CN1071724C - 陶瓷纤维材料的界面涂层及其工艺方法 - Google Patents

陶瓷纤维材料的界面涂层及其工艺方法 Download PDF

Info

Publication number
CN1071724C
CN1071724C CN95197074A CN95197074A CN1071724C CN 1071724 C CN1071724 C CN 1071724C CN 95197074 A CN95197074 A CN 95197074A CN 95197074 A CN95197074 A CN 95197074A CN 1071724 C CN1071724 C CN 1071724C
Authority
CN
China
Prior art keywords
coating
silicon
weight
interface coating
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN95197074A
Other languages
English (en)
Other versions
CN1171095A (zh
Inventor
A·W·摩尔
M·B·道尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
Advanced Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Ceramics Corp filed Critical Advanced Ceramics Corp
Publication of CN1171095A publication Critical patent/CN1171095A/zh
Application granted granted Critical
Publication of CN1071724C publication Critical patent/CN1071724C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62871Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种用于纤维材料的由含硅氮化硅所组成的改良界面涂层,其一般组成为BSixN1+1.33x,其含2~42%(重)的硅而基本上无游离硅存在。此涂层是采用CVD法形成,即将氨和硼及硅两者的气源构成的反应物蒸汽,按某一控制的流速比流进炉膛对沉积物进行氮化以形成这种复合的涂层。

Description

陶瓷纤维材料的界面涂层及其工艺方法
                       发明领域
本发明涉及一种陶瓷纤维改良界面涂层,更具体地讲,为一种增强陶瓷纤维复合物,和涉及一种制作具有抗高温至1500℃氧化及抗水解性能的陶瓷纤维界面涂层的工艺方法。
                        发明背景
陶瓷纤维由于其高机械强度及耐受化学侵蚀性能,可用于各种各样场合,已倍受关注。如它可用作飞机引擎部件及结构,和燃烧器及辐射燃烧部件等的增强材料。但是要达到在氧化环境下的理想性能,尚需在纤维上复盖一种界面涂层,使之形成一种保持与构成复合物母体不同的表面。换句话说,就是要用纤维增强母体,又不使之在处理过程中扩散进入母体。这种纤维在受力时能使陶瓷纤维复合物具备理想延展性和断裂韧性,而与母体不相关。为保持纤维与母体间之差异,界面涂层还应具有润滑剂类的功能,与母体仅有弱的机械粘结。
高温焦和氮化硼是当今在增强陶瓷纤维复合物中最通用的陶瓷纤维界面涂层。这些涂层在化学上不同于主增强纤维,而且与之反应很少,一般都是由碳化硅、氮化硅、氧化铝和各种硅酸盐所组成,也不同于母体,如玻璃、金属氧化物、碳化硅及氮化硅。高温焦和氮化硼涂敷于纤维时与母体机械结合弱。但是,这两种界面涂层在1000℃温度下易于较快氧化,因而限用于1000℃以下的复合材料。工业上尚无能满意地用于1000℃以上氧化气氛的界面涂层,尽管通常认为陶瓷复合材料属于耐火材料。氮化硼涂层,在氧化气氛中耐受温度高于高温焦,而且也是受到水的侵蚀。
尽管陶瓷纤维及母体在温度1000℃以上的氧化气氛中还能保持其机械性能,但是由于缺乏适宜的界面涂层,能承受同样条件的纤维增强复合材料至今并未开发出来。因此必须有一种能在这些条件运行良好的界面涂层。
                          发明概述
按照本发明,现已发现一种组成为BSixN1+1.33x的含硅的氮化硼涂层,此后称之为PB(Si)N,它可用作增强纤维复合材料形成陶瓷纤维界面涂层。此PB(Si)N界面涂层尤其适用于涂敷主要组成为碳化硅或氮化硅的非氧化物纤维,使之具备良好剥离性能。本发明含硅氮化硼涂层比传统氮化硼界面涂层好,在于它们能耐受高温氧化和耐受室温下潮解。同时,本发明含硅氮化硼涂层能与纤维机械剥离,促进了该复合材料的断裂韧性。按照本发明,构成本发明含硅氮化硼涂层的优选方法是,在控制沉积的条件下通过高温热分解使氮化硼和氧化硅共沉积,形成一种按化学计量表示的一般组合物,即BSixN1+1.33x
本发明界面涂层包括一种含硅氮化硼的玻璃状或无定形结构,其一般组成为BSixN1+1.33x,其含2~42%(重)的硅,和基本上无游离硅存在。
本发明在陶瓷纤维上构成含硅氮化硼涂层的工艺方法步骤包括有:将待涂敷纤维置于反应器燃烧炉膛中;加热炉膛内的气氛使温度均匀达到1300~1750℃;降低炉膛压力至0.1~1.5Torr;向所述炉膛内按一定流速比引入主要由氨和硼与硅的气源所组成的反应物蒸汽对沉积物进行氮化,以在所述纤维材料上形成PB(Si)N涂层复合物,其中含硅2~42%(重),而基本上无游离硅。
                        附图简述
图1表明含硅20%(重)的PB(Si)N涂层,易于与化学蒸汽沉积形成的碳化硅单丝纤维剥离,参照此附图1阅读以下本发明详细说明,本发明之优点会显现得更为清楚。
                         发明详述
本发明界面涂层是用硅与氮化硼共沉积方法来实现的,其条件要使硅氮化至基本上无游离硅存在,形成高温热解的(硅及硼)氮化物界面涂层,其组成为BSixN1+1.33x,此后称为PB(Si)N。在x衍射下此涂层看似玻璃或无定形,和硅与硼均匀分布遍及在沉积物中。此界面涂层抗氧化及抗水解性能均比传统氮化硼涂层为好,而且与非氧化物碳化硅或氮化硅纤维的底物剥离好。术语“氮化硅纤维”包括任何延续纤维(即是其使用长度对其直径之比在1000以上者)而且是由至少50%体积的硅和碳所组成。这些包括而又未加限制的纤维有:Textron特种材料公司的化学蒸汽沉积方法制成的SCS-单丝系列,其中SiC及其它沉积物是在碳或钨丝芯核上形成的;日本碳公司的“Nicalon”及“Hi-Nicalon”多丝纱,是由含某些游离碳、氧化硅及碳氧化硅相聚合物前体经高温热解而制得的;Ube Industries公司的“Tyranno Fiber”多丝纱系列,内含钛及氮添加物改善其热稳定性;以及CarborundumCompany的SiC多丝纱,其中掺有硼。本领域的技术人员是易于认可术语“碳化硅纤维”是可以包括其它陶瓷相的。
传统的化学蒸汽沉积法可用于沉积本发明的界面涂层,采用典型的气源及沉积条件,分别地沉积氮化硼及氮化硅,例如可按此技术领域已知方法,在1450~2300℃间的反应温度下热分解三氯化硼及氨,可单独地在自立式结构上形成高温热解氮化硼。按照本发明,高温热解氮化硼也是可以与硅一起共沉积的,要控制气体流率和沉积温度条件,使之形成基本上元游离硅存在的共沉积界面涂层复合物PB(Si)N。本发明界面涂层并未呈现明显的x衍射峰,可认为是具有玻璃或无定形结构。硅是均匀分布遍及于沉积物中的。有效界面涂层含硅量范围在5%~42%(重)之间。涂层厚度要求要比无涂层纤维直径小,以使涂层相在最终复合物中体积减至最小,同时又要防止在纺织处理操作中纤维丝氧化、水解及损坏。因此,例如陶瓷纤维纱单丝的涂层厚度,在单丝直径8~15μ时,要求在0.1~0.8μ,更优选的在0.3μ~0.6μ,但是在陶瓷单丝厚≈150μ时,可接受涂层厚度1μ至12μ,而更优选为4~9μ。
为使纱丝涂层连续,界面涂层在反应器炉膛压力0.1~1.5Torr下进行沉积,优选炉膛压力0.1~0.3Torr。优选沉积温度范围在1300~1750℃,涂敷纱束优选在1300~1450℃温度范围。如所周知,涂层可间歇分批涂敷,或按移动纱阵涂敷,如A.W.Moore在Mars.Res.Soc.Symp.Proc.,250,269(1992)中所述。间歇分批CVD加工法是用于涂敷细纱及无限长单丝的。
尽管对硼及硅的气源并无苛求,但优选的气源是三氯化硼(BCl3)、三氯硅烷(HSiCl3)及氨(NH3)。不太理想的硼源包括三氟化硼或二硼烷;不大理想的硅源包括二氯硅烷及四氯化硅。涂层通常都是在除氨过剩外没有稀释剂条件下沉积的,但是氩或氮可用作稀释剂。氢亦可用作稀释剂,为了氮化沉积物,要求NH3/(BCl3+HSiCl3)之比率在1.3~3.0范围,更优选在1.5~2.5范围,该比率表示气体流速比。使用这些气体时无论有无稀释剂,都要达到界面涂层理想组成范围,如果以进口气体摩尔分数计,其范围为0.05~0.2,如果按气体流速比计为0.2<(BCl3)/(BCl3+HSiCl3)<0.5.
按照本发明所得到的界面涂层含有以配比BSixN1+1.33x与硼和氮化物结合的硅,在涂层中基本无游离硅存在。硅含量可在2~42%(重)范围变化,优选硅含量在5%(重)以上,并以某给定温度下氧化重量损失速率为基准。
下表1中,比较了PBN和PB(Si)N涂层氧化重量损失。涂层曝露于1200℃下纯氧气流中12小时,纯PBN涂层重量损失率≈4.3mg/cm2·hr;含5%(重)硅的PB(Si)N涂层重量损失率≈0.14mg/cm2·hr,而含42%(重)硅的PB(Si)N涂层重量损失率<0.003mg/cm2·hr。因此,氧化重量损失速率随涂层中硅掺入量增加按30至1.430倍数递减,从而延长了给定温度下使用寿命。
                             表1PBN和PB(Si)N氢化重量损失
样品 硅%(重量) 1200℃下氧中12小时重量损失率mg/cm2·hr 510℃空气中12小时重量损失率mg/cm2·hr
     8926     0     1.460       -
    9409-2     0     4.600       -
       1     0       -     36.00
    9409-1     0     4.000       -
       2     2       -     6.00
     8924     5     0.140       -
       3     15       -     2.00
     8933     16     0.007       -
       4     18       -     0.40
     A293     23     0.054       -
       6     26       -     0.03
     9001     33     0.044       -
    9412-2     36     0.064       -
    9412-1     36     0.057       -
    9413-1     42     0.003       -
由于界面涂层厚度小于1μ,表1表明,纯BN涂层曝露于1200℃氧气中7分钟,而在1510℃的空气中甚至不到1分钟,就完全地被消耗掉了。或者,如果将一组复合材料纤维的端头尖部置于同样环境中,PBN界面涂层在1200℃氧气中消退速率为1cm/hr,于1510℃的空气中消退速率20cm/hr。因此,在这样的环境中它们不宜长久使用。但是,对于含硅5%(重)的PB(Si)N涂层在1200℃下重量损失就小得非常多,含硅18%(重)的涂层甚至在1510℃的温度下其重量损失也同样地小,纤维涂层曝露时间持续达数小时之久,曝露的涂层端头消退速率也远低于1cm/hr。按照这样的观点,最优选的组成范围是含硅15~40%(重)。
本发明PB(Si)N界面涂层耐潮也比传统的PBN涂层好,PBN可水解形成硼酸盐,其反应式为:
这种水解反应是不希望有的,原因有二,一,它消耗界面涂层,界面层通常厚约0.5μ,而且还必须与陶瓷纤维相比要薄很多,这样一来它就起不到纤维与母体间的界面作用。在界面层消耗尽时,复合材料就失去了它的断裂韧性和功能,以致完全损坏。第二,它引入了硼酸盐,在高温下硼酸盐能与氧化母体或纤维发生反应,从而改变了它们的结构性能。表2比较了三种研磨成粉的界面涂层沉积物,曝露于室温及相对湿度95%环境中120小时,和于150℃干燥氮气流下干燥4小时后的增重情况。这样,对于在1080℃下沉积的纯PBN,初期含氧14%(重),由于水解增重9%;在1400℃下沉积的纯PBN,初期含氧0.56%(重),由于水解增重3.2%(重);对于在1400℃下沉积的PB(Si)N,含硅36%(重)时,初期含氧仅0.35%(重),水解增重仅0.3%。因此,在实际应用中增强纤维陶瓷复合材料都要处于水分及炽热氧化气氛中,诸如在燃烧器、辐射燃烧筒及透平等部件的场合,PB(Si)N界面涂层明显较低的氧含量及水解速率表明,PB(Si)N涂层确实是一种比纯BN界面涂层更好的选择。
以碳化硅为母体涂敷PB(Si)N的碳化硅纤维,其界面剪切强度为20MPa~30Mpa,与纯PBN涂层可比,且要偏低一些。此数值范围说明它具有良好的剥离性能。界面扫描电镜显微图,见图1,清楚表明,含硅≈20%(重)的PB(Si)N涂层易于与化学蒸汽沉积构成的碳化硅单丝纤维剥离(Textron特种材料,SCS-0纤维)。
本发明涂层的理想剥离性能是由于涂层与纤维间热膨胀差异大所造成的。1500℃温度下SiC(本工作大部分所用的纤维底物)、PB(Si)N、及PBN的膨胀率分别为0.72%、0.25%至0.35%、及0.25%。由于热膨胀率差超过0.20%,热变形能够克服涂层与底物间的较弱相互吸引。事实上,这些涂层经常会从碳化硅抛光平板上和从直径约1英寸的SiC管上剥离下来,完整的涂层只能在直径150μ或再低一些的纤维上得到。对于一般用于多丝纱或纤维束的涂层,涂敷在直径25μ或更低的纤维上时,涂层内不同的热收缩也有助于剥离。PBN及PB(Si)N,有时有些质地不匀,在从沉积温度下冷却下来时,径向与周向膨胀差异会使涂层内产生内应力。在纤维涂层厚度对纤维半径之比接近0.04时,则在涂层内或涂层-纤维界面处会出现片状裂隙。[见L.F.Coffin,Jr.,美国陶瓷学会会志,47,473(1964)],于是在涂层界面处纤维与母体剥离。对于直径15μ的纤维,如日本碳公司的“Nicalon”或“Hi-Nicalon”,其厚度超过大约0.3μ,界面涂层本身具有的就是弱界面。一般较厚的涂层对于保护纤维在陶瓷加工过程中免受损坏是优选的。
氧化及水解结果列于下表:
                           表2PBN及PB(Si)N组合物的水解
    样品   沉积温度 硅%(重)   氧%(重) 加湿及干燥后增重%(重)
      A     1080     0     14.0     9.0
    9409     1400     0     0.56     3.2
    9412     1400     36     0.36     0.3
下列表3及表4分别说明工艺条件及1200℃下氧气中氧化失重率,和不同硅浓度下Hi-Nicalon纱陶瓷纤维的连续涂层性质。
                               表3
            PBN及PB(Si)N涂层工艺条件及氧化重量损失
                        1200℃下氧气中重量损失样品  硅   温度   P     BCl     NH    HSiCl  稀释剂  稀释剂重量损失速%(重)  ℃   Torr   流量    流量   流量   流量    率mg/cm2·hrl/min  l/min  l/min   l/min表4Hi-Nicalon纱连续涂层试验  硅% 温度   P    BCl流   NH流量   HSiCl    Ar流量    涂层厚度μm编号  (重)  ℃   Torr   量     l/min     流量    l/minl/min             l/min9435A   0   1400 0.22   0.45    1.4      0.00     1.2       0.5-0.7
下述实施例说明本发明:
1.对1000℃温度以下BN及PB(Si)N涂层抗氧化及耐水解性能进行比较。PBN样品A不含硅,于1080℃及0.25Torr压力下用含BCl3(0.5l/min)及NH3(1.5l/min)的气体混合物5.51体积进行沉积。第二样品PBN9409不含硅,在1400℃及0.25Torr压力下用含BCl3(0.52l/min),NH3(1.48l/min)及Ar(4l/min)的气体混合物体积5.51进行沉积。接着是PB(Si)N样品9412,含硅36%(重),是在1400℃及0.115Torr压力下用含BCl3(0.44l/min)、NH3(1.51l/min)及HSiCl3(0.35l/min)气体混合物进行沉积的。氧化及水解结果列于表2中。PBN样品A,在1080℃下沉积,水解前含氧14%(重),在加湿及干燥后另增重9%(重)。PBN样品9409,于1400℃下沉积,水解前含氧0.56%(重),经加湿及干燥后另增重3.2%(重)。PB(Si)N样品9412,含硅36%(重),水解前含氧0.36%(重)经加湿及干燥后,另增重0.3%(重),因此,在同样沉积温度下,与纯PBN相比,硅的共沉积降低了涂层的吸氧量,并大大减轻了由于水解所致的增重量。
2.BN及PB(Si)N涂层在1200℃纯氧气中耐受重量损失性能是用整块样品重量损失及易于确定的面积进行比较的。过程条件及结果列于表3.PBN样品9409重量损失平均速率4.3mg/cm2·hr.PB(Si)N样品8924,含硅5%(重),损失速率0.14mg/cm2·hr.PB(Si)N样品9412,含硅35%(重),损失速率0.061mg/cm2·hr.和样品9413含硅42%(重),损失速率0.003mg/cm2·hr.因此只要用5%(重)的硅,热氧化速率就急剧下降,而且在组成中硅含量达42%(重)之前持续下降。
3.碳化硅单丝,公称直径140μ(Textron特种材料公司,SCS-0级),于1400℃下,以流速0.51BCl3/min,1.51NH3/min涂布PBN或PB(Si)N持续2.5分钟时间。纯PBN样品9436在反应器炉膛特定位置上于0.1Torr压力下涂敷厚度为0.7μ。此试验纯PBN涂层表现有良好纤维剥离性。PB(Si)N样品9437是在另外加0.221HSiCl3/min,提高压力至0.14Torr,其它条件均相同下,沉积同样时间2.5分钟而制得的。预计涂层组成按气相中HSiCl3摩尔分数计为5%(重)。炉内同样位置的涂层厚度为0.9μ。炉内四个不同位置涂敷丝的涂层厚度和SiC底物上涂层的剥离示于图1中。另一组SiC丝是在1400℃,0.15Torr压力下用0.351 BCl3/min,1.51NH3/min及0.421HSiCl3/min的流速条件下涂敷3分钟。按气相中HSiCl3摩尔分数计,预计涂层组成为41%(重)的硅。在炉内同一位置上的涂层厚度达3.7~4.3μ,涂层具有良好剥离性能。这些试验表明,SiC单丝是能够以大致相同的沉积速度,如与PBN涂层沉积相当的条件下用PB(Si)N涂层进行涂敷的,而且还表现有适宜的剥离性能。用外推纤维方法测定界面剪切强度结果表明,含硅5~40%(重)的PB(Si)N涂层室温剪切强度为10~20MPa,而纯PBN涂层剪切强度为10~30MPa。这些低的剪切强度说明剥离性良好,此范围数值被认为对两组均同样适于所有使用场合。
4.陶瓷多丝纱可以用PB(Si)N界面涂层加以涂敷,其方法与纯PBN涂敷十分相同。因此在试验(435,“Hi-Nicalon”,一种由日本碳公司生产的1800支(denier),500丝碳化硅细纱,连续不断地以2.75feet/min的细纱速度穿过1400℃ CVD炉,使涂层沉积物停留时间达66秒。按表4所列数据调节气体流量,由此产出90英尺细纱段,其涂层的标称硅含量为0%(重)(9435A)、20%(重)(9435B)及40%(重)(9435C)。涂层厚度范围在0.4~0.7μ间,在此范围内涂层厚度被行家们认为是最适用于各种场合的。
5.陶瓷细纱及单丝可以涂敷含多层界面的涂层。因而在试验9434中,用同样的间歇CVD方法涂敷了几种长度的Textron单丝SCS-0、几种长度的Nippon Carbon“Hi-Nicalon”纱,先用PBN在1400℃下涂敷6分钟,再按进口气中HSiCl3摩尔分数计,大约含硅30%(重)的PB(Si)N进行涂敷,整个试验中炉膛压力0.17Torr,BCl3流速0.5l/min,NH3流速1.5l/min。生产PB(Si)N涂层时三氯硅烷供给流速为0.29l/min。总涂层厚度在SCS-0单丝上范围3.3μ~8.1μ,在单支“Hi-Nicalon”纱丝上为2.4~3.6μ。涂敷后SCS-0单丝扫描电镜图片表明,PBN涂层易于与SCS-0底物剥离;PB(Si)N外涂层与PBN易于剥离。PB(Si)N外涂层大约为PBN涂层厚度2.5倍。这种结果表明,多层涂层是可以沉积的,并可达到理想的剥离特性;PBN层上可以外涂敷PB(Si)N涂层以防止PBN层水解及氧化。

Claims (10)

1.一种陶瓷纤维材料的界面涂层,包括一种玻璃状或无定形结构的含硅氮化硼,其组成为BSixN1+1.33x并含2~42%(重)的硅而基本上无游离硅存在。
2.按照权利要求1的界面涂层,其中所述的纤维材料是一种选自含碳化硅和氮化硅的非氧化物纤维或陶瓷单丝。
3.按照权利要求2的界面涂层,其中涂层组合物中含硅量在5-42%(重)。
4.按照权利要求3的界面涂层,其中的硅含量在15~40%(重)之间,界面涂层厚度在1μ以下。
5.一种在陶瓷纤维材料上形成界面涂层的工艺方法,包括的步骤有:将待涂敷的纤维材料置於反应器炉膛内;加热炉膛内的气氛至温度均匀在1300~1750℃范围;降低炉膛内压力至0.1~1.5Torr;往所述炉膛内按流速比引入主要由氨和硼与硅两者气源所组成的反应物蒸汽对沉积物进行氮化,形成一种在所述纤维材料上的BSixN1+1.33x涂层复合物,其含硅2~42%(重)而基本上无游离硅存在。
6.按照权利要求5的工艺方法,其中所述的硼源为三氯化硼和所述的硅源为三氯硅烷。
7.按照权利要求6的工艺方法,其中所述反应物气体是直接引入所述的炉膛内,其流速按下述气体比例:
NH3/BCl3+HSiCl3=1.3~3.0。
8.按照权利要求7的工艺方法,其中所述的气体流速比范围在1.5~2.5之间。
9.按照权利要求6的工艺方法,其中进口气体中三氯硅烷摩尔分数范围在0.05~0.2间。
10.按照权利要求9的工艺方法,其中进口气体流速比为0.2<(BCl3)/(BCl3+HSiCl3)<0.5。
CN95197074A 1994-11-01 1995-10-24 陶瓷纤维材料的界面涂层及其工艺方法 Expired - Fee Related CN1071724C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/332,924 1994-11-01
US08/332,924 US5593728A (en) 1994-11-01 1994-11-01 Interface coating for ceramic fibers

Publications (2)

Publication Number Publication Date
CN1171095A CN1171095A (zh) 1998-01-21
CN1071724C true CN1071724C (zh) 2001-09-26

Family

ID=23300466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95197074A Expired - Fee Related CN1071724C (zh) 1994-11-01 1995-10-24 陶瓷纤维材料的界面涂层及其工艺方法

Country Status (7)

Country Link
US (1) US5593728A (zh)
EP (1) EP0828697B1 (zh)
JP (1) JP3849803B2 (zh)
CN (1) CN1071724C (zh)
DE (1) DE69515703T2 (zh)
RU (1) RU2171794C2 (zh)
WO (1) WO1996013472A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228453B1 (en) * 1995-06-07 2001-05-08 Lanxide Technology Company, Lp Composite materials comprising two jonal functions and methods for making the same
DE19635848C1 (de) * 1996-09-04 1997-04-24 Daimler Benz Ag Verfahren zur Beschichtung von Substraten
DE59703176D1 (de) * 1996-11-11 2001-04-26 Bayer Ag Silizium-, Bor- und Stickstoff-enthaltende amorphe Fasern, Verfahren zu deren Herstellung und deren Verwendung sowie Komposite, enthaltend diese Fasern und deren Herstellung
FR2756277B1 (fr) * 1996-11-28 1999-04-02 Europ Propulsion Materiau composite a matrice ceramique et renfort en fibres sic et procede pour sa fabrication
US6056907A (en) * 1997-03-31 2000-05-02 The United States Of America As Represented By The Secretary Of The Navy In situ-formed debond layer for fibers
US5952100A (en) * 1997-05-21 1999-09-14 General Electric Company Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
US6743393B1 (en) * 1998-06-17 2004-06-01 Coi Ceramics, Inc. Method for producing ceramic matrix composites
US6350713B1 (en) * 1998-11-24 2002-02-26 Dow Corning Corporation Ceramic matrix composites
EP1059274B1 (en) * 1999-06-07 2005-12-28 General Electric Company Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
US7223465B2 (en) * 2004-12-29 2007-05-29 General Electric Company SiC/SiC composites incorporating uncoated fibers to improve interlaminar strength
US7597838B2 (en) * 2004-12-30 2009-10-06 General Electric Company Functionally gradient SiC/SiC ceramic matrix composites with tailored properties for turbine engine applications
US20070099527A1 (en) * 2005-11-01 2007-05-03 General Electric Company Method and reactor to coat fiber tows and article
DE102006013505B3 (de) * 2006-03-23 2007-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit SiBN beschichtete Substrate und Verfahren zu deren Herstellung sowie deren Verwendung
CN103096529B (zh) * 2010-12-09 2016-04-06 江苏金盛陶瓷科技有限公司 具有较高可靠性和安全性的氮化硅发热体的制作方法
CN102634868B (zh) * 2012-05-04 2013-09-11 中国人民解放军国防科学技术大学 一种具有氮化硼结构表层的碳化硅纤维的制备方法
US9446989B2 (en) 2012-12-28 2016-09-20 United Technologies Corporation Carbon fiber-reinforced article and method therefor
EP2970024B1 (en) * 2013-03-15 2019-10-16 Rolls-Royce Corporation Method for producing high strength ceramic matrix composites
CN103922779B (zh) * 2014-04-10 2015-07-01 中国人民解放军国防科学技术大学 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法
US10745803B2 (en) 2017-06-15 2020-08-18 Rolls-Royce High Temperature Composites Inc. Method of forming a moisture-tolerant coating on a silicon carbide fiber
CN110202688A (zh) * 2019-06-24 2019-09-06 华侨大学 一种sls-fdm复合制备陶瓷基复合材料的方法及装置
CN111217616B (zh) * 2020-02-17 2022-07-05 西北工业大学 一种近零膨胀特性的C/SiC结构材料的制备方法
US20220055955A1 (en) * 2020-08-19 2022-02-24 Rolls-Royce High Temperature Composites Inc. Method of making a ceramic matrix composite that exhibits moisture and environmental resistance
CN115849955B (zh) * 2023-01-09 2023-08-01 中国人民解放军国防科技大学 一种含BNC原位涂层的连续SiBCN陶瓷纤维及其制备方法、应用
CN116199519B (zh) * 2023-01-17 2023-12-29 中国科学院上海硅酸盐研究所 一种双bn界面层纤维增强陶瓷基复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944904A (en) * 1987-06-25 1990-07-31 General Electric Company Method of obtaining a fiber-containing composite
US5336350A (en) * 1989-10-31 1994-08-09 General Electric Company Process for making composite containing fibrous material
US5354602A (en) * 1991-02-12 1994-10-11 Allied-Signal Inc. Reinforced silicon carboxide composite with boron nitride coated ceramic fibers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152006A (en) * 1961-06-29 1964-10-06 High Temperature Materials Inc Boron nitride coating and a process of producing the same
US3676343A (en) * 1969-03-10 1972-07-11 Du Pont Amorphous boron-silicon-nitride materials
US4642271A (en) * 1985-02-11 1987-02-10 The United States Of America As Represented By The Secretary Of The Navy BN coating of ceramic fibers for ceramic fiber composites
JPS6283306A (ja) * 1985-10-04 1987-04-16 Res Dev Corp Of Japan 透明なbn系セラミックス材料
US5032551A (en) * 1988-03-05 1991-07-16 Toa Nenryo Kogyo Kabushiki Kaisha Silicon nitride based ceramic fibers, process of preparing same and composite material containing same
JPH0297417A (ja) * 1988-09-30 1990-04-10 Shin Etsu Chem Co Ltd けい素原子含有結晶性窒化ほう素複合膜の製造方法
DE69116847T2 (de) * 1990-08-08 1996-07-04 Advanced Ceramics Corp Verfahren zum herstellen von rissfreiem pyrolytischem bornitrid auf einer kohlenstoffstruktur sowie formkörper
US5324690A (en) * 1993-02-01 1994-06-28 Motorola Inc. Semiconductor device having a ternary boron nitride film and a method for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944904A (en) * 1987-06-25 1990-07-31 General Electric Company Method of obtaining a fiber-containing composite
US5336350A (en) * 1989-10-31 1994-08-09 General Electric Company Process for making composite containing fibrous material
US5354602A (en) * 1991-02-12 1994-10-11 Allied-Signal Inc. Reinforced silicon carboxide composite with boron nitride coated ceramic fibers

Also Published As

Publication number Publication date
EP0828697A1 (en) 1998-03-18
CN1171095A (zh) 1998-01-21
WO1996013472A1 (en) 1996-05-09
DE69515703D1 (de) 2000-04-20
JPH10508347A (ja) 1998-08-18
JP3849803B2 (ja) 2006-11-22
EP0828697B1 (en) 2000-03-15
DE69515703T2 (de) 2000-11-02
RU2171794C2 (ru) 2001-08-10
US5593728A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
CN1071724C (zh) 陶瓷纤维材料的界面涂层及其工艺方法
US4472476A (en) Composite silicon carbide/silicon nitride coatings for carbon-carbon materials
US6630200B2 (en) Method of making a ceramic with preferential oxygen reactive layer
US5051300A (en) Composite material with carbon reinforcing fibers and its production process
JP6865554B2 (ja) 高温性能に優れた物品
US4487799A (en) Pyrolytic graphite pretreatment for carbon-carbon composites
WO1996013472A9 (en) Improved interface coating for ceramic fibers
US8986845B2 (en) Ceramic composite article having laminar ceramic matrix
CN109400168B (zh) 一种包含交替形成的SiBCN涂层和SiC涂层的SiC纤维及其制备方法和应用
US4610896A (en) Method for repairing a multilayer coating on a carbon-carbon composite
US5516596A (en) Method of forming a composite, article and composition
EP0424036A2 (en) B-N-Cx hybrid coatings for inorganic fiber reinforcement materials
CN104611916A (zh) 外表沉积SiBCN涂层的碳纤维及其制备方法
CN114105662A (zh) 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
GB2236540A (en) Boron nitride coated fibres
GB2164955A (en) Dispersion toughened ceramic composites and method for making same
CN1304638C (zh) 制备核反应堆用石墨表面抗氧化涂层材料碳化硅的方法
CN114309583B (zh) 一种梯度莫来石搭接的梯度陶瓷涂层及其制备方法
GB2161151A (en) Composite SiC/Si3N4 coating for carbon-carbon materials
JPH1045480A (ja) 繊維強化複合材用無機質繊維を被覆するためのコーティング並びにこれを含む無機質繊維及び繊維強化複合材
JPS60209017A (ja) セラミツク被覆されたグラフアイトフアイバおよびその製造方法
JPH08504738A (ja) 炭化ホウ素コーティング
JPH11314985A (ja) 耐熱・耐酸化性炭素繊維強化炭素材料
JP2000507647A (ja) 熱分解SiBNコーティングの形成方法
CN107141006B (zh) 一种利用静电自组装技术提高碳陶刹车盘防氧化性的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1044820

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: GENERAL ELECTRIC CO.

Free format text: FORMER OWNER: ADVANCED CERAMICS CORP.

Effective date: 20061222

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20061222

Address after: American New York

Patentee after: General Electric Company

Address before: ohio

Patentee before: Advanced Ceramics Corp.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010926

Termination date: 20131024