CN116199519B - 一种双bn界面层纤维增强陶瓷基复合材料及其制备方法 - Google Patents

一种双bn界面层纤维增强陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
CN116199519B
CN116199519B CN202310057159.6A CN202310057159A CN116199519B CN 116199519 B CN116199519 B CN 116199519B CN 202310057159 A CN202310057159 A CN 202310057159A CN 116199519 B CN116199519 B CN 116199519B
Authority
CN
China
Prior art keywords
interface layer
ceramic matrix
chemical vapor
temperature
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310057159.6A
Other languages
English (en)
Other versions
CN116199519A (zh
Inventor
董绍明
张赟慧
胡建宝
张翔宇
丁玉生
杨金山
阚艳梅
廖春景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202310057159.6A priority Critical patent/CN116199519B/zh
Publication of CN116199519A publication Critical patent/CN116199519A/zh
Application granted granted Critical
Publication of CN116199519B publication Critical patent/CN116199519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种双BN界面层纤维增强陶瓷基复合材料及其制备方法。所述制备方法包括:采用低温或者高温化学气相沉积工艺在纤维预制体表面沉积第一层BN界面层并在沉积结束后对纤维预制体进行第一次热处理,或者仅采用高温化学气相沉积工艺在预先制备好的纤维预制体表面沉积第一层BN界面层,得到沉积第一层BN界面层的纤维预制体;采用化学气相沉积工艺在所述沉积第一层BN界面层的纤维预制体表面连续依次沉积第二层BN界面层和陶瓷基体,得到沉积双BN界面层和陶瓷基体的纤维预制体;对所述沉积双BN界面层和陶瓷基体的纤维预制体进行第二次热处理;致密化,得到所述双BN界面层纤维增强陶瓷基复合材料。

Description

一种双BN界面层纤维增强陶瓷基复合材料及其制备方法
技术领域
本发明属于陶瓷基复合材料制备领域,具体涉及一种双BN界面层纤维增强陶瓷基复合材料及其制备方法。
背景技术
高性能航空发动机对高推力、高推重比要求的同时,减少NOx和CO等排放的环保指标也越来越苛刻,导致发动机的增压比、燃烧室温度、涡轮温度等不断提升。纤维增强陶瓷基复合材料具有耐高温、密度低、高比强度、抗氧化、耐烧蚀、高可靠性等优点,是下一代航空发动机热端部件的理想材料。在航空航天领域的实际应用中,基于SiC/SiC陶瓷基复合材料耐高温抗氧化的应用需求,除了纤维的编织形式、基体的自愈合改性、环境障碍涂层的改进等方面,抗氧化界面相的设计一直是该材料的研究热点。
在连续纤维增强陶瓷基复合材料中,界面相具有调节基体与增强体的物理化学相容性、传递载荷、弥补纤维表面缺陷、减缓纤维被氧化侵蚀等多重作用。较理想的界面相需要具有平行于纤维表面的层状晶体结构,层与层之间弱结合且界面相与纤维之间强结合。研究发现,当纤维和界面之间具有较强结合时,纤维增强陶瓷基复合材料的力学性能会有较大改善,而且从基体中扩展进来的裂纹也会在界面相层内扩展(Droillard,C.andLamon,J.,Fracture Toughness of2-D Woven SiC/SiC CVI-Composites withMultilayered Interphases.JAm Ceram Soc,1996,79:849-858.)。
BN界面相与PyC界面相比,有着相似的层状晶体结构和偏转裂纹功能且抗氧化性能高于PyC。因此,BN是研究较多的SiC/SiC陶瓷基复合材料的界面相材料。SiC/SiC陶瓷基复合材料界面处的裂纹偏转容易发生在纤维和界面之间,外界氧化性介质会沿着微裂纹进入到纤维和界面相之间,使纤维和界面相氧化,材料产生脆性断裂,材料的使用寿命急剧下降。因此,需采取一种可以延缓裂纹直接偏转进入纤维和界面相之间的措施,保护纤维不被轻易氧化。
发明内容
针对上述问题,本发明旨在提供一种双BN界面层纤维增强陶瓷基复合材料及其制备方法,通过制备双层BN界面层,结合BN/BN界面相的热处理制度,使纤维增强陶瓷基复合材料断裂时的界面脱粘和裂纹偏转更倾向于发生在双层BN界面相之间的界面处,从而达到在界面相层内发生裂纹偏转、保护纤维的目的。
第一方面,本发明提供了一种双BN界面层纤维增强陶瓷基复合材料的制备方法,包括:
采用低温或者高温化学气相沉积工艺在纤维预制体表面沉积第一层BN界面层并在沉积结束后对纤维预制体进行第一次热处理,或者仅采用高温化学气相沉积工艺在预先制备好的纤维预制体表面沉积第一层BN界面层,得到沉积第一层BN界面层的纤维预制体;
采用化学气相沉积工艺在所述沉积第一层BN界面层的纤维预制体表面连续依次沉积第二层BN界面层和陶瓷基体,得到沉积双BN界面层和陶瓷基体的纤维预制体;
对所述沉积双BN界面层和陶瓷基体的纤维预制体进行第二次热处理;
致密化,得到所述双BN界面层纤维增强陶瓷基复合材料。
较佳地,所述纤维为碳化硅纤维,所述陶瓷基体为SiC陶瓷相。
较佳地,所述低温化学气相沉积与所述高温化学气相沉积第一层BN界面层的工艺参数为:B源为BCl3,N源为NH3,稀释气体为H2;NH3:BCl3的流量比控制为(1.5~10):1,H2:BCl3的流量比控制为(3~10):1;
所述低温化学气相沉积工艺的沉积温度为600~1100℃,沉积时间为1-10h,沉积压强为0.1-5kPa;
所述高温化学气相沉积工艺的沉积温度为1300~1600℃,沉积时间为0.5-2h,沉积压强为0.1-1kPa。
较佳地,所述第一次热处理的温度为1300~1600℃,热处理时间为0.5~5小时,保护气氛为氮气或氩气气氛,气压为常压或1-5atm的高压环境。
较佳地,第二层BN界面层与陶瓷基体沉积的方式为低温化学气相沉积工艺;
所述低温化学气相沉积第二层BN界面层的工艺的参数为:B源为BCl3,N源为NH3,稀释气体为H2;NH3:BCl3的流量比控制为(1.5~10):1,H2:BCl3的流量比控制为(3~10):1;沉积温度为600-1100℃,沉积时间为0.5-10h,沉积压强为0.1-5kPa;
所述低温化学气相沉积陶瓷基体的工艺参数为:三氯甲基硅烷MTS为有机前驱体,H2为载气和反应气体;H2:MTS的流量比控制为(3~10):1;沉积温度为1000-1200℃,沉积时间为0.5-5h,沉积压强为1-10kPa。
较佳地,所述第一层BN界面层的厚度为100-500nm,所述第二层BN界面层的厚度为100-1000nm。
较佳地,所述第二次热处理的温度为1300-1600℃,热处理时间为0.5-5h,气氛为氮气或氩气气氛。
较佳地,所述致密化工艺选自前驱体浸渍热解工艺、化学气相沉积工艺或者液相Si熔渗工艺中的至少一种。
第二方面,本发明提供了一种根据上述制备方法得到的双BN界面层纤维增强陶瓷基复合材料。
较佳地,所述双BN界面层纤维增强陶瓷基复合材料的抗弯强度为500-800MPa。
有益效果
本发明公开的技术方案改变了纤维增强陶瓷基复合材料界面间脱粘的调控方式,通过制备双BN界面层,结合BN/BN界面相的热处理制度,使复合材料断裂时的界面脱粘和裂纹偏转更倾向于发生在双层BN界面相之间的界面处,达到在界面相层内发生裂纹偏转、保护纤维的目的。
附图说明
图1为实施例1制备得到的陶瓷基复合材料的断面形貌图;
图2为实施例2制备得到的陶瓷基复合材料的断面形貌图;
图3为对比例1制备的陶瓷基复合材料的断面形貌图。
具体实施方式
通过实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明通过制备双层BN界面层,结合BN/BN界面相的热处理制度,使纤维增强陶瓷基复合材料断裂时的界面脱粘和裂纹偏转更倾向于发生在双层BN界面相之间的界面处,从而达到在界面相层内发生裂纹偏转、保护纤维的目的。
以下示例性说明本发明提供的双BN界面层纤维增强陶瓷基复合材料的制备方法,所述制备方法可以包括以下步骤。
(1)第一层BN界面层沉积。采用低温或者高温化学气相沉积工艺在预先制备好的纤维预制体表面沉积第一层BN界面层并在沉积结束后对纤维预制体进行第一次热处理,或者仅采用高温化学气相沉积工艺在预先制备好的纤维预制体表面沉积第一层BN界面层,得到沉积第一层BN界面层的纤维预制体。
在一些实施方式中,所述纤维可以为碳化硅纤维;优选地,所述碳化硅纤维为国产二代或三代连续碳化硅纤维;所述国产二代连续碳化硅纤维的氧含量<1.2%,C/Si比<1.5;所述国产三代连续碳化硅纤维的氧含量<1%,C/Si比为1~1.1。所述纤维预制体可以采用本领域常规的纤维编织方式。
所述低温化学气相沉积与所述高温化学气相沉积第一层BN界面层的工艺参数可以为:B源为BCl3,N源为NH3,稀释气体为H2;NH3:BCl3的流量比可以控制为(1.5~10):1,H2:BCl3的流量比可以控制为(3~10):1。
可选的实施方式中,所述低温化学气相沉积工艺的沉积温度为600~1100℃,沉积时间为1-10h,沉积压强为0.1-5kPa。
可选的实施方式中,所述高温化学气相沉积工艺的沉积温度为1300~1600℃,沉积时间为0.5-2h,沉积压强为0.1-1kPa。
所述第一次热处理的温度可以为1300~1600℃,热处理的时间可以为0.5~5小时;保护气氛可以为氮气或氩气气氛,气压可以为常压或1-5atm的高压环境。
在一些实施方式中,可以控制所述第一层BN界面层的厚度为100-500nm。
(2)第二层BN界面层与陶瓷基体沉积。采用化学气相沉积工艺在步骤(1)制备得到的沉积第一层BN界面层的纤维预制体表面连续依次沉积第二层BN界面层和陶瓷基体,得到沉积双BN界面层和陶瓷基体的纤维预制体。
在一些实施方式中,第二层BN界面层与陶瓷基体沉积的方式选择所述低温化学气相沉积工艺。通过低温化学气相沉积的BN为无定型结构,在后续高温处理时会发生结晶转变及体积收缩,引起双层BN界面相间的弱结合。如果第二层BN界面层选择高温沉积,会导致第二层BN界面层具有较为稳定的结构,双层BN界面相间无法形成弱结合,界面脱粘时裂纹无法在界面相间有效偏转。
其中,所述低温化学气相沉积第二层BN界面层的工艺的参数可以为:B源为BCl3,N源为NH3,稀释气体为H2;NH3:BCl3的流量比可以控制为(1.5~10):1,H2:BCl3的流量比可以控制为(3~10):1;沉积温度为600-1100℃,沉积时间为0.5-10h,沉积压强为0.1-5kPa。
在一些实施方式中,所述陶瓷基体可以为SiC陶瓷相。所述低温化学气相沉积陶瓷基体的工艺参数可以为:三氯甲基硅烷MTS为有机前驱体,H2为载气和反应气体;H2:MTS的流量比可以控制为(3~10):1;沉积温度为1000-1200℃,沉积时间为0.5-5h,沉积压强为1-10kPa。
在一些实施方式中,可以控制所述第二层BN界面层的厚度为100-1000nm;陶瓷基体层厚度大于100nm。
(3)第二次热处理。对步骤(2)中制备得到的沉积双BN界面层和陶瓷基体的纤维预制体进行第二次热处理。通过进行第二次热处理,能够使低温化学气相沉积的无定型结构BN发生结晶转变及体积收缩,进而使双层BN界面相间成相对弱结合状态。
可选的实施方式中,所述第二次热处理的温度可以为1300-1600℃,热处理时间为0.5-5h,气氛可以为氮气或氩气气氛;优选地,将沉积双BN界面层和陶瓷基体的纤维预制体置于1450℃的温度下热处理1h,升温速率为3℃/min。
(4)致密化。将步骤(3)中第二次热处理后的沉积双BN界面层和陶瓷基体的纤维预制体进行致密化,得到所述双BN界面层纤维增强陶瓷基复合材料。
在一些实施方式中,所述致密化工艺可以选自前驱体浸渍热解工艺、化学气相沉积工艺或者液相Si熔渗工艺中的至少一种。裂解和渗硅工艺中的保护气氛可以为氮气或氩气气氛。
作为一个示例,可以将步骤(3)中第二次热处理后的沉积双BN界面层和陶瓷基体的纤维预制体浸入酚醛树脂的浆料中,并在120-200℃的温度下固化5-24h;然后,置于700-1200℃的真空碳管炉中裂解,升温速率为0.5-5℃/min,时间为1h;将裂解后得到的样品置于硅粉中,1420-1550℃下保温10-60min,升温速率为3-10℃/min,熔融硅和残余碳反应烧结生成SiC基体,得到致密的陶瓷基复合材料。
通过本发明提供的制备方法得到的纤维/BN/BN/SiC结构的陶瓷基复合材料,抗弯强度为500-800MPa。通过调控材料中BN/BN界面相的热处理制度,可以对扩展至界面相的裂纹扩展行为进行调控,使材料断裂时的界面脱粘和裂纹扩展更倾向于发生在双层BN界面相之间的界面处,从而达到了保护纤维的目的。
下面进一步列举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围,下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)第一层BN界面层沉积。采用化学气相沉积工艺在国产三代连续碳化硅纤维(Cansas-3303)预制体的表面沉积第一层BN界面层:选用BCl3为B源,流量为20mL/min;选用NH3为N源,流量为30mL/min;稀释气体为H2,流量为150mL/min;以5℃/min的升温速率使沉积温度上升到850℃,沉积时间为8h,沉积压强为0.5kPa,并将沉积后的样品置于1300℃的高温下热处理1h,升温速率为3℃/min。
所述第一层BN界面层的厚度为400nm。
(2)第二层BN界面层与陶瓷基体沉积。
采用化学气相沉积的工艺在步骤(1)制备得到的沉积第一层BN界面层的纤维预制体表面沉积第二层BN界面层:选用BCl3为B源,流量为20mL/min;选用NH3为N源,流量为30mL/min;稀释气体为H2,流量为150mL/min。以5℃/min的升温速率使沉积温度上升到850℃,沉积时间为3h,沉积压强为0.5kPa。
采用化学气相沉积的工艺继续沉积SiC基体:选用三氯甲基硅烷作为有机前驱体,流量为80mL/min;选用H2为载气和反应气体,流量为250mL/min;样品的沉积温度为1150℃,升温速率为5℃/min,沉积时间为3h,沉积压强为5kPa。
沉积结束得到沉积双BN界面层和陶瓷基体的纤维预制体,其中第二层BN界面层的厚度为200nm,陶瓷基体层厚度为500nm。
(3)第二次热处理。将步骤(2)中制备得到的沉积双BN界面层和陶瓷基体的纤维预制体置于1450℃的温度下热处理1h,升温速率为3℃/min。
(4)致密化。将步骤(3)中第二次热处理后的沉积双BN界面层和陶瓷基体的纤维预制体浸入酚醛树脂的浆料中,并在140℃的温度下固化24h;然后,置于1000℃的真空碳管炉中裂解,升温速率为3℃/min,时间为1h;将裂解后得到的样品置于硅粉中,1500℃下保温1h,升温速率为3℃/min,熔融硅和残余碳反应烧结生成SiC基体,得到致密的陶瓷基复合材料。
实施例1制备得到的复合材料呈现相对致密的结构,抗弯强度为605MPa。
图1为实施例1制备得到的陶瓷基复合材料的断面形貌图。从图中可以看出,复合材料的界面脱粘和裂纹偏转更倾向于发生在第一层BN和第二层BN之间。
实施例2
本实施例的制备方案参照实施例1。主要区别在于:步骤(2)中第二层BN界面层的沉积时间为4h。
实施例2制备得到的复合材料呈现相对致密的结构,抗弯强度为600MPa。
图2为实施例2制备得到的陶瓷基复合材料的断面形貌图。从图中可以看出,复合材料的界面脱粘和裂纹偏转更倾向于发生在第一层BN和第二层BN之间。
实施例3
本实施例的制备方案参照实施例1。主要区别在于:第一层BN的沉积为高温化学气相沉积,沉积温度为1450℃,沉积时间为0.5小时,然后降温至800℃沉积第二层BN界面层,沉积时间为5小时。
实施例3制备得到的复合材料呈现相对致密的结构,抗弯强度为650MPa。制备的复合材料界面脱粘发生在第一层BN和第二层BN之间。
对比例1
本对比例的制备方案参照实施例1。主要区别在于:不进行第二层BN界面层的沉积,沉积第一层BN界面层的沉积温度为700℃,第一次热处理的温度为1450℃,第一层BN界面层的厚度为500nm。
对比例1制备得到的复合材料,抗弯强度为500MPa。
图3为对比例1制备的陶瓷基复合材料的断面形貌图。从图中可以看出,界面失效发生在碳化硅纤维与BN之间。
对比例2
本对比例的制备方案参照实施例1。主要区别在于:第二层BN界面层与陶瓷基体为非连续沉积。第一层BN界面层的沉积温度为800℃,第一次热处理的温度为1450℃,第一层BN界面层的厚度为300nm;然后,将沉积第一层BN界面层的纤维预制体继续利用低温化学气相沉积200nm的第二层BN界面层,沉积温度为800℃;接着,将沉积第二层BN界面层的纤维预制体在1450℃的温度下热处理1h;然后,再沉积SiC基体并进行致密化。
对比例2制备的复合材料的断口形貌显示界面脱粘多发生在纤维与BN之间。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (6)

1.一种双BN界面层纤维增强陶瓷基复合材料的制备方法,其特征在于,包括:
采用低温化学气相沉积工艺或者高温化学气相沉积工艺在纤维预制体表面沉积第一层BN界面层并在沉积结束后对纤维预制体进行第一次热处理,或者仅采用高温化学气相沉积工艺在预先制备好的纤维预制体表面沉积第一层BN界面层,得到沉积第一层BN界面层的纤维预制体;所述低温化学气相沉积工艺与所述高温化学气相沉积工艺沉积第一层BN界面层的工艺参数为:B源为BCl3,N源为NH3,稀释气体为H2;NH3:BCl3的流量比控制为(1.5~10):1,H2:BCl3的流量比控制为(3~10):1;所述低温化学气相沉积工艺沉积第一层BN界面层的沉积温度为600~1100℃,沉积时间为1-10h,沉积压强为0.1-5kPa;所述高温化学气相沉积工艺沉积第一层BN界面层的沉积温度为1300~1600℃,沉积时间为0.5-2h,沉积压强为0.1-1kPa;所述第一次热处理的温度为1300~1600℃,热处理时间为0.5~5小时,保护气氛为氮气或氩气气氛,气压为常压或1-5atm的高压环境;
采用化学气相沉积工艺在所述沉积第一层BN界面层的纤维预制体表面连续依次沉积第二层BN界面层和陶瓷基体,得到沉积双BN界面层和陶瓷基体的纤维预制体;第二层BN界面层与陶瓷基体沉积的方式为低温化学气相沉积工艺;所述低温化学气相沉积工艺沉积第二层BN界面层的工艺的参数为:B源为BCl3,N源为NH3,稀释气体为H2;NH3:BCl3的流量比控制为(1.5~10):1,H2:BCl3的流量比控制为(3~10):1;沉积温度为600-1100℃,沉积时间为0.5-10h,沉积压强为0.1-5kPa;所述低温化学气相沉积工艺沉积陶瓷基体的工艺参数为:三氯甲基硅烷为有机前驱体,H2为载气和反应气体;H2:三氯甲基硅烷的流量比控制为(3~10):1;沉积温度为1000-1200℃,沉积时间为0.5-5h,沉积压强为1-10kPa;
对所述沉积双BN界面层和陶瓷基体的纤维预制体进行第二次热处理;所述第二次热处理的温度为1300-1600℃,热处理时间为0.5-5h,气氛为氮气或氩气气氛;
致密化,得到所述双BN界面层纤维增强陶瓷基复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述纤维为碳化硅纤维,所述陶瓷基体为SiC陶瓷相。
3.根据权利要求1所述的制备方法,其特征在于,所述第一层BN界面层的厚度为100-500nm,所述第二层BN界面层的厚度为100-1000nm。
4.根据权利要求1所述的制备方法,其特征在于,所述致密化工艺选自前驱体浸渍热解工艺、化学气相沉积工艺或者液相Si熔渗工艺中的至少一种。
5.一种根据权利要求1-3中任一项所述的制备方法得到的双BN界面层纤维增强陶瓷基复合材料。
6.根据权利要求5所述的双BN界面层纤维增强陶瓷基复合材料,其特征在于,所述双BN界面层纤维增强陶瓷基复合材料的抗弯强度为500-800MPa。
CN202310057159.6A 2023-01-17 2023-01-17 一种双bn界面层纤维增强陶瓷基复合材料及其制备方法 Active CN116199519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310057159.6A CN116199519B (zh) 2023-01-17 2023-01-17 一种双bn界面层纤维增强陶瓷基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310057159.6A CN116199519B (zh) 2023-01-17 2023-01-17 一种双bn界面层纤维增强陶瓷基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116199519A CN116199519A (zh) 2023-06-02
CN116199519B true CN116199519B (zh) 2023-12-29

Family

ID=86514053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310057159.6A Active CN116199519B (zh) 2023-01-17 2023-01-17 一种双bn界面层纤维增强陶瓷基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116199519B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593728A (en) * 1994-11-01 1997-01-14 Advanced Ceramics Corporation Interface coating for ceramic fibers
CN102180706A (zh) * 2011-03-03 2011-09-14 西北工业大学 一种六方氮化硼界面涂层的制备方法
CN104788130A (zh) * 2015-04-21 2015-07-22 中国人民解放军国防科学技术大学 C/(SiC/BN)n复合界面相涂层、涂层纤维及其制备方法
CN105669253A (zh) * 2016-01-14 2016-06-15 上海大学 低温低压制备氮化硼涂层的方法
CN108395266A (zh) * 2018-03-28 2018-08-14 中国航发北京航空材料研究院 一种纤维增强复相陶瓷基复合材料的制备方法
CN113354435A (zh) * 2021-07-08 2021-09-07 西北工业大学 SiC纤维增强增韧(SiC-BN)m多元多层自愈合陶瓷基复合材料及制备方法
CN113526973A (zh) * 2021-09-07 2021-10-22 中国人民解放军国防科技大学 一种具有双界面相的透波陶瓷基复合材料及其制备方法
CN113979752A (zh) * 2021-11-09 2022-01-28 航天特种材料及工艺技术研究所 一种莫来石纤维增强陶瓷基复合材料及其制备方法
CN114105662A (zh) * 2021-10-29 2022-03-01 航天材料及工艺研究所 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
CN114804895A (zh) * 2022-06-02 2022-07-29 中国航发北京航空材料研究院 一种高温自愈合BN/SiC纤维界面涂层及制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593728A (en) * 1994-11-01 1997-01-14 Advanced Ceramics Corporation Interface coating for ceramic fibers
CN102180706A (zh) * 2011-03-03 2011-09-14 西北工业大学 一种六方氮化硼界面涂层的制备方法
CN104788130A (zh) * 2015-04-21 2015-07-22 中国人民解放军国防科学技术大学 C/(SiC/BN)n复合界面相涂层、涂层纤维及其制备方法
CN105669253A (zh) * 2016-01-14 2016-06-15 上海大学 低温低压制备氮化硼涂层的方法
CN108395266A (zh) * 2018-03-28 2018-08-14 中国航发北京航空材料研究院 一种纤维增强复相陶瓷基复合材料的制备方法
CN113354435A (zh) * 2021-07-08 2021-09-07 西北工业大学 SiC纤维增强增韧(SiC-BN)m多元多层自愈合陶瓷基复合材料及制备方法
CN113526973A (zh) * 2021-09-07 2021-10-22 中国人民解放军国防科技大学 一种具有双界面相的透波陶瓷基复合材料及其制备方法
CN114105662A (zh) * 2021-10-29 2022-03-01 航天材料及工艺研究所 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
CN113979752A (zh) * 2021-11-09 2022-01-28 航天特种材料及工艺技术研究所 一种莫来石纤维增强陶瓷基复合材料及其制备方法
CN114804895A (zh) * 2022-06-02 2022-07-29 中国航发北京航空材料研究院 一种高温自愈合BN/SiC纤维界面涂层及制备方法

Also Published As

Publication number Publication date
CN116199519A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN101503305B (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
CN109053207B (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
US9611180B2 (en) Method for manufacturing a part made of CMC
EP3026035B1 (en) Coated substrate
CN108101566B (zh) Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法
KR101942604B1 (ko) 습한 환경에서 안정한 초내화 재료 및 그들의 제조방법
US10793478B2 (en) Single phase fiber reinforced ceramic matrix composites
CN111004990B (zh) 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
CN110028330A (zh) 一种陶瓷基复合材料及其制备方法
CN114044679A (zh) 一种高强韧超高温陶瓷基复合材料及其制备方法
EP2970020B1 (en) Ceramic matrix composites and methods for producing ceramic matrix composites
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
CN111517795A (zh) 一种热防护材料结构损伤修复贴片及制备使用方法
US20180222807A1 (en) Increasing the density of a bond coat
CN114573357A (zh) 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN117024164A (zh) 一种陶瓷改性碳碳复合材料鼻锥及其制备方法
CN114315395A (zh) SiCf/SiC复合材料的SiC纳米线增韧PyC/SiC复合界面及其制备方法
Cheng et al. Oxidation Behavior from Room Temperature to 1500° C of 3D‐C/SiC Composites with Different Coatings
CN114105662B (zh) 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
CN116462525B (zh) 一种连续碳纤维增强超高温陶瓷基复合材料及其制备方法
CN110407597B (zh) 一种稀土氧化物改性碳化硅陶瓷基复合材料及其制备方法
Wang et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler
CN116199519B (zh) 一种双bn界面层纤维增强陶瓷基复合材料及其制备方法
KR20200137275A (ko) 세라믹복합소재의 제조방법 및 이를 통해 제조된 세라믹복합소재
US7427428B1 (en) Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant