、EMG测量值等);以及(2)对运动性能进行定量的能力。虽然更多的感知数据是优选的,但是对参数优化的机器学习方法可采用与运动性能相关的各种类型的感知数据。应该指出的是,在不另外观看视频或在进行运动任务的实际受试者102,即使专家也极难从此类数据中确定迈步或站立质量。然而,给定从过去实验中得到的足够数量的训练实例以及在那些实验中对站立或迈步的人为分级,可学习表征性能的一组特征(相对于一组给定的可用传感器),然后用于构建采纳专家知识并使用可用测量数据的合理性能模型。
图13示出了与置于硬膜外位置的电极阵列140的27个电极具体实施一起的哺乳动物脊髓500的电特性的多室物理模型。在图1中,第一电极502和第二电极504已被激活(即,正在向脊髓500递送刺激)。激活的电极之一为阴极,而另一个为阳极。电极506未被激活并被视为中性。在图14中,电极502和504已被激活。图14显示了双电极刺激实例的刺激电场的等电位线508(在穿过双极激活电极的中心的切片中)。哺乳动物脊髓500包括硬脑膜510、白质512、灰质514和硬膜外脂肪516。
图15显示了当将如上概述的高斯过程优化用于优化阵列刺激模式(其激发模拟脊髓500中节段L2与S2之间的背根中的神经元)时的瞬时后悔(搜索最优刺激参数的机器学习方法中误差的度量)。瞬时后悔性能表明机器学习方法快速寻找更好的刺激参数,而且连续探索刺激空间(瞬时后悔曲线图中的“脉冲群”对应于机器学习方法向之前未知但据发现具有不良性能的刺激参数空间区域的偏移)。
图16显示了平均累积后悔与学习迭代的关系。平均累积后悔是后悔性能函数的平滑形式,它更好地显示在选择最优刺激参数中机器学习方法的整体进度。
机器学习方法可通过计算装置152和/或神经刺激器装置220、320和420之一执行。因此,用于执行方法的指令可存储在计算装置152、神经刺激器装置220、神经刺激器装置320和神经刺激器装置420的至少一者的非临时性记忆存储硬件装置中。另外,这些装置可在方法的执行过程中相互作用或分担方法执行的一部分。通过执行该方法,计算装置152、神经刺激器装置220、神经刺激器装置320和/或神经刺激器装置420可确定施加到电极142的复杂刺激模式的刺激参数(例如,波形、振幅、频率和相对相位)。如上所述,机器学习方法可使用置信上界程序执行顺序或批次高斯过程优化(“GPO”)方法来选择和优化刺激参数。
计算装置
图17是可与之结合而实践计算装置152和/或远程计算装置157的具体实施的硬件和操作环境的示意图。图17的描述旨在提供合适的计算机硬件和可在其中实践具体实施的合适计算环境的简要一般性描述。虽然并非必需,但是具体实施在由计算机(诸如个人计算机)执行的计算机可执行指令(诸如程序模块)的一般背景中加以描述。一般来讲,程序模块包括执行特定任务或实施特定抽象数据类型的例程、程序、对象、组件、数据结构等。
此外,本领域的技术人员将认识到可通过其他计算机系统配置实践具体实施,包括手持式装置、多处理器系统、基于微处理器的或可编程的消费电子产品、网络PC、小型电脑、大型电脑等。还可在分布式计算环境中实践具体实施,其中任务通过经通信网络连接的远程处理装置执行。在分布式计算环境中,程序模块可位于本地和远程记忆存储装置两者中。
图17的示例性硬件和操作环境包括计算装置12形式的通用计算装置。计算装置152和/或远程计算装置157可基本上与计算装置12相同。计算装置12包括系统存储器22、处理单元21以及将各种系统组件(包括系统存储器22)可操作地连接到处理单元21的系统总线23。可以只存在一个或可以存在不止一个处理单元21,使得计算装置12的处理器包括单个中央处理单元(“CPU”)或多个处理单元(通常称为并行处理环境)。当使用多个处理单元时,处理单元可以是异质性的。以非限制性实例的方式,这样的异质性处理环境可包括常规CPU、常规图形处理单元(“GPU”)、浮点单元(“FPU”)、它们的组合等。
计算装置12可以是常规计算机、分布式计算机或任何其他类型的计算机。
系统总线23可以是多种类型的总线结构的任何一种,包括存储器总线或存储器控制器、外围总线以及使用多种总线架构的任何一种的本地总线。系统存储器22也可简称为存储器,并包括只读存储器(ROM)24和随机存取存储器(RAM)25。包括有助于在计算装置12内的元件之间传输信息(诸如在启动期间)的基本例程的基本输入/输出系统(BIOS)26存储在ROM 24中。计算装置12还包括用于从硬盘(未示出)读取和写入硬盘的硬盘驱动器27、用于从可移动磁盘29读取或写入可移动磁盘29的磁盘驱动器28以及从可移动光盘31(诸如CDROM、DVD或其他光学介质)读取或写入可移动光盘31的光盘驱动器30。
硬盘驱动器27、磁盘驱动器28和光盘驱动器30分别通过硬盘驱动器接口32、磁盘驱动器接口33和光盘驱动器接口34连接到系统总线23。驱动器及其相关计算机可读介质为计算装置12提供计算机可读指令、数据结构、程序模块和其他数据的非易失存储。本领域的技术人员应当认识到,可存储可由计算机访问的数据的任何类型的计算机可读介质(诸如磁带盒、闪存卡、固态存储装置(“SSD”)、U盘、数字视频光盘、Bernoulli盒、随机存取存储器(RAM)、只读存储器(ROM)等)均可用于示例性操作环境。对本领域的普通技术人员显而易见的是,可由处理单元21访问的硬盘驱动器27和其他形式的计算机可读介质(例如可移动磁盘29、可移动光盘31、闪存卡、SSD、U盘等)可被视为系统存储器22的部件。
许多程序模块均可存储在硬盘驱动器27、磁盘29、光盘31、ROM 24或RAM 25上,包括操作系统35、一个或多个应用程序36、其他程序模块37和程序数据38。用户可通过诸如键盘40和定位装置42的输入装置向计算装置12中输入命令和信息。其他输入装置(未示出)可包括麦克风、操纵杆、游戏手柄、卫星天线、扫描仪、触敏装置(例如,触笔或触摸板)、摄像机、深度摄像机等。这些及其他输入装置通常通过连接到系统总线23的串行端口接口46而连接到处理单元21,但是也可通过其他接口连接,诸如并行端口、游戏端口、通用串行总线(USB)或无线接口(例如,蓝牙接口)。监视器47或其他类型的显示装置也通过诸如视频适配器48的接口连接到系统总线23。除了监视器外,计算机通常还包括其他外围输出装置(未示出),诸如扬声器、打印机以及提供触觉和/或其他类型物理反馈(例如,力反馈游戏控制器)的触感装置。
上述输入装置能够操作以接收用户输入和选择。输入和显示装置一起可被描述为提供用户界面。
计算装置12可在使用与一台或多台远程计算机(诸如远程计算机49)的逻辑连接的网络化环境中运行。这些逻辑连接通过连接到计算装置12(如本地计算机)一部分的通信装置而实现。具体实施不限于特定类型的通信装置。远程计算机49可以是另一计算机、服务器、路由器、网络PC、客户端、记忆存储装置、对等装置或其他常见网络节点,并且通常包括上文相对于计算装置12描述的元件中的许多或全部。远程计算机49可连接到记忆存储装置50。图17中所示的逻辑连接包括局域网(LAN)51和广域网(WAN)52。此类网络化环境在办公室、企业范围计算机网络、内联网和互联网中是常见的。
本领域的普通技术人员将认识到LAN可使用经电话网络、电缆网络、蜂窝网络或电力线的载波信号通过调制解调器连接到WAN。这样的调制解调器可通过网络接口(例如,串行或其他类型的端口)连接到计算装置12。另外,许多便携计算机可通过蜂窝数据调制解调器连接到网络。
当用于LAN网络化环境时,将计算装置12通过网络接口或适配器53(其为一种类型的通信装置)连接到局域网51。当用于WAN网络化环境时,计算装置12通常包括调制解调器54、一种类型的通信装置或任何其他类型的用于经广域网52(诸如互联网)建立通信的通信装置。可以为内部的或外部的调制解调器54通过串行端口接口46连接到系统总线23。在网络化环境中,相对于个人计算装置12或其部分描述的程序模块可存储在远程计算机49和/或远程记忆存储装置50中。应当认识到,所示的网络连接是示例性的,并且可以使用用于在计算机之间建立通信链路的其他手段和通信装置。
已通过特定实例并且还通过抽象化在本文展示了计算装置12及相关部件以便有利于高水平地审视所公开的概念。实际的技术设计和具体实施可根据特定的具体实施而变化,同时保持所公开的概念的总体性质。
在一些实施方案中,系统存储器22存储计算机可执行指令,这些指令在由一个或多个处理器执行时导致所述一个或多个处理器执行上述机器学习方法的全部或部分。此类指令可存储在一个或多个非临时性计算机可读介质(例如,图12A中所示的存储装置460)上。
前述实施方案示出了不同的部件,它们包含在另外的不同部件中或与另外不同的组件相联系。应当理解,此类示出的结构仅为示例性的,并且事实上可实施能实现相同功能的许多其他结构。在概念意义上,为实现相同功能的部件的任何安排有效“相关”,以使得实现所需的功能。因此,本文相结合以实现特定功能的任何两种部件可视为彼此“相关”,以使得实现所需的功能,而不论结构或中间组件如何。同样,如此相关的任何两个组件也可被视为彼此“可操作地相连”或“可操作地连接”的,以实现所需的功能。
虽然已经示出和描述了本发明的特定实施方案,但是对本领域的技术人员显而易见的是,基于本文的教义,可在不脱离本发明及其更宽方面的情况下作出改变和修改,并且因此,所附的权利要求将在其范围内涵盖所有此类改变和修改,如同在本发明的真实精神和范围内。此外,应当理解本发明仅由所附权利要求限定。本领域的技术人员将理解的是,一般来讲,本文所用的并且特别是在所附权利要求(如,所附权利要求的主体)中的术语通常旨在为“开放式”术语(例如,术语“包括”应被解释为“包括但不限于”,术语“具有”应被解释为“具有至少”,以及术语“包含”应被解释为“包含但不限于”等)。本领域的技术人员将进一步理解的是,如果有意给出所介绍的权利要求表述的特定数量,则此意图将为在该权利要求中明确表述的,并且在不存在此表述的情况下,不存在此意图。例如,为了有助于理解,以下所附权利要可包含介绍性短语“至少一个(种)”和“一个(种)或多个(种)”的使用以介绍权利要求表述。然而,使用此类短语不应被视为暗示通过不定冠词“一”或“一个(种)”来介绍的权利要求表述将含有此类介绍的权利要求表述的任何特定权利要求限制到只含一个此类表述的发明,即使当相同的权利要求包含介绍性短语“一个(种)或多个(种)”或“至少一个(种)”以及诸如“一”或“一个(种)”的不定冠词也是如此(例如,“一”和/或“一个(种)”通常应被解释为表示“至少一个(种)”和“一个(种)”或“多个(种))”;使用定冠词来介绍权利要求表述时也一样。此外,即使当明确表述了所介绍的权利要求表述的特定数量,本领域的技术人员也将认识到此类表述通常应被视为至少表示所表述的数量(例如,无其他修饰词的仅表述“两个表述”通常表示至少两个表述或者两个或更多个表述)。
因此,除了由所附权利要求限制外,本发明不应受其他限制。

Claims (13)

1.一种神经刺激器装置,包括:
刺激组件,可连接到多个电极,其中,所述多个电极被配置为使用施加的复杂刺激模式来刺激脊髓;
一个或更多个传感器,其被配置为测量与脊髓刺激相关的反应;以及
至少一个处理器,其被配置为通过整合来自所述一个或更多个传感器的数据以及执行机器学习方法来修改通过所述多个电极递送的所述施加的复杂刺激模式,以建立用于后续的刺激脊髓的修改的复杂刺激模式,所述机器学习方法执行一关系,所述关系基于(i)来自一个或更多个传感器的先前数据以及(ii)在先前的刺激研究中得出的数据中的至少一者来描述用于多个候选复杂刺激模式的运动性能函数的预测平均和方差,所述多个候选复杂刺激模式包括施加的复杂刺激模式,
其中,所述关系包括置信上界规则,其基于从一个或更多个传感器接收到的关于刺激脊髓的数据来对预测平均和方差施加权重以修改施加的复杂刺激模式,以及
其中,置信上界规则通过将所述关系朝向最优候选复杂刺激模式进行收敛来修改施加的复杂刺激模式。
2.如权利要求1所述的神经刺激器装置,其中,所述施加的复杂刺激模式或者所述修改的复杂刺激模式中的至少之一包括第一刺激模式然后是第二刺激模式。
3.如权利要求1所述的神经刺激器装置,其中,所述至少一个处理器被配置为接收和记录来自所述多个电极的电信号。
4.如权利要求1所述的神经刺激器装置,其中,所述至少一个处理器被配置为接收来自所述多个电极的电信号,以及至少部分地基于从所述多个电极接收的电信号来修改所述施加的复杂刺激模式。
5.如权利要求1所述的神经刺激器装置,其中,所述一个或更多个传感器包括肌电图传感器、诱发电位传感器、关节角度传感器、挠曲传感器、加速计、陀螺仪传感器、流量传感器、压力传感器、负荷传感器或它们的组合。
6.如权利要求1所述的神经刺激器装置,所述神经刺激器装置被配置为救助在受脊髓的病变影响的患者身体的一部分中具有神经源性麻痹的患者,其中,脊髓包括至少一个选定的脊髓回路,所述至少一个选定的脊髓回路具有第一刺激阈值和第二刺激阈值,第一刺激阈值代表激活所述至少一个选定的脊髓回路所需的最低刺激量,第二刺激阈值代表一刺激量,高于此刺激量所述至少一个选定的脊髓回路就完全激活,
其中,当将所述施加的复杂刺激模式或者所述修改的复杂刺激模式中的至少之一施加到患者的脊髓的一部分时,所述至少一种复杂刺激模式低于第二刺激阈值,使得所述至少一个选定的脊髓回路能通过添加(a)源自具有麻痹的患者身体部分的神经信号和(b)脊椎上信号的至少一者而至少部分地激活。
7.如权利要求1所述的神经刺激器装置,所述神经刺激器装置被配置为刺激脊髓,以及改善或恢复随意运动、自主功能、运动功能、认知功能或它们的组合。
8.如权利要求1所述的神经刺激器装置,其中,所述神经刺激器装置被配置为刺激脊髓,以及改善或恢复以下中的至少一种:站立涉及到的肌肉的随意运动、迈步涉及到的肌肉的随意运动、伸出涉及到的肌肉的随意运动、抓握涉及到的肌肉的随意运动、受试者膀胱排空、性功能、受试者肠排空、姿势活动、心血管功能、呼吸功能、消化功能、运动功能、血管舒缩功能、认知功能、体温、代谢过程或它们的组合。
9.如权利要求1所述的神经刺激器装置,其中,所述多个电极包括多于四组的电极。
10.如权利要求9所述的神经刺激器装置,其中,所述施加的复杂刺激模式或者所述修改的复杂刺激模式中的至少之一包括针对每组电极的不同电刺激。
11.如权利要求2所述的神经刺激器装置,其中,在向所述多个电极中的选定电极的第一部分递送所述第一刺激模式之后不到一微秒,向所述多个电极中的所述选定电极的第二部分递送所述第二刺激模式。
12.如权利要求1所述的神经刺激器装置,还包括:包括多个肌肉电极的系统。
13.如权利要求1所述的神经刺激器装置,其中,所述多个电极可邻近所述脊髓的一部分、一条或多条脊神经、一条或多条神经根、一条或多条外周神经、脑干、脑和末梢器官的至少一者植入。
CN201710196342.9A 2011-03-24 2012-03-26 神经刺激器装置 Active CN107361741B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161467107P 2011-03-24 2011-03-24
US61/467,107 2011-03-24
CN201280011915.1A CN103608069B (zh) 2011-03-24 2012-03-26 神经刺激器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280011915.1A Division CN103608069B (zh) 2011-03-24 2012-03-26 神经刺激器

Publications (2)

Publication Number Publication Date
CN107361741A CN107361741A (zh) 2017-11-21
CN107361741B true CN107361741B (zh) 2021-03-09

Family

ID=46880091

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280011915.1A Active CN103608069B (zh) 2011-03-24 2012-03-26 神经刺激器
CN201710196342.9A Active CN107361741B (zh) 2011-03-24 2012-03-26 神经刺激器装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201280011915.1A Active CN103608069B (zh) 2011-03-24 2012-03-26 神经刺激器

Country Status (10)

Country Link
US (4) US9409023B2 (zh)
EP (1) EP2688642B1 (zh)
JP (2) JP6060146B2 (zh)
KR (1) KR20140013043A (zh)
CN (2) CN103608069B (zh)
AU (4) AU2012230699A1 (zh)
BR (1) BR112013024491A2 (zh)
CA (1) CA2825550C (zh)
MX (1) MX344095B (zh)
WO (1) WO2012129574A2 (zh)

Families Citing this family (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US7899556B2 (en) 2005-11-16 2011-03-01 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US8972017B2 (en) 2005-11-16 2015-03-03 Bioness Neuromodulation Ltd. Gait modulation system and method
JP5324438B2 (ja) 2006-05-01 2013-10-23 バイオネス ニューロモジュレイション リミテッド 改良型機能的電気刺激システム
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
CA2957010C (en) 2008-09-26 2017-07-04 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US11813454B2 (en) 2010-11-11 2023-11-14 IINN, Inc. Methods of bypassing neurological damage through motor nerve root stimulation
EP4201475A1 (en) * 2011-01-03 2023-06-28 The Regents of the University of California High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury
CA2824782C (en) 2011-01-21 2020-06-30 California Institute Of Technology A parylene-based microelectrode array implant for spinal cord stimulation
WO2012129574A2 (en) 2011-03-24 2012-09-27 California Institute Of Technology Neurostimulator
EP2776120B1 (en) 2011-11-11 2020-09-09 Neuroenabling Technologies, Inc. Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function
AU2012334926B2 (en) 2011-11-11 2017-07-13 The Regents Of The University Of California Transcutaneous spinal cord stimulation: noninvasive tool for activation of locomotor circuitry
US10092750B2 (en) 2011-11-11 2018-10-09 Neuroenabling Technologies, Inc. Transcutaneous neuromodulation system and methods of using same
WO2013101772A1 (en) 2011-12-30 2013-07-04 Relievant Medsystems, Inc. Systems and methods for treating back pain
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
JP6195625B2 (ja) 2012-11-05 2017-09-13 リリーバント メドシステムズ、インコーポレイテッド 骨を通して湾曲経路を作り、骨内で神経を調節するシステム及び方法
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
US9399126B2 (en) 2014-02-27 2016-07-26 Thync Global, Inc. Methods for user control of neurostimulation to modify a cognitive state
US9440070B2 (en) 2012-11-26 2016-09-13 Thyne Global, Inc. Wearable transdermal electrical stimulation devices and methods of using them
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
JP2016516450A (ja) 2012-12-14 2016-06-09 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University 神経情報の集団的符号化によって病状を治療する方法
US11672720B2 (en) * 2013-01-16 2023-06-13 Egzotech Spolka Z O.O. Rehabilitation device
CA2905102C (en) * 2013-03-13 2023-07-25 Duke University Systems and methods for applying electrical stimulation for optimizing spinal cord stimulation
US9993642B2 (en) 2013-03-15 2018-06-12 The Regents Of The University Of California Multi-site transcutaneous electrical stimulation of the spinal cord for facilitation of locomotion
KR101648463B1 (ko) * 2013-05-29 2016-08-16 주식회사 아이엠바이오 생체 이식 장치
KR102363552B1 (ko) 2013-05-30 2022-02-15 그라함 에이치. 크리시 국부 신경 자극
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
ES2696707T3 (es) 2013-06-29 2019-01-17 Cerevast Medical Inc Dispositivos de estimulación eléctrica transcutánea y métodos para modificar o inducir el estado cognitivo
EP3019234A4 (en) * 2013-07-11 2017-04-26 Analytica Limited Stimulation and electromyography detection
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US9265943B2 (en) * 2013-09-13 2016-02-23 Ybrain Inc. Method for stimulating living body more accurately and apparatus using the same
CN103480086B (zh) * 2013-09-27 2015-10-14 江苏德长医疗科技有限公司 网络化康复治疗系统
AU2014324660A1 (en) 2013-09-27 2016-04-21 The Regents Of The University Of California Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects
EP3919117A1 (en) * 2013-12-16 2021-12-08 Case Western Reserve University Patterned stimulation intensity for neural stimulation
CA2932000C (en) 2013-12-22 2023-08-22 Research Foundation Of The City University Of New York Trans-spinal direct current modulation systems
US9707390B2 (en) 2013-12-22 2017-07-18 The Research Foundation Of The City University Of New York Apparatus for modulation of effector organs
US9707391B2 (en) 2013-12-22 2017-07-18 The Research Foundation Of The City University Of New York Method for modulation of effector organs
WO2015106286A1 (en) * 2014-01-13 2015-07-16 California Institute Of Technology Neuromodulation systems and methods of using same
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
JP6701096B2 (ja) 2014-05-17 2020-05-27 ハイイン エクイティ インベストメント ファンド エル.ピー. 経皮神経刺激を使用するアンサンブル波形の印加のための方法および装置
EP3145582B1 (en) 2014-05-20 2020-10-21 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems
US9333334B2 (en) 2014-05-25 2016-05-10 Thync, Inc. Methods for attaching and wearing a neurostimulator
JP6588472B2 (ja) 2014-05-25 2019-10-09 ハイイン エクイティ インベストメント ファンド エル.ピー. ウェアラブル経皮神経刺激器
EP3164068A4 (en) 2014-07-03 2018-02-07 Duke University Systems and methods for model-based optimization of spinal cord stimulation electrodes and devices
US10123731B2 (en) 2014-08-08 2018-11-13 Medtronic Xomed, Inc. Wireless sensors for nerve integrity monitoring systems
CA2958924C (en) 2014-08-21 2023-09-12 The Regents Of The University Of California Regulation of autonomic control of bladder voiding after a complete spinal cord injury
WO2016033369A1 (en) 2014-08-27 2016-03-03 The Regents Of The University Of California Multi-electrode array for spinal cord epidural stimulation
EP3185751A1 (en) * 2014-08-29 2017-07-05 Incyphae Inc. Method and apparatus for enhancing nervous function
JP6620146B2 (ja) * 2014-09-26 2019-12-11 デューク・ユニバーシティDuke University 脊髄刺激のためのシステムおよび遠隔制御装置
WO2016057396A1 (en) * 2014-10-06 2016-04-14 The Trustees Of Princeton University Adaptive cognitive prosthetic and applications thereof
US9498628B2 (en) * 2014-11-21 2016-11-22 Medtronic, Inc. Electrode selection for electrical stimulation therapy
WO2016109851A1 (en) 2015-01-04 2016-07-07 Thync, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
US10258788B2 (en) 2015-01-05 2019-04-16 Thync Global, Inc. Electrodes having surface exclusions
CN104587599B (zh) * 2015-01-16 2016-10-12 江苏科技大学 一种微电池供电的注射式神经刺激器
US10130813B2 (en) 2015-02-10 2018-11-20 Neuropace, Inc. Seizure onset classification and stimulation parameter selection
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US20160250470A1 (en) * 2015-02-26 2016-09-01 Stryker Corporation Rehabilitation Monitor And Pain Treatment Assembly
CN107405249B (zh) 2015-03-13 2020-09-15 学校法人东海大学 步行训练用脊髓电刺激装置
US10039915B2 (en) 2015-04-03 2018-08-07 Medtronic Xomed, Inc. System and method for omni-directional bipolar stimulation of nerve tissue of a patient via a surgical tool
EP3283166A4 (en) * 2015-04-17 2019-01-16 Micron Devices LLC FLEXIBLE CIRCUIT FOR AN IMPLANTABLE DEVICE
WO2016178393A1 (ja) * 2015-05-01 2016-11-10 Cyberdyne株式会社 モデル動物の機能改善評価装置および神経細胞培養装置
KR20160133306A (ko) * 2015-05-12 2016-11-22 삼성전자주식회사 웨어러블 디바이스 및 웨어러블 디바이스의 피드백 제공 방법
CN107847732A (zh) 2015-05-29 2018-03-27 赛威医疗公司 用于经皮电刺激的方法和装置
DE102015108861A1 (de) * 2015-06-03 2016-12-08 Cortec Gmbh Verfahren und Vorrichtung zur Neurostimulation
CN107735020A (zh) * 2015-06-04 2018-02-23 因维克塔医药公司 用于处置不宁腿综合症的方法和装置
US10076667B2 (en) 2015-06-09 2018-09-18 Nuvectra Corporation System and method of performing computer assisted stimulation programming (CASP) with a non-zero starting value customized to a patient
US9750946B2 (en) 2015-06-09 2017-09-05 Nuvectra Corporation Systems, methods, and devices for evaluating lead placement based on generated visual representations of sacrum and lead
US9669227B2 (en) 2015-06-09 2017-06-06 Nuvectra Corporation Systems, methods, and devices for generating arbitrary stimulation waveforms
US9872988B2 (en) 2015-06-09 2018-01-23 Nuvectra Corporation Systems, methods, and devices for evaluating lead placement based on patient physiological responses
US10052490B2 (en) 2015-06-09 2018-08-21 Nuvectra Corporation Systems, methods, and devices for performing electronically controlled test stimulation
WO2016209997A1 (en) * 2015-06-22 2016-12-29 Research Foundation Of The City University Of New York Method and apparatus for modulation of effector organs
CN110101968B (zh) 2015-07-10 2023-09-08 艾克索尼克斯股份有限公司 具有无asic的内部电子设备的可植入神经刺激器以及使用方法
WO2017027703A1 (en) * 2015-08-11 2017-02-16 Rhode Island Hospital Methods for detecting neuronal oscillation in the spinal cord associated with pain and diseases or disorders of the nervous system
WO2017031314A1 (en) * 2015-08-18 2017-02-23 University Of Louisville Research Foundation, Inc. Methods for applying epidural electrical stimulation
EP3337396A4 (en) * 2015-08-18 2019-03-27 University Of Louisville Research Foundation, Inc. SYNCHRONIZED PULSE DETECTOR
US11298533B2 (en) 2015-08-26 2022-04-12 The Regents Of The University Of California Concerted use of noninvasive neuromodulation device with exoskeleton to enable voluntary movement and greater muscle activation when stepping in a chronically paralyzed subject
CN107921262B (zh) 2015-08-26 2021-06-18 波士顿科学神经调制公司 用于优化脊髓刺激的机器学习
EP3352844B1 (en) * 2015-09-21 2020-04-29 Boston Scientific Neuromodulation Corporation Automated program optimization
GB201518205D0 (en) 2015-10-14 2015-11-25 Univ Newcastle Probe response signals
US11097122B2 (en) 2015-11-04 2021-08-24 The Regents Of The University Of California Magnetic stimulation of the spinal cord to restore control of bladder and/or bowel
US11458308B2 (en) * 2015-12-10 2022-10-04 Carlo Menon Electrical stimulation device for improving fluidity of motion
US10300277B1 (en) 2015-12-14 2019-05-28 Nevro Corp. Variable amplitude signals for neurological therapy, and associated systems and methods
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
EP3184145B1 (en) * 2015-12-22 2024-03-20 Ecole Polytechnique Fédérale de Lausanne (EPFL) System for selective spatiotemporal stimulation of the spinal cord
RU2627359C2 (ru) 2015-12-29 2017-08-07 Общество с ограниченной ответственностью "Косима" (ООО "Косима") Устройство для неинвазивной электрической стимуляции спинного мозга
WO2017117434A1 (en) 2015-12-30 2017-07-06 Boston Scientific Neuromodulation Corporation System for guided optimization of neurostimulation patterns
US10183167B2 (en) * 2015-12-30 2019-01-22 Boston Scientific Neuromodulation Corporation Method and apparatus for composing spatio-temporal patterns of neurostimulation for cumulative effects
AU2017206723B2 (en) 2016-01-11 2021-11-25 Bioness Inc. Systems and apparatus for gait modulation and methods of use
WO2017132566A1 (en) 2016-01-27 2017-08-03 The Regents Of The University Of California Wireless implant for motor function recovery after spinal cord injury
JP6334588B2 (ja) * 2016-03-10 2018-05-30 H2L株式会社 電気刺激システム
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
WO2017210352A1 (en) * 2016-05-31 2017-12-07 The Regents Of The University Of California Systems and methods for reducing noise caused by stimulation artifacts in neural signals received by neuro-modulation devices
WO2017210491A1 (en) 2016-06-01 2017-12-07 Duke University Systems and methods for determining optimal temporal patterns of neural stimulation
CN105978110B (zh) * 2016-07-15 2019-08-20 上海力声特医学科技有限公司 一种无线充电装置及其骶神经刺激系统
US11399770B2 (en) 2016-08-01 2022-08-02 Med-El Elektromedizinische Geraete Gmbh Respiratory triggered parasternal electromyographic recording in neurostimulators
WO2018026974A1 (en) * 2016-08-02 2018-02-08 Motometrix Inc. System and method for identification of brain injury
KR101838150B1 (ko) * 2016-08-31 2018-03-15 가천대학교 산학협력단 광센서 어레이 기반의 서브형 인공망막 장치 및 인공망막 장치의 구동 방법
US10849517B2 (en) 2016-09-19 2020-12-01 Medtronic Xomed, Inc. Remote control module for instruments
US11116964B2 (en) 2016-11-07 2021-09-14 Micro-Leads, Inc. Multi-electrode array with unitary body
WO2018093765A1 (en) 2016-11-15 2018-05-24 Regents Of The University Of California Methods and apparatuses for improving peripheral nerve function
EP3323466B1 (en) * 2016-11-16 2024-04-03 ONWARD Medical N.V. An active closed-loop medical system
CN110381826A (zh) * 2016-11-25 2019-10-25 约翰·丹尼尔斯 人机触觉界面和可穿戴电子产品方法及装置
EP4233999A3 (en) * 2016-12-12 2023-11-22 The Regents of The University of California Implantable and non-invasive stimulators for gastrointestinal therapeutics
CN106730337A (zh) * 2016-12-22 2017-05-31 北京品驰医疗设备有限公司 一种可快速充电的迷走神经刺激器电子处方配置系统
US10821285B2 (en) 2017-01-05 2020-11-03 California Institute Of Technology Dueling bandits algorithm for neuromodulation therapy
WO2018136822A1 (en) * 2017-01-19 2018-07-26 Micro-Leads, Inc. Spinal cord stimulation method to treat lateral neural tissues
US20190381313A1 (en) * 2017-01-24 2019-12-19 The Regents Of The University Of California Accessing spinal network to enable respiratory function
US10523258B2 (en) 2017-03-06 2019-12-31 Samsung Electronics Co., Ltd. Communication device to perform wireless communication and wireless power transfer, and electrode device to transmit and receive electrical signal from target
DE102017105065A1 (de) * 2017-03-09 2018-10-11 BEKA Hospitec GmbH Gangtrainingsverfahren mit sensorbasierter Reduzierung oder Variierung der Gewichtsbelastung
EP3606601B1 (en) * 2017-04-07 2024-02-07 Medtronic, Inc. Complex variation of electrical stimulation therapy parameters
US20180344171A1 (en) * 2017-06-06 2018-12-06 Myant Inc. Sensor band for multimodal sensing of biometric data
DE20168827T1 (de) 2017-06-30 2021-01-21 Gtx Medical B.V. System zur neuromodulierung
EP3649646A4 (en) 2017-07-02 2020-06-03 Oberon Sciences Ilan Ltd. SUBJECT-SPECIFIC SYSTEM AND METHOD FOR PREVENTION OF ADAPTATION OF THE BODY TO CHRONIC TREATMENT OF A DISEASE
US11257259B2 (en) * 2017-08-15 2022-02-22 Siemens Healthcare Gmbh Topogram prediction from surface data in medical imaging
KR102062252B1 (ko) * 2017-08-30 2020-01-03 부산대학교 산학협력단 바이오 압력센서를 이용한 수술 중 신경감시시스템
US10821286B2 (en) * 2017-09-08 2020-11-03 Medtronic, Inc. Electrical stimulator configuration with initial high-density stimulation
EP3691744B1 (en) * 2017-10-04 2021-07-28 Boston Scientific Neuromodulation Corporation Adjustment of stimulation in a stimulator using detected evoked compound action potentials
CN111556772A (zh) * 2017-11-05 2020-08-18 奥伯龙科学伊兰有限公司 为受试者定制的连续发展的基于随机化改善器官功能的方法
CA3082390C (en) 2017-11-07 2023-01-31 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
WO2019147679A1 (en) * 2018-01-23 2019-08-01 Mayo Foundation For Medical Education And Research Epidural stimulation and spinal structure locating techniques
CR20200357A (es) 2018-01-30 2021-03-29 Nevro Corp Uso eficiente de una batería de generador de pulsos implantable, y sistemas y métodos asociados
WO2019178507A1 (en) * 2018-03-16 2019-09-19 The Regents Of The University Of California Flexible spinal cord stimulators for pain and trauma management through neuromodulation
EP3784337B1 (en) 2018-04-24 2023-06-28 Thync Global, Inc. Streamlined and pre-set neuromodulators
CN112384131B (zh) * 2018-05-10 2024-01-19 皇家飞利浦有限公司 用于使用神经网络来增强被递送给用户的感官刺激的系统和方法
EP3793673B1 (en) * 2018-05-17 2023-07-26 Boston Scientific Scimed Inc. System for controlling blood pressure
CN109173047A (zh) * 2018-08-10 2019-01-11 复旦大学 一种非侵入式闭环经颅电刺激装置
ES2948813T3 (es) 2018-08-14 2023-09-19 Neurotrigger Ltd Aparato para la estimulación transcutánea del nervio facial
KR102118713B1 (ko) * 2018-08-14 2020-06-04 광운대학교 산학협력단 뇌 질환 치료를 위한 F-TFTA를 사용한 다채널 ECoG 전극과 뇌파 수집 센서를 구비하는 무선 송수신 의료기기
RU187884U1 (ru) * 2018-08-15 2019-03-21 Андрей Владимирович Цимбалов Аппарат нейростимуляции
US11058875B1 (en) 2018-09-19 2021-07-13 Nevro Corp. Motor function in spinal cord injury patients via electrical stimulation, and associated systems and methods
US11602633B2 (en) 2018-10-22 2023-03-14 Pathmaker Neurosystems Inc. Method and apparatus for controlling multi-site neurostimulation
EP3653256B1 (en) 2018-11-13 2022-03-30 ONWARD Medical N.V. Control system for movement reconstruction and/or restoration for a patient
DE18205814T1 (de) * 2018-11-13 2020-12-24 Gtx Medical B.V. Bewegungsrekonstruktionssteuerungssystem
DE18205817T1 (de) 2018-11-13 2020-12-24 Gtx Medical B.V. Sensor in bekleidung von gliedmassen oder schuhwerk
JP7373565B2 (ja) 2018-11-20 2023-11-02 エヌユーエネルキ, インコーポレイテッド 反比例の関係にある周波数とピーク電圧を印加する電気刺激装置
KR102238067B1 (ko) * 2018-12-12 2021-04-08 광운대학교 산학협력단 3d 헤드업 디스플레이와 연동된 웨어러블 eeg 헤드셋을 구비하는 eeg 측정 및 자극 시스템 및 방법
US11395924B2 (en) 2019-01-07 2022-07-26 Micro-Leads, Inc. Implantable devices with welded multi-contact electrodes and continuous conductive elements
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
EP3695878B1 (en) 2019-02-12 2023-04-19 ONWARD Medical N.V. A system for neuromodulation
US11481578B2 (en) 2019-02-22 2022-10-25 Neuropace, Inc. Systems and methods for labeling large datasets of physiological records based on unsupervised machine learning
EP3941566A1 (en) * 2019-03-18 2022-01-26 Exoneural Network AB Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
US11612750B2 (en) 2019-03-19 2023-03-28 Neuropace, Inc. Methods and systems for optimizing therapy using stimulation mimicking natural seizures
CN111013012A (zh) * 2019-03-26 2020-04-17 中国人民解放军军事科学院军事医学研究院 一种植入式器械的远程监控系统
US11813446B2 (en) 2019-04-05 2023-11-14 University Of Louisville Research Foundation, Inc. Methods of for improvement of lower urinary tract function
WO2020206387A1 (en) 2019-04-05 2020-10-08 University Of Louisville Research Foundation, Inc. Closed loop control system
US11458303B2 (en) * 2019-04-15 2022-10-04 Medtronic, Inc. Implantable medical leads having fewer conductors than distal electrodes
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
ES2798182B2 (es) * 2019-06-06 2021-04-22 Univ Pablo De Olavide Sistema para la neuroestimulación
US11458311B2 (en) 2019-06-26 2022-10-04 Neurostim Technologies Llc Non-invasive nerve activator patch with adaptive circuit
US11065461B2 (en) 2019-07-08 2021-07-20 Bioness Inc. Implantable power adapter
WO2021021886A1 (en) * 2019-07-29 2021-02-04 Mayo Foundation For Medical Education And Research Epidural stimulation and spinal structure locating techniques
EP4027912A4 (en) 2019-09-12 2023-08-16 Relievant Medsystems, Inc. TISSUE MODULATION SYSTEMS AND METHODS
KR102334427B1 (ko) * 2019-10-29 2021-12-03 주식회사 뉴아인 멀티 모드 안면 신경 자극 시스템
EP3827871A1 (en) 2019-11-27 2021-06-02 ONWARD Medical B.V. Neuromodulation system
EP4017580A4 (en) 2019-12-16 2023-09-06 Neurostim Technologies LLC NON-INVASIVE NERVE ACTIVATOR WITH AMPLIFIED CHARGE DISTRIBUTION
KR102387763B1 (ko) * 2020-02-18 2022-04-18 서울대학교산학협력단 완전 이식형 시각 보철 시스템 및 그 동작 방법
DE20160841T1 (de) * 2020-03-04 2021-12-09 Onward Medical B.V. Ein neuromodulationssystem
CN111408044A (zh) * 2020-03-31 2020-07-14 北京百科康讯科技有限公司 控制器及其语音识别方法和脊髓硬膜外刺激系统
JP7462213B2 (ja) 2020-04-03 2024-04-05 国立大学法人千葉大学 電気治療器
RU206363U1 (ru) * 2020-05-15 2021-09-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" Нейрональный имплант
EP4161629A1 (en) * 2020-06-06 2023-04-12 Battelle Memorial Institute Portable and wearable hand-grasp neuro-orthosis
CN111905258B (zh) * 2020-08-04 2023-07-25 太原理工大学 一种可多部位使用的力电刺激理疗仪及参数设定方法
US11897134B2 (en) 2020-08-12 2024-02-13 General Electric Company Configuring a simulator for robotic machine learning
US11654566B2 (en) 2020-08-12 2023-05-23 General Electric Company Robotic activity decomposition
WO2022258211A1 (en) * 2021-06-11 2022-12-15 Inbrain Neuroelectronics Sl Neural interface with edge protected porous material
WO2022271777A1 (en) * 2021-06-23 2022-12-29 Brown University Systems and method for modulating the spinal cord based on spinal field potentials
KR102567821B1 (ko) * 2021-07-05 2023-08-18 (재)예수병원유지재단 교감신경 자극장치
CN113546307A (zh) * 2021-07-15 2021-10-26 清华大学 运动调节装置及方法、电子设备和存储介质
WO2023177690A1 (en) * 2022-03-14 2023-09-21 Canary Medical Switzerland Ag Implantable medical device with sensing and communication functionality utilizing a substrate antenna
CN114870250B (zh) * 2022-04-20 2022-11-25 浙江帝诺医疗科技有限公司 神经调控系统和基于该系统的神经调控刺激器
WO2023225099A1 (en) * 2022-05-19 2023-11-23 University Of Washington Methods and systems to reduce symptoms of cerebral palsy in children
CN117045966A (zh) * 2023-09-11 2023-11-14 北京领创医谷科技发展有限责任公司 一种神经刺激器的组合模式调节方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101596338A (zh) * 2009-04-29 2009-12-09 天津大学 基于bp神经网络整定pid的功能性电刺激精密控制方法
CN101687093A (zh) * 2007-05-22 2010-03-31 艾弗·斯蒂芬·吉尔贝 阵列刺激器
CN101816822A (zh) * 2010-05-27 2010-09-01 天津大学 功能性电刺激pid参数双源特征融合微粒子群整定方法

Family Cites Families (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543761A (en) 1967-10-05 1970-12-01 Univ Minnesota Bladder stimulating method
US3662758A (en) 1969-06-30 1972-05-16 Mentor Corp Stimulator apparatus for muscular organs with external transmitter and implantable receiver
US3724467A (en) 1971-04-23 1973-04-03 Avery Labor Inc Electrode implant for the neuro-stimulation of the spinal cord
US4044774A (en) 1976-02-23 1977-08-30 Medtronic, Inc. Percutaneously inserted spinal cord stimulation lead
US4102344A (en) 1976-11-15 1978-07-25 Mentor Corporation Stimulator apparatus for internal body organ
US4141365A (en) 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4285347A (en) 1979-07-25 1981-08-25 Cordis Corporation Stabilized directional neural electrode lead
US4340063A (en) 1980-01-02 1982-07-20 Empi, Inc. Stimulation device
US4379462A (en) 1980-10-29 1983-04-12 Neuromed, Inc. Multi-electrode catheter assembly for spinal cord stimulation
US4414986A (en) 1982-01-29 1983-11-15 Medtronic, Inc. Biomedical stimulation lead
US4538624A (en) 1982-12-08 1985-09-03 Cordis Corporation Method for lead introduction and fixation
US4549556A (en) 1982-12-08 1985-10-29 Cordis Corporation Implantable lead
US4800898A (en) 1983-10-07 1989-01-31 Cordis Corporation Neural stimulator electrode element and lead
US4934368A (en) 1988-01-21 1990-06-19 Myo/Kinetics Systems, Inc. Multi-electrode neurological stimulation apparatus
US5081989A (en) 1989-04-07 1992-01-21 Sigmedics, Inc. Microprocessor-controlled enhanced multiplexed functional electrical stimulator for surface stimulation in paralyzed patients
US5002053A (en) 1989-04-21 1991-03-26 University Of Arkansas Method of and device for inducing locomotion by electrical stimulation of the spinal cord
US5031618A (en) 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
US5121754A (en) 1990-08-21 1992-06-16 Medtronic, Inc. Lateral displacement percutaneously inserted epidural lead
US5354320A (en) 1991-09-12 1994-10-11 Biotronik Mess- Und Therapiegerate Gmbh & Co., Ingenieurburo Berlin Neurostimulator for production of periodic stimulation pulses
EP0580928A1 (en) 1992-07-31 1994-02-02 ARIES S.r.l. A spinal electrode catheter
US5344439A (en) 1992-10-30 1994-09-06 Medtronic, Inc. Catheter with retractable anchor mechanism
US5417719A (en) 1993-08-25 1995-05-23 Medtronic, Inc. Method of using a spinal cord stimulation lead
US5501703A (en) 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5562718A (en) 1994-06-03 1996-10-08 Palermo; Francis X. Electronic neuromuscular stimulation device
US5733322A (en) 1995-05-23 1998-03-31 Medtronic, Inc. Positive fixation percutaneous epidural neurostimulation lead
US6066163A (en) * 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
CA2171067A1 (en) 1996-03-05 1997-09-06 Brian J. Andrews Neural prosthesis
US6505078B1 (en) 1996-04-04 2003-01-07 Medtronic, Inc. Technique for adjusting the locus of excitation of electrically excitable tissue
US6609031B1 (en) 1996-06-07 2003-08-19 Advanced Neuromodulation Systems, Inc. Multiprogrammable tissue stimulator and method
JP4113585B2 (ja) 1996-06-13 2008-07-09 ザ・ユニバーシティ・オブ・マンチェスター 筋肉の刺激
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
RU2130326C1 (ru) 1996-08-20 1999-05-20 Шапков Юрий Тимофеевич Способ лечения больных с поражением спинного мозга
RU2141851C1 (ru) 1997-03-31 1999-11-27 Российский научный центр реабилитации и физиотерапии Способ лечения диспластического сколиоза у детей
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
WO1999056818A1 (en) 1998-04-30 1999-11-11 Medtronic, Inc. Multiple electrode lead body for spinal cord stimulation
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US6104957A (en) 1998-08-21 2000-08-15 Alo; Kenneth M. Epidural nerve root stimulation with lead placement method
US6470213B1 (en) 1999-03-30 2002-10-22 Kenneth A. Alley Implantable medical device
RU2178319C2 (ru) 1999-05-11 2002-01-20 Российский научно-исследовательский нейрохирургический институт им. проф. А.Л. Поленова Электростимулятор
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
EP1229969A4 (en) 1999-08-20 2003-04-16 Univ California METHOD, DEVICE AND SYSTEM FOR AUTOMATING A BIPEDE LOCOMOTION TECHNIQUE BASED ON THE TRAINING OF THE BODY WEIGHT SUPPORT (BWST) ON A TREADMILL USING A PROGRAMMABLE STEPPING DEVICE (PSD) ) OPERATING AS A CONTROL SYSTEM OF THE EXOSQUELET TYPE FROM
US6308103B1 (en) 1999-09-13 2001-10-23 Medtronic Inc. Self-centering epidural spinal cord lead and method
RU2160127C1 (ru) 1999-09-16 2000-12-10 Вязников Александр Леонидович Способ лечения заболеваний и реабилитации локальной импульсной электростимуляцией
US7949395B2 (en) 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
RU2192897C2 (ru) 1999-11-17 2002-11-20 Красноярская государственная медицинская академия Способ лечения постинсультных парезов
CA2397607A1 (en) 1999-12-17 2001-06-21 Carla M. Mann Magnitude programming for implantable electrical stimulator
US6885888B2 (en) * 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US7096070B1 (en) 2000-02-09 2006-08-22 Transneuronix, Inc. Medical implant device for electrostimulation using discrete micro-electrodes
US7305268B2 (en) * 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7024247B2 (en) 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US6895283B2 (en) 2000-08-10 2005-05-17 Advanced Neuromodulation Systems, Inc. Stimulation/sensing lead adapted for percutaneous insertion
US6662053B2 (en) 2000-08-17 2003-12-09 William N. Borkan Multichannel stimulator electronics and methods
US6871099B1 (en) * 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
JP2002200178A (ja) 2000-12-28 2002-07-16 Japan Science & Technology Corp 骨盤部表面刺激電極装置及びその電極装置装着用下着
US7065408B2 (en) 2001-01-11 2006-06-20 Herman Richard M Method for restoring gait in individuals with chronic spinal cord injury
US7299096B2 (en) 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
US6892098B2 (en) 2001-04-26 2005-05-10 Biocontrol Medical Ltd. Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders
US6839594B2 (en) 2001-04-26 2005-01-04 Biocontrol Medical Ltd Actuation and control of limbs through motor nerve stimulation
ES2253558T3 (es) 2001-05-16 2006-06-01 Fondation Suisse Pour Les Cybertheses Dispositivo de reeducacion y/o de entrenamiento de los miembros inferiores de una persona.
US6685729B2 (en) 2001-06-29 2004-02-03 George Gonzalez Process for testing and treating aberrant sensory afferents and motors efferents
US7167753B2 (en) 2001-07-03 2007-01-23 The Trustees Of The University Of Pennsylvania Device and method for electrically inducing osteogenesis in the spine
US7263402B2 (en) 2001-08-13 2007-08-28 Advanced Bionics Corporation System and method of rapid, comfortable parameter switching in spinal cord stimulation
AU2002334755B2 (en) 2001-09-28 2007-12-06 Meagan Medical, Inc. Method and apparatus for controlling percutaneous electrical signals
WO2003026736A2 (en) 2001-09-28 2003-04-03 Northstar Neuroscience, Inc. Methods and implantable apparatus for electrical therapy
US7127296B2 (en) 2001-11-02 2006-10-24 Advanced Bionics Corporation Method for increasing the therapeutic ratio/usage range in a neurostimulator
US6975907B2 (en) 2001-11-13 2005-12-13 Dynamed Systems, Llc Apparatus and method for repair of spinal cord injury
US6829510B2 (en) * 2001-12-18 2004-12-07 Ness Neuromuscular Electrical Stimulation Systems Ltd. Surface neuroprosthetic device having an internal cushion interface system
US7110820B2 (en) 2002-02-05 2006-09-19 Tcheng Thomas K Responsive electrical stimulation for movement disorders
AUPS042802A0 (en) 2002-02-11 2002-03-07 Neopraxis Pty Ltd Distributed functional electrical stimulation system
US7239920B1 (en) 2002-02-12 2007-07-03 Advanced Bionics Corporation Neural stimulation system providing auto adjustment of stimulus output as a function of sensed pressure changes
US7697995B2 (en) 2002-04-25 2010-04-13 Medtronic, Inc. Surgical lead paddle
US6937891B2 (en) 2002-04-26 2005-08-30 Medtronic, Inc. Independent therapy programs in an implantable medical device
US6950706B2 (en) 2002-04-26 2005-09-27 Medtronic, Inc. Wave shaping for an implantable medical device
EP1501588A1 (en) 2002-05-03 2005-02-02 Afferent Corporation A method and apparatus for enhancing neurophysiologic performance
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
GB2405592A (en) 2002-05-29 2005-03-09 Oklahoma Foundation For Digest Spinal cord stimulation as treatment for functional bowel disorders
US7228179B2 (en) 2002-07-26 2007-06-05 Advanced Neuromodulation Systems, Inc. Method and apparatus for providing complex tissue stimulation patterns
US7047079B2 (en) 2002-07-26 2006-05-16 Advanced Neuromodulation Systems, Inc. Method and system for energy conservation in implantable stimulation devices
US7027860B2 (en) 2002-08-29 2006-04-11 Department Of Veterans Affairs Microstimulator neural prosthesis
AU2003285888A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Medical device system with relaying module for treatment of nervous system disorders
AU2003301481A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Channel-selective blanking for a medical device system
US7797057B2 (en) 2002-10-23 2010-09-14 Medtronic, Inc. Medical paddle lead and method for spinal cord stimulation
RU2226114C1 (ru) 2002-11-05 2004-03-27 Беленький Виктор Евгеньевич Способ электротерапии
US7020521B1 (en) * 2002-11-08 2006-03-28 Pacesetter, Inc. Methods and apparatus for detecting and/or monitoring heart failure
US7035690B2 (en) 2002-11-15 2006-04-25 Medtronic, Inc. Human-implantable-neurostimulator user interface having multiple levels of abstraction
US7047084B2 (en) 2002-11-20 2006-05-16 Advanced Neuromodulation Systems, Inc. Apparatus for directionally stimulating nerve tissue
TR200202651A2 (tr) 2002-12-12 2004-07-21 Met�N�Tulgar VücutÁdışındanÁdirekÁtedaviÁsinyaliÁtransferliÁÁbeyinÁpili
AR043467A1 (es) 2003-03-05 2005-07-27 Osmotica Argentina S A Combinacion de drogas para la disfuncion motora en la enfermedad de parkinson
IL154801A0 (en) 2003-03-06 2003-10-31 Karotix Internat Ltd Multi-channel and multi-dimensional system and method
US7103417B1 (en) * 2003-04-18 2006-09-05 Advanced Bionics Corporation Adaptive place-pitch ranking procedure for optimizing performance of a multi-channel neural stimulator
US7463928B2 (en) 2003-04-25 2008-12-09 Medtronic, Inc. Identifying combinations of electrodes for neurostimulation therapy
US20070083240A1 (en) 2003-05-08 2007-04-12 Peterson David K L Methods and systems for applying stimulation and sensing one or more indicators of cardiac activity with an implantable stimulator
US6999820B2 (en) 2003-05-29 2006-02-14 Advanced Neuromodulation Systems, Inc. Winged electrode body for spinal cord stimulation
US20050004622A1 (en) 2003-07-03 2005-01-06 Advanced Neuromodulation Systems System and method for implantable pulse generator with multiple treatment protocols
RU2258496C2 (ru) 2003-07-15 2005-08-20 Саратовский научно-исследовательский институт травматологии и ортопедии (СарНИИТО) Министерства здравоохранения РФ Способ лечения больных с травматическими и дегенеративными поражениями позвоночника и спинного мозга
US7340298B1 (en) 2003-09-03 2008-03-04 Coaxia, Inc. Enhancement of cerebral blood flow by electrical nerve stimulation
US7184837B2 (en) 2003-09-15 2007-02-27 Medtronic, Inc. Selection of neurostimulator parameter configurations using bayesian networks
US7252090B2 (en) 2003-09-15 2007-08-07 Medtronic, Inc. Selection of neurostimulator parameter configurations using neural network
US7200443B2 (en) 2003-10-07 2007-04-03 John Faul Transcutaneous electrical nerve stimulator for appetite control
US8260436B2 (en) 2003-10-31 2012-09-04 Medtronic, Inc. Implantable stimulation lead with fixation mechanism
EP1694403A2 (en) 2003-11-20 2006-08-30 Advanced Neuromodulation Systems, Inc. Electrical stimulation system, lead, and method providing reduced neuroplasticity effects
US20080015659A1 (en) * 2003-12-24 2008-01-17 Yi Zhang Neurostimulation systems and methods for cardiac conditions
WO2005070494A1 (en) 2004-01-22 2005-08-04 Rehabtronics Inc. Method of routing electrical current to bodily tissues via implanted passive conductors
KR20070061476A (ko) 2004-02-05 2007-06-13 모토리카 리미티드 신경근 자극
US8165695B2 (en) 2004-02-11 2012-04-24 Ethicon, Inc. System and method for selectively stimulating different body parts
US7590454B2 (en) 2004-03-12 2009-09-15 Boston Scientific Neuromodulation Corporation Modular stimulation lead network
US7330760B2 (en) 2004-03-16 2008-02-12 Medtronic, Inc. Collecting posture information to evaluate therapy
KR20070020001A (ko) 2004-03-23 2007-02-16 마쯔시다덴기산교 가부시키가이샤 고 처리율 전기 생리학적 시스템
EP1755734B1 (en) 2004-04-14 2013-02-27 Medtronic Inc. Collecting posture and activity information to evaluate therapy
US20050246004A1 (en) 2004-04-28 2005-11-03 Advanced Neuromodulation Systems, Inc. Combination lead for electrical stimulation and sensing
US8195304B2 (en) 2004-06-10 2012-06-05 Medtronic Urinary Solutions, Inc. Implantable systems and methods for acquisition and processing of electrical signals
US9308382B2 (en) 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7398255B2 (en) * 2004-07-14 2008-07-08 Shriners Hospitals For Children Neural prosthesis with fuzzy logic control system
US20060041295A1 (en) 2004-08-17 2006-02-23 Osypka Thomas P Positive fixation percutaneous epidural neurostimulation lead
US7463927B1 (en) * 2004-09-02 2008-12-09 Intelligent Neurostimulation Microsystems, Llc Self-adaptive system for the automatic detection of discomfort and the automatic generation of SCS therapies for chronic pain control
US7447546B2 (en) 2004-09-08 2008-11-04 Spinal Modulation, Inc. Methods of neurostimulating targeted neural tissue
US20060089696A1 (en) 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with reinforced outer jacket
US8239029B2 (en) 2004-10-21 2012-08-07 Advanced Neuromodulation Systems, Inc. Stimulation of the amygdalohippocampal complex to treat neurological conditions
US9050455B2 (en) 2004-10-21 2015-06-09 Medtronic, Inc. Transverse tripole neurostimulation methods, kits and systems
US7377006B2 (en) 2004-10-29 2008-05-27 Imig Inc. Vacuum cleaner with magnetic pick-up mechanism
US8095209B2 (en) 2005-01-06 2012-01-10 Braingate Co., Llc Biological interface system with gated control signal
US20080009927A1 (en) * 2005-01-11 2008-01-10 Vilims Bradley D Combination Electrical Stimulating and Infusion Medical Device and Method
US8788044B2 (en) 2005-01-21 2014-07-22 Michael Sasha John Systems and methods for tissue stimulation in medical treatment
US7580752B2 (en) 2005-02-23 2009-08-25 Medtronic, Inc. Implantable medical device providing adaptive neurostimulation therapy for incontinence
US20070060954A1 (en) 2005-02-25 2007-03-15 Tracy Cameron Method of using spinal cord stimulation to treat neurological disorders or conditions
GB0505940D0 (en) * 2005-03-23 2005-04-27 Bmr Res & Dev Ltd Muscle stimulation apparatus and method
US8082033B2 (en) 2005-04-13 2011-12-20 The Cleveland Clinic Foundation System and method for providing a waveform for stimulating biological tissue
WO2006113593A2 (en) 2005-04-14 2006-10-26 Advanced Neuromodulation Systems, Inc. Electrical stimulation lead, system, and method
US7813803B2 (en) 2005-06-09 2010-10-12 Medtronic, Inc. Regional therapies for treatment of pain
CA2608397A1 (en) 2005-06-28 2007-01-04 Bioness Development, Llc Improvements to an implant, system and method using implanted passive conductors for routing electrical current
DK1909890T3 (da) 2005-07-01 2010-05-03 Imec Organ til funktionel genskabelse af et beskadiget nervesystem
US7415309B2 (en) 2005-07-11 2008-08-19 Boston Scientific Scimed, Inc. Percutaneous access for neuromodulation procedures
US7499752B2 (en) * 2005-07-29 2009-03-03 Cyberonics, Inc. Selective nerve stimulation for the treatment of eating disorders
US20070049814A1 (en) 2005-08-24 2007-03-01 Muccio Philip E System and device for neuromuscular stimulation
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US8589316B2 (en) * 2009-08-27 2013-11-19 The Cleveland Clinic Foundation System and method to estimate region of tissue activation
US7660636B2 (en) 2006-01-04 2010-02-09 Accelerated Care Plus Corp. Electrical stimulation device and method for the treatment of dysphagia
US8195267B2 (en) 2006-01-26 2012-06-05 Seymour John P Microelectrode with laterally extending platform for reduction of tissue encapsulation
US7979131B2 (en) 2006-01-26 2011-07-12 Advanced Neuromodulation Systems, Inc. Method of neurostimulation of distinct neural structures using single paddle lead to treat multiple pain locations and multi-column, multi-row paddle lead for such neurostimulation
US7467016B2 (en) 2006-01-27 2008-12-16 Cyberonics, Inc. Multipolar stimulation electrode with mating structures for gripping targeted tissue
US7801601B2 (en) 2006-01-27 2010-09-21 Cyberonics, Inc. Controlling neuromodulation using stimulus modalities
ATE428468T1 (de) 2006-02-10 2009-05-15 Advanced Neuromodulation Sys Selbstfaltende paddelförmige leitung und verfahren zur herstellung einer paddelförmigen leitung
US20070233204A1 (en) 2006-02-16 2007-10-04 Lima Marcelo G RFID-based apparatus, system, and method for therapeutic treatment of a patient
US7729781B2 (en) 2006-03-16 2010-06-01 Greatbatch Ltd. High efficiency neurostimulation lead
ITMO20060087A1 (it) 2006-03-17 2007-09-18 Lorenz Biotech Spa Apparato e metodo di elettrostimolazione
US20120109251A1 (en) 2006-03-23 2012-05-03 Valery Pavlovich Lebedev Transcranial electrostimulation device
AU2006341583B2 (en) * 2006-04-07 2010-05-13 Boston Scientific Neuromodulation Corporation System and method using multiple timing channels for electrode adjustment during set up of an implanted stimulator device
US8099172B2 (en) 2006-04-28 2012-01-17 Advanced Neuromodulation Systems, Inc. Spinal cord stimulation paddle lead and method of making the same
US8005543B2 (en) * 2006-05-08 2011-08-23 Cardiac Pacemakers, Inc. Heart failure management system
US7613522B2 (en) 2006-06-09 2009-11-03 Cardiac Pacemakers, Inc. Multi-antenna for an implantable medical device
US20100152811A1 (en) 2006-06-30 2010-06-17 Flaherty Christopher J Nerve regeneration system and lead devices associated therewith
US7765011B2 (en) 2006-08-21 2010-07-27 Medtronic, Inc. Assembly methods for medical electrical leads
US8532778B2 (en) 2006-08-28 2013-09-10 The United States Of America As Represented By The Department Of Veterans Affairs Restoring cough using microstimulators
US8170638B2 (en) 2006-09-11 2012-05-01 University Of Florida Research Foundation, Inc. MEMS flexible substrate neural probe and method of fabricating same
JP4839163B2 (ja) 2006-09-14 2011-12-21 テルモ株式会社 電気刺激による脚運動装置
US9643004B2 (en) 2006-10-31 2017-05-09 Medtronic, Inc. Implantable medical elongated member with adhesive elements
US7831307B1 (en) 2006-11-07 2010-11-09 Boston Scientific Neuromodulation Corporation System and method for computationally determining migration of neurostimulation leads
US9314618B2 (en) 2006-12-06 2016-04-19 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
AU2007329253B2 (en) 2006-12-06 2014-03-27 Spinal Modulation, Inc. Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
US7734351B2 (en) 2006-12-15 2010-06-08 Medtronic Xomed, Inc. Method and apparatus for assisting deglutition
RU2461397C2 (ru) 2006-12-21 2012-09-20 Сапиенс Стиринг Брейн Стимьюлейшн Б.В. Устройство для биомиметической нейростимуляции
US20080234791A1 (en) 2007-01-17 2008-09-25 Jeffrey Edward Arle Spinal cord implant systems and methods
US8554337B2 (en) 2007-01-25 2013-10-08 Giancarlo Barolat Electrode paddle for neurostimulation
US7949403B2 (en) 2007-02-27 2011-05-24 Accelerated Care Plus Corp. Electrical stimulation device and method for the treatment of neurological disorders
US10188853B2 (en) 2007-03-08 2019-01-29 Second Sight Medical Products, Inc. Flexible circuit electrode array with a drum stress relief
ES2896950T3 (es) 2007-03-09 2022-02-28 Mainstay Medical Ltd Estimulador musculador
WO2008115754A1 (en) 2007-03-16 2008-09-25 Advanced Neuromodulation Systems, Inc. Paddle lead comprising opposing diagonal arrangements of electrodes
US8180445B1 (en) 2007-03-30 2012-05-15 Boston Scientific Neuromodulation Corporation Use of interphase to incrementally adjust the volume of activated tissue
US8364273B2 (en) 2007-04-24 2013-01-29 Dirk De Ridder Combination of tonic and burst stimulations to treat neurological disorders
US7742810B2 (en) 2007-05-23 2010-06-22 Boston Scientific Neuromodulation Corporation Short duration pre-pulsing to reduce stimulation-evoked side-effects
US7769463B2 (en) 2007-06-19 2010-08-03 Kalaco Scientific, Inc. Multi-channel electrostimulation apparatus and method
RU2361631C2 (ru) 2007-07-04 2009-07-20 Федеральное государственное учреждение здравоохранения Центральная клиническая больница восстановительного лечения Федерального медико-биологического агентства (ФГУЗ ЦКБВЛ ФМБА России) Способ лечения больных травматической болезнью спинного мозга
WO2009042217A1 (en) 2007-09-26 2009-04-02 Duke University Method of treating parkinson's disease and other movement disorders
US7983757B2 (en) * 2007-10-26 2011-07-19 Medtronic, Inc. Medical device configuration based on sensed brain signals
DE102007051848B4 (de) 2007-10-30 2014-01-02 Forschungszentrum Jülich GmbH Vorrichtung zur Stimulation von Neuronenverbänden
US20090204173A1 (en) 2007-11-05 2009-08-13 Zi-Ping Fang Multi-Frequency Neural Treatments and Associated Systems and Methods
US8170660B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for thermal modulation of neural activity
US8195298B2 (en) * 2008-02-15 2012-06-05 Andres M Lozano Method for treating neurological/psychiatric disorders with stimulation to the subcaudate area of the brain
EP2249919B1 (en) 2008-03-06 2019-05-22 Stryker Corporation Foldable, implantable electrode array assembly
EP2271400A2 (en) 2008-04-29 2011-01-12 Cardiac Pacemakers, Inc. Systems for delivering spinal cord stimulation
US7890182B2 (en) 2008-05-15 2011-02-15 Boston Scientific Neuromodulation Corporation Current steering for an implantable stimulator device involving fractionalized stimulation pulses
RU2368401C1 (ru) 2008-05-26 2009-09-27 Андрей Александрович Олейников Способ лечения грыж поясничных межпозвонковых дисков
US8108052B2 (en) 2008-05-29 2012-01-31 Nervo Corporation Percutaneous leads with laterally displaceable portions, and associated systems and methods
WO2009155084A1 (en) 2008-05-30 2009-12-23 Stryker Corporation Method of assembling an electrode array that includes a plastically deformable carrier
US20090306491A1 (en) 2008-05-30 2009-12-10 Marcus Haggers Implantable neural prosthetic device and methods of use
CA2727498C (en) * 2008-07-02 2020-04-21 Niveus Medical, Inc. Systems and methods for automated muscle stimulation
RU2396995C2 (ru) 2008-07-14 2010-08-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургская государственная медицинская академия им. И.И. Мечникова Федерального агентства по здравоохранению и социальному развитию" Способ лечения больных с остеохондрозом поясничного отдела позвоночника с корешковым синдромом
WO2010011969A1 (en) 2008-07-24 2010-01-28 Boston Scientific Neuromodulation Corporation System and method for avoiding, reversing, and managing neurological accomodation to electrical stimulation
US8055337B2 (en) 2008-07-24 2011-11-08 Boston Scientific Neuromodulation Corporation System and method for maintaining a distribution of currents in an electrode array using independent voltage sources
US20100023103A1 (en) 2008-07-28 2010-01-28 Boston Scientific Neuromodulation Corporation Systems and Methods for Treating Essential Tremor or Restless Leg Syndrome Using Spinal Cord Stimulation
US7987000B2 (en) 2008-09-04 2011-07-26 Boston Scientific Neuromodulation Corporation Multiple tunable central cathodes on a paddle for increased medial-lateral and rostral-caudal flexibility via current steering
US8442655B2 (en) 2008-09-04 2013-05-14 Boston Scientific Neuromodulation Corporation Multiple tunable central cathodes on a paddle for increased medial-lateral and rostral-caudal flexibility via current steering
US8050773B2 (en) 2008-09-28 2011-11-01 Jie Zhu Expandable neuromodular stimulation lead
AU2009320106B2 (en) 2008-10-27 2016-01-07 Spinal Modulation, Inc. Selective stimulation systems and signal parameters for medical conditions
US8311639B2 (en) * 2009-07-08 2012-11-13 Nevro Corporation Systems and methods for adjusting electrical therapy based on impedance changes
JP2012508624A (ja) 2008-11-13 2012-04-12 プロテウス バイオメディカル インコーポレイテッド 多重化複数電極神経刺激装置
US8504160B2 (en) 2008-11-14 2013-08-06 Boston Scientific Neuromodulation Corporation System and method for modulating action potential propagation during spinal cord stimulation
RU2387467C1 (ru) 2008-11-18 2010-04-27 Инна Игоревна Русинова Способ коррекции мышечного дисбаланса у детей с нарушением осанки и сколиозом 1 и 2 степени
RU2397788C2 (ru) 2008-11-21 2010-08-27 Государственное учреждение Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского (МОНИКИ им. М.Ф. Владимирского) Способ восстановления микроциркуляции пораженных тканей
US8352036B2 (en) 2009-01-19 2013-01-08 Anthony DiMarco Respiratory muscle activation by spinal cord stimulation
US20120035684A1 (en) 2009-02-09 2012-02-09 Todd Thompson Multiplexed, Multi-Electrode Neurostimulation Devices with Integrated Circuits Having Integrated Electrodes
ES2683997T3 (es) 2009-02-10 2018-10-01 Nevro Corporation Sistema para administrar terapia neural correlacionada con el estado del paciente
WO2010114998A1 (en) 2009-04-03 2010-10-07 Stryker Corporation Delivery assembly for percutaneously delivering and deploying an electrode array at a target location, the assembly capable of steering the electrode array to the target location
EP4257178A3 (en) 2009-04-22 2023-10-25 Nevro Corporation Spinal cord modulation systems for inducing paresthetic and anesthetic effects
EP2429643B1 (en) * 2009-04-30 2017-08-23 Medtronic, Inc. Patient state detection based on support vector machine based algorithm
TWI397789B (zh) * 2009-05-12 2013-06-01 Univ Nat Chiao Tung Parameter adjusting device and method thereof
US8046077B2 (en) 2009-06-05 2011-10-25 Intelect Medical, Inc. Selective neuromodulation using energy-efficient waveforms
US9737703B2 (en) * 2009-07-10 2017-08-22 Boston Scientific Neuromodulation Corporation Method to enhance afferent and efferent transmission using noise resonance
US8498710B2 (en) * 2009-07-28 2013-07-30 Nevro Corporation Linked area parameter adjustment for spinal cord stimulation and associated systems and methods
US8781600B2 (en) 2009-08-05 2014-07-15 Stryker Corporation Implantable electrode array assembly including a carrier in which control modules for regulating the operation of the electrodes are disposed and electrodes that are disposed on top of the carrier
JP2011055912A (ja) * 2009-09-07 2011-03-24 Terumo Corp 電気刺激装置
US9724513B2 (en) 2009-08-28 2017-08-08 Boston Scientific Neuromodulation Corporation Methods to avoid frequency locking in a multi-channel neurostimulation system using pulse shifting
US8543200B2 (en) 2009-08-28 2013-09-24 Boston Scientific Neuromodulation Corporation Methods to avoid frequency locking in a multi-channel neurostimulation system using pulse placement
US9061134B2 (en) 2009-09-23 2015-06-23 Ripple Llc Systems and methods for flexible electrodes
BR112012008033A2 (pt) 2009-10-05 2016-04-19 Neurosigma Inc sistema para estimulação do nervo trigêmeo para tratamento de um distúrbio ou condição neurológicos, unidade de eletrodo subcutâneo, método para tratar um distúrbio ou condição neurológicos, e, kit para estimulação do nervo trigêmeo
US8412345B2 (en) 2009-11-03 2013-04-02 Boston Scientific Neuromodulation Corporation System and method for mapping arbitrary electric fields to pre-existing lead electrodes
TW201117849A (en) 2009-11-30 2011-06-01 Unimed Invest Inc Implantable pulsed-radiofrequency micro-stimulation system
CA3026948C (en) 2009-12-01 2022-07-12 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device and methods of making and using the same
CA2785799A1 (en) 2009-12-30 2011-07-07 Boston Scientific Neuromodulation Corporation System and method for independently operating multiple neurostimulation channels
CN101773701A (zh) * 2010-01-11 2010-07-14 杭州诺尔康神经电子科技有限公司 神经刺激器
US8626295B2 (en) 2010-03-04 2014-01-07 Cardiac Pacemakers, Inc. Ultrasonic transducer for bi-directional wireless communication
AU2011224323B2 (en) 2010-03-11 2016-06-23 Mainstay Medical Limited Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use
CN102905757B (zh) 2010-03-22 2016-02-17 纽约城市大学研究基金会 电荷增强神经电刺激系统
US9549708B2 (en) 2010-04-01 2017-01-24 Ecole Polytechnique Federale De Lausanne Device for interacting with neurological tissue and methods of making and using the same
EP2575958B1 (en) 2010-05-27 2017-10-18 Ndi Medical, LLC Waveform shapes for treating neurological disorders optimized for energy efficiency
WO2012003451A2 (en) 2010-07-01 2012-01-05 Stimdesigns Llc Universal closed-loop electrical stimulation system
US8452410B2 (en) 2010-09-07 2013-05-28 Aalborg Universitet Method and device for reflex-based functional gait training
JP5577469B2 (ja) 2010-09-15 2014-08-20 カーディアック ペースメイカーズ, インコーポレイテッド 神経刺激リードのリード構成の自動選択
US9155891B2 (en) 2010-09-20 2015-10-13 Neuropace, Inc. Current management system for a stimulation output stage of an implantable neurostimulation system
US8239038B2 (en) 2010-10-14 2012-08-07 Wolf Ii Erich W Apparatus and method using near infrared reflectometry to reduce the effect of positional changes during spinal cord stimulation
WO2012064968A1 (en) 2010-11-11 2012-05-18 IINN, Inc. Motor nerve root stimulation
RU2445990C1 (ru) 2010-11-12 2012-03-27 Государственное учреждение Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского (ГУ МОНИКИ им. М.Ф. Владимирского) Способ лечения парезов и параличей
WO2012075198A2 (en) 2010-11-30 2012-06-07 Nevro Corporation Extended pain relief via high frequency spinal cord modulation, and associated systems and methods
EP4201475A1 (en) 2011-01-03 2023-06-28 The Regents of the University of California High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury
CA2824782C (en) 2011-01-21 2020-06-30 California Institute Of Technology A parylene-based microelectrode array implant for spinal cord stimulation
US20120232615A1 (en) 2011-03-07 2012-09-13 Giancarlo Barolat Modular Limb Peripheral Nerve Stimulation System and Method of Use
RU2471518C2 (ru) 2011-03-23 2013-01-10 Учреждение Российской Академии Наук Институт физиологии им. И.П. Павлова ИФ РАН Способ электрической стимуляции спинного мозга
WO2012129574A2 (en) * 2011-03-24 2012-09-27 California Institute Of Technology Neurostimulator
RU2475283C2 (ru) 2011-05-10 2013-02-20 Федеральное государственное бюджетное учреждение "Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии" Министерства здравоохранения и социального развития Российской Федерации Способ восстановления движений рук у больных с верхними параличами и парезами
US8688233B2 (en) 2011-06-23 2014-04-01 Boston Scientific Neuromodulation Corporation System and method for spinal cord stimulation to treat motor disorders
US9314629B2 (en) 2011-10-13 2016-04-19 Marc Possover Method for recovering body functions
AU2012334926B2 (en) 2011-11-11 2017-07-13 The Regents Of The University Of California Transcutaneous spinal cord stimulation: noninvasive tool for activation of locomotor circuitry
EP2776120B1 (en) 2011-11-11 2020-09-09 Neuroenabling Technologies, Inc. Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function
US10092750B2 (en) 2011-11-11 2018-10-09 Neuroenabling Technologies, Inc. Transcutaneous neuromodulation system and methods of using same
US9622671B2 (en) 2012-03-20 2017-04-18 University of Pittsburgh—of the Commonwealth System of Higher Education Monitoring and regulating physiological states and functions via sensory neural inputs to the spinal cord
EP2827942B1 (en) 2012-03-23 2016-04-27 Boston Scientific Neuromodulation Corporation Heuristic safety net for transitioning configurations in a neural stimulation system
US9993642B2 (en) 2013-03-15 2018-06-12 The Regents Of The University Of California Multi-site transcutaneous electrical stimulation of the spinal cord for facilitation of locomotion
WO2015106286A1 (en) 2014-01-13 2015-07-16 California Institute Of Technology Neuromodulation systems and methods of using same
US20160175586A1 (en) 2014-10-10 2016-06-23 Neurorecovery Technologies, Inc. Epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687093A (zh) * 2007-05-22 2010-03-31 艾弗·斯蒂芬·吉尔贝 阵列刺激器
CN101596338A (zh) * 2009-04-29 2009-12-09 天津大学 基于bp神经网络整定pid的功能性电刺激精密控制方法
CN101816822A (zh) * 2010-05-27 2010-09-01 天津大学 功能性电刺激pid参数双源特征融合微粒子群整定方法

Also Published As

Publication number Publication date
AU2017221868A1 (en) 2017-09-21
AU2017203132B2 (en) 2018-10-25
US20160310739A1 (en) 2016-10-27
WO2012129574A3 (en) 2012-12-27
JP2014514043A (ja) 2014-06-19
AU2016201541B2 (en) 2017-06-01
AU2017203132A1 (en) 2017-06-01
US9409023B2 (en) 2016-08-09
CA2825550C (en) 2022-07-12
CN107361741A (zh) 2017-11-21
US10737095B2 (en) 2020-08-11
EP2688642A4 (en) 2014-07-23
CN103608069B (zh) 2017-03-29
MX2013010998A (es) 2014-03-27
AU2016201541A1 (en) 2016-03-31
WO2012129574A2 (en) 2012-09-27
JP6060146B2 (ja) 2017-01-11
MX344095B (es) 2016-12-05
EP2688642B1 (en) 2022-05-11
US20150231396A1 (en) 2015-08-20
CN103608069A (zh) 2014-02-26
US20140180361A1 (en) 2014-06-26
EP2688642A2 (en) 2014-01-29
CA2825550A1 (en) 2012-09-27
BR112013024491A2 (pt) 2017-03-21
KR20140013043A (ko) 2014-02-04
JP2016209644A (ja) 2016-12-15
JP6268240B2 (ja) 2018-01-24
US20180229038A1 (en) 2018-08-16
AU2017221868B2 (en) 2019-01-31
AU2012230699A1 (en) 2013-05-23
US9931508B2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
CN107361741B (zh) 神经刺激器装置
US20230158305A1 (en) Monitoring and regulating physiological states and functions via sensory neural inputs to the spinal cord
AU2018205507B2 (en) Dueling bandits algorithm for neuromodulation therapy
US20190308017A1 (en) Transcutaneous neuromodulation system and methods of using same
US10786673B2 (en) Neuromodulation systems and methods of using same
KR20140098780A (ko) 운동, 감각, 자율적, 성적, 혈관운동 및 인식 기능의 복원을 가능하게 하기 위한 비침습성 신경조절 디바이스
US20200376266A1 (en) Non-Invasive Nerve Stimulation to Delay Urination
TW202120141A (zh) 用於標靶及適應性經皮脊髓刺激的方法及系統
EP3495019A1 (en) A system for planning and/or providing neurostimulation for a patient
Prochazka 184 Impaired Motor Function: Functional Electrical Stimulation
Prochazka In: Textbook of Stereotactic and Functional Neurosurgery, edited by Lozano AM, Gildenberg PL, and Tasker RR. Berlin: Springer, 2009, p. 3047-3060.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant