CN103922779B - 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法 - Google Patents

含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法 Download PDF

Info

Publication number
CN103922779B
CN103922779B CN201410142661.8A CN201410142661A CN103922779B CN 103922779 B CN103922779 B CN 103922779B CN 201410142661 A CN201410142661 A CN 201410142661A CN 103922779 B CN103922779 B CN 103922779B
Authority
CN
China
Prior art keywords
aluminum oxide
dimensional aluminum
preparation
oxide fabric
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410142661.8A
Other languages
English (en)
Other versions
CN103922779A (zh
Inventor
王�义
程海峰
刘海韬
祖梅
王军
周永江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201410142661.8A priority Critical patent/CN103922779B/zh
Publication of CN103922779A publication Critical patent/CN103922779A/zh
Application granted granted Critical
Publication of CN103922779B publication Critical patent/CN103922779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法,其是以铝硅酸盐作为基体,以三维氧化铝纤维织物作为增强体,基体与增强体之间形成有氮化硼界面相,界面相是通过在纤维织物的表面制备氮化硼涂层形成。本发明产品的制备包括:先通过真空浸渍到高温裂解的过程在三维氧化铝纤维织物表面制备形成氮化硼涂层,然后以Al2O3-SiO2双相溶胶为先驱体,通过反复致密化得到含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷。本发明的产品具有力学和介电性能优异、制备周期短、成本低等优点。

Description

含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法
技术领域
本发明主要涉及氧化物纤维织物增强氧化物陶瓷材料领域,具体涉及一种三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法。
背景技术
铝硅酸盐物陶瓷具有优异的耐高温性能和化学稳定性好等优点,可以在高温氧化环境中长时间使用。但单体铝硅酸盐陶瓷韧性一般较低,容易发生灾难性破坏。为改善铝硅酸盐陶瓷的力学性能,各种增韧机制被广泛应用,主要包括颗粒增强、晶须增强以及连续纤维增强等方式,其中颗粒和晶须增韧可以显著提高铝硅酸盐陶瓷强度,但对其韧性提高较低,且颗粒和晶须增韧铝硅酸盐陶瓷多采用热压工艺,难以成型大型复杂构件。而连续纤维可以同时提高铝硅酸盐陶瓷的强度和韧性,且连续纤维增强铝硅酸盐陶瓷可以采用液相法进行制备,具有广阔的工程应用前景。
氧化铝纤维熔点高、耐化学腐蚀、力学性能和高温抗氧化性能优异,被广泛用作氧化物陶瓷基复合材料重要的增强纤维候选材料。利用连续纤维织物的骨架作用,可以通过液相法在相对较低的温度下无压烧结成型复合材料,此外,三维纤维织物的强韧化方式具有整体性好、可设计性强、并且可以成型大型复杂构件的优点。因此,三维氧化铝纤维织物增强铝硅酸盐陶瓷具有很大的研究和应用价值。
国内外对三维氧化铝纤维织物增强铝硅酸盐陶瓷的研究主要集中在提高三维氧化铝纤维织物增强铝硅酸盐陶瓷的力学性能方面。由于氧化铝纤维和铝硅酸盐陶瓷基体在高温下发生扩散反应,导致纤维和基体界面结合过强而使复合材料发生脆性断裂,因此未进行界面改性的氧化铝纤维织物增强铝硅酸盐陶瓷的力学性能较差。目前,常用的界面改性措施是在氧化铝纤维表面制备低模量涂层,如PyC、BN、SiC和Monazite等。然而,现有的界面涂层制备工艺复杂、改性效果不显著,且成本较高,限制了其实际应用。如果能通过一种制备工艺,在提高三维氧化铝纤维织物增强铝硅酸盐陶瓷力学性能的同时,还能简化生产工序和制造成本,这对于本领域技术人员而言,将具有十分重要的意义。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种力学和介电性能优异的含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷,并相应提供一种制备周期短、对设备要求低、制备成本低、适应性广、且能提高材料致密度的该三维氧化铝纤维织物增强铝硅酸盐陶瓷的制备方法。
为解决上述技术问题,本发明提出的技术方案为一种含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷,其是以铝硅酸盐作为基体,以三维氧化铝纤维织物作为增强体,所述基体与增强体之间形成有界面相,所述界面相为氮化硼界面相,所述氮化硼界面相是通过在所述三维氧化铝纤维织物的表面制备氮化硼涂层形成。
上述的含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷中,所述增强体优选采用体积分数为40%~45%的三维氧化铝纤维织物,作为所述基体的铝硅酸盐则优选是由固相含量为25%~30%的Al2O3-SiO2双相溶胶制得。
作为一个总的技术构思,本发明还提供一种制备上述的三维氧化铝纤维织物增强铝硅酸盐陶瓷的方法,包括以下工艺步骤:
(1)制备氮化硼涂层:采用三维正交编织工艺制备所述三维氧化铝纤维织物,将质量比为1∶(3~5)的硼酸和尿素溶于乙醇溶液中,配制成摩尔浓度为0.4mol/L~0.6mol/L的先驱体溶液;采用真空浸渍方式将上述先驱体溶液引入三维氧化铝纤维织物中,真空浸渍完成后将三维氧化铝纤维织物取出、晾干(一般在空气中晾置12h~24h即可,使溶剂挥发干净);再放入裂解炉中进行高温裂解,在NH3气氛下升温至900℃~1100℃,保温1h~2h,自然冷却至室温取出;
以前述真空浸渍到高温裂解的过程为一个涂层制备周期,重复该制备周期2~4次,在三维氧化铝纤维织物表面制备形成氮化硼涂层,得到含氮化硼涂层的三维氧化铝纤维织物;
(2)一次致密化:以Al2O3-SiO2双相溶胶为先驱体,对步骤(1)制得的含氮化硼涂层的三维氧化铝纤维织物进行真空浸渍,然后进行凝胶化,再经高温陶瓷化后,完成一次致密化过程;
(3)反复致密化:重复上述步骤(2)10~12次,制得含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷。
上述的制备方法,所述步骤(1)中,所述乙醇溶液是优选由体积比为1:(1~3)的无水乙醇和水混合配制而成。
上述的制备方法,所述步骤(1)中,每一个涂层制备周期中真空浸渍的时间优选控制在1h~2h。
上述的制备方法,所述步骤(1)中,在裂解炉进行高温裂解时的升温速率优选控制在4℃/min~6℃/min。
上述的制备方法,所述步骤(2)中,真空浸渍的时间优选控制为4h~8h,真空浸渍完成后取出在空气中晾置1h~2h。
上述的制备方法,所述步骤(2)中,凝胶化优选是采用水浴凝胶-高温干燥的方式完成,所述水浴凝胶-高温干燥的工艺过程包括:将经真空浸渍后的含氮化硼涂层的三维氧化铝纤维织物先放入水浴锅中,升温至70℃~90℃,水浴凝胶10h~12h,然后取出放置马弗炉中进行高温干燥,以2℃/min~4℃/min的升温速率升温至180℃~200℃保温1h~2h,然后随炉冷却至室温取出。
上述的制备方法,所述步骤(2)中,所述高温陶瓷化优选是采用高温裂解的方式完成,所述高温裂解的工艺过程为:将凝胶化后的含氮化硼涂层的三维氧化铝纤维织物放入裂解炉中,在氩气气氛下以5℃/min~10℃/min的升温速率升至1000℃~1100℃,保温0.5h~1h,随炉冷却至室温取出。
与现有技术相比,本发明的优点在于:本发明的三维氧化铝纤维织物增强铝硅酸盐陶瓷是以三维氧化铝纤维织物为增强体,同时在增强体上形成有氮化硼界面相,由于氮化硼涂层具有高温抗氧化、耐化学腐蚀和介电性能优异等特点,因此,含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷具有优异的力学和介电性能(如强度高、介电常数和介电损耗低等),这显著提高了常规三维氧化铝纤维增强铝硅酸盐陶瓷的力学性能,如韧性和强度都得到大幅度提高,且对铝硅酸盐陶瓷介电性能不会产生消极影响。
另外,本发明的三维氧化铝纤维织物增强铝硅酸盐陶瓷的制备方法为液相法,可在较低温度下无压烧结实现铝硅酸盐的陶瓷化,大大降低能耗和对设备的要求,能有效提高复合材料致密度,还可通过纤维编织方式制备结构复杂的构件,具有净近尺寸成型的优点;另外,本发明选取的原料广泛易得,制备成本低,可有效应用于工业化生产并大规模推广应用。
附图说明
图1是本发明实施例1中制得的三维氧化铝纤维织物增强铝硅酸盐陶瓷照片。
图2是本发明实施例1中步骤(1)制得的含氮化硼涂层的三维氧化铝纤维织物的氮化硼涂层形貌。
图3是本发明实施例1中制得的三维氧化铝纤维织物增强铝硅酸盐陶瓷的复介电常数实部。
图4是本发明实施例1中制得的三维氧化铝纤维织物增强铝硅酸盐陶瓷的复介电常数虚部。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
实施例1:
一种如图1所示本发明的含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷,其是以铝硅酸盐作为基体,以体积分数为42.3%的三维氧化铝纤维织物作为增强体,铝硅酸盐基体与三维氧化铝纤维织物增强体之间形成有氮化硼界面相,氮化硼界面相是通过在三维氧化铝纤维织物的表面制备氮化硼涂层形成。该陶瓷中,作为基体的铝硅酸盐则是由固相含量为28.5%的Al2O3-SiO2双相溶胶制得。
一种制备上述三维氧化铝纤维织物增强铝硅酸盐陶瓷的方法,包括以下具体步骤:
(1)制备氮化硼涂层:制备体积分数为42.3%的三维氧化铝纤维织物,并在三维氧化铝纤维织物表面制备氮化硼涂层,制备氮化硼涂层的工艺过程包括:a)将质量比为1:3的硼酸和尿素溶于体积比为1:2的无水乙醇和水的混合溶剂中,配成摩尔浓度为0.45mol/L的先驱体溶液;b)采用真空浸渍的方式将上述先驱体溶液引入三维氧化铝纤维织物中,真空浸渍1h;c)将三维氧化铝纤维织物取出,于空气中晾置20h,使溶剂挥发干净;d)将步骤c)得到的三维氧化铝纤维织物放入裂解炉中,在氨气气氛下以5℃/min的升温速率升至1000℃,保温1h,自然冷却至室温取出;e)以前述步骤b)~d)为一个涂层制备周期,重复3次,得到如图2所示的含氮化硼涂层的三维氧化铝纤维织物;
(2)一次致密化:以Al2O3-SiO2双相溶胶为先驱体,对步骤(1)制得的含氮化硼涂层的三维氧化铝纤维织物进行真空浸渍6h,取出在空气中晾置2h;然后将经真空浸渍后的含氮化硼涂层的三维氧化铝纤维织物放入水浴锅中,升温至85℃,水浴凝胶10h,然后取出放至马弗炉中,以2℃/min的升温速率升温至200℃保温2h,然后随炉冷却至室温取出;再将干燥后的含氮化硼涂层的三维氧化铝纤维织物放入裂解炉中,在氩气气氛下以10℃/min的升温速率升温至1000℃,保温1h,随炉冷却至室温取出,完成一次致密化过程;
(3)反复致密化:以上述步骤(2)为一个周期,重复上述步骤(2)12次,经12个致密化周期完成复合材料的致密化过程,制得含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷。
经上述步骤制得的本实施例的含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷样品照片如图1所示,X波段介电常数如图3和图4所示。
按照本实施例的方法,制备不含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷(即无需在三维氧化铝纤维织物上制备氮化硼涂层)作为对照样,对上述得到的含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷和对照样进行力学性能对比测试,得到如下表1所示的主要性能参数。
表1:实施例1的对比测试得到的两种铝硅酸盐陶瓷的主要性能参数
由上表1可见,本发明的含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷材料的力学性能优于对照样,尤其是弯曲强度和断裂韧性,并且介电性能基本无变化。
实施例2:
一种本发明的含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷,其是以铝硅酸盐作为基体,以体积分数为44.5%的三维氧化铝纤维织物作为增强体,铝硅酸盐基体与三维氧化铝纤维织物增强体之间形成有氮化硼界面相,氮化硼界面相是通过在三维氧化铝纤维织物的表面制备氮化硼涂层形成。该陶瓷中,作为基体的铝硅酸盐则是由固相含量为30%的Al2O3-SiO2双相溶胶制得。
一种制备上述三维氧化铝纤维织物增强铝硅酸盐陶瓷的方法,包括以下具体步骤:
(1)制备氮化硼涂层:制备体积分数为44.5%的三维氧化铝纤维织物,并在三维氧化铝纤维织物表面制备氮化硼涂层,制备氮化硼涂层的工艺过程包括:a)将质量比为1:4的硼酸和尿素溶于体积比为1:3的无水乙醇和水的混合溶剂中,配成摩尔浓度为0.55mol/L的先驱体溶液;b)采用真空浸渍的方式将上述先驱体溶液引入三维氧化铝纤维织物中,真空浸渍1.5h;c)将三维氧化铝纤维织物取出,于空气中晾置24h,使溶剂挥发干净;d)将步骤c)得到的三维氧化铝纤维织物放入裂解炉中,在氨气气氛下以4℃/min的升温速率升至950℃,保温1.5h,自然冷却至室温取出;e)以前述步骤b)~d)为一个涂层制备周期,重复4次,得到含氮化硼涂层的三维氧化铝纤维织物;
(2)一次致密化:以Al2O3-SiO2双相溶胶为先驱体,对步骤(1)制得的含氮化硼涂层的三维氧化铝纤维织物进行真空浸渍8h,取出在空气中晾置1.5h;然后将经真空浸渍后的含氮化硼涂层的三维氧化铝纤维织物先放入水浴锅中,升温至80℃,水浴凝胶11h,然后取出放置马弗炉中,以4℃/min的升温速率升温至190℃,保温1.5h,然后随炉冷却至室温取出;再将干燥后的含氮化硼涂层的三维氧化铝纤维织物放入裂解炉中,在Ar气氛下以8℃/min的升温速率升至1100℃,保温0.5h,随炉冷却至室温取出,完成一次致密化过程;
(3)反复致密化:以上述步骤(2)为一个周期,重复上述步骤(2)11次,经11个致密化周期完成复合材料的致密化过程,制得含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷。
按照本实施例的方法,制备不含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷(即无需在三维氧化铝纤维织物上制备氮化硼涂层)作为对照样,对上述得到的含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷和对照样进行力学性能对比测试,得到如下表2所示的主要性能参数。
表2:实施例2的对比测试得到的两种铝硅酸盐陶瓷的主要性能参数
由上表2可见,本发明的含氮化硼界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷材料的力学性能优于对照样,尤其是弯曲强度和断裂韧性,并且介电性能基本无变化。

Claims (9)

1.一种制备三维氧化铝纤维织物增强铝硅酸盐陶瓷的方法,包括以下工艺步骤:
(1)制备氮化硼涂层:采用三维正交编织工艺制备所述三维氧化铝纤维织物,将质量比为1∶(3~5)的硼酸和尿素溶于乙醇溶液中配制成摩尔浓度为0.4mol/L~0.6mol/L的先驱体溶液;采用真空浸渍方式将上述先驱体溶液引入所述三维氧化铝纤维织物中,真空浸渍完成后将三维氧化铝纤维织物取出、晾干;再放入裂解炉中进行高温裂解,在NH3气氛下升温至900℃~1100℃,保温1h~2h,自然冷却至室温取出;
以前述真空浸渍到高温裂解的过程为一个涂层制备周期,重复2~4次,在三维氧化铝纤维织物表面制备形成氮化硼涂层,得到含氮化硼涂层的三维氧化铝纤维织物;
(2)一次致密化:以Al2O3-SiO2双相溶胶为先驱体,对步骤(1)制得的含氮化硼涂层的三维氧化铝纤维织物进行真空浸渍,然后进行凝胶化,再经高温陶瓷化后,完成一次致密化过程;
(3)反复致密化:重复上述步骤(2)10~12次,制得含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷;
所述三维氧化铝纤维织物增强铝硅酸盐陶瓷是以铝硅酸盐作为基体,以三维氧化铝纤维织物作为增强体,所述基体与增强体之间形成有界面相,所述界面相为氮化硼界面相,所述氮化硼界面相是通过在所述三维氧化铝纤维织物的表面制备氮化硼涂层形成。
2.根据权利要求1所述的制备方法,其特征在于:所述增强体采用体积分数为40%~45%的三维氧化铝纤维织物。
3.根据权利要求1所述的制备方法,其特征在于:所述Al2O3-SiO2双相溶胶的固相含量为25%~30%。
4.根据权利要求1~3中任一项所述的制备方法,其特征在于,所述步骤(1)中,所述乙醇溶液是由体积比为1:(1~3)的无水乙醇和水混合配制而成。
5.根据权利要求4所述的制备方法,其特征在于,所述步骤(1)中,每一个涂层制备周期中真空浸渍的时间控制在1h~2h。
6.根据权利要求5所述的制备方法,其特征在于,所述步骤(1)中,在裂解炉进行高温裂解时的升温速率控制在4℃/min~6℃/min。
7.根据权利要求1~3 中任一项所述的制备方法,其特征在于,所述步骤(2)中,真空浸渍的时间控制为4h~8h,真空浸渍完成后取出在空气中晾置1h~2h。
8.根据权利要求1~3中任一项所述的制备方法,其特征在于,所述步骤(2)中,凝胶化是采用水浴凝胶-高温干燥的方式完成,所述水浴凝胶-高温干燥的工艺过程包括:将经真空浸渍后的含氮化硼涂层的三维氧化铝纤维织物先放入水浴锅中,升温至70℃~90℃,水浴凝胶10h~12h,然后取出放置马弗炉中进行高温干燥,以2℃/min~4℃/min的升温速率升温至180℃~200℃保温1h~2h,然后随炉冷却至室温取出。
9.根据权利要求1~3中任一项所述的制备方法,其特征在于,所述步骤(2)中,所述高温陶瓷化是采用高温裂解的方式完成,所述高温裂解的工艺过程为:将凝胶化后的含氮化硼涂层的三维氧化铝纤维织物放入裂解炉中,在氩气气氛下以5℃/min~10℃/min的升温速率升至1000℃~1100℃,保温0.5h~1h,随炉冷却至室温取出。
CN201410142661.8A 2014-04-10 2014-04-10 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法 Active CN103922779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410142661.8A CN103922779B (zh) 2014-04-10 2014-04-10 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410142661.8A CN103922779B (zh) 2014-04-10 2014-04-10 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN103922779A CN103922779A (zh) 2014-07-16
CN103922779B true CN103922779B (zh) 2015-07-01

Family

ID=51141208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410142661.8A Active CN103922779B (zh) 2014-04-10 2014-04-10 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN103922779B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825296A1 (en) * 2019-11-25 2021-05-26 Rolls-Royce High Temperature Composites Inc Slurry infiltration heat treatment method of infiltrated fiber preform

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152671B (zh) * 2015-07-16 2017-06-20 中国人民解放军国防科学技术大学 SiCf/SiC复合材料的界面改性方法
CN106966742B (zh) * 2016-06-03 2020-07-28 北京航空航天大学 含界面相的氧化铝纤维增强莫来石陶瓷及其制备方法
CN106966703B (zh) * 2016-06-03 2020-07-28 北京航空航天大学 含界面相的氧化铝纤维增强氧化铝陶瓷及其制备方法
CN108947587A (zh) * 2018-07-16 2018-12-07 西北工业大学 一种氮化硼界面的制备方法
CN110983757B (zh) * 2019-12-04 2022-04-29 航天特种材料及工艺技术研究所 一种氧化铝纤维布纤维界面改性的方法及由此制得的改性氧化铝纤维布
CN112094130B (zh) * 2020-11-18 2021-02-09 中国人民解放军国防科技大学 一种耐高温防隔热三明治结构陶瓷基复合材料及制备方法
CN112500183B (zh) * 2021-02-01 2021-05-04 中南大学 一种氧化铝纤维增强的耐高温抗冲刷保温材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171095A (zh) * 1994-11-01 1998-01-21 先进陶瓷公司 陶瓷纤维的改良界面涂层
CN101792299A (zh) * 2010-01-08 2010-08-04 中国人民解放军国防科学技术大学 耐高温氧化铝-氧化硅气凝胶隔热复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171095A (zh) * 1994-11-01 1998-01-21 先进陶瓷公司 陶瓷纤维的改良界面涂层
CN101792299A (zh) * 2010-01-08 2010-08-04 中国人民解放军国防科学技术大学 耐高温氧化铝-氧化硅气凝胶隔热复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陶瓷基复合材料中氮化硼界面相研究进展;李俊生等;《材料导报A:综述篇》;20110930;第25卷(第9期);第14页右栏第1段、第18页右栏第2段 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825296A1 (en) * 2019-11-25 2021-05-26 Rolls-Royce High Temperature Composites Inc Slurry infiltration heat treatment method of infiltrated fiber preform

Also Published As

Publication number Publication date
CN103922779A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
CN103922779B (zh) 含界面相的三维氧化铝纤维织物增强铝硅酸盐陶瓷及其制备方法
CN103922778B (zh) 三维氧化铝纤维织物增强氧化物陶瓷及其制备方法
CN104926344B (zh) 硅酸铝纤维增强氧化物陶瓷及其制备方法
CN103724035B (zh) 一种碳纤维增强氮化硅-碳化硅陶瓷复合材料的增密方法
CN102126868B (zh) 一种三维碳纤维织物增强莫来石陶瓷及其制备方法
CN104311090B (zh) 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC超高温陶瓷复合材料的方法
Dong et al. Mechanical behavior of fibrous ceramics with a bird’s nest structure
CN103922794B (zh) 三维氧化铝纤维织物增强多孔莫来石陶瓷及其制备方法
CN108484194B (zh) 一种Al2O3-SiO2基复合材料及其快速制备方法
CN104926346B (zh) 一种含界面相的氧化铝纤维织物增强碳化硅陶瓷及其制备方法
CN106218061B (zh) 一种双层结构陶瓷基复合材料及其制备方法
CN102838106B (zh) 采用碳化硅增强聚酰亚胺复合薄膜制备碳膜的方法
CN111454071B (zh) 岩棉纤维增强氧化硅基高强度隔热复合材料及其制备方法
CN106966703B (zh) 含界面相的氧化铝纤维增强氧化铝陶瓷及其制备方法
CN107805064A (zh) 一种纤维增强耐高温镁铝尖晶石气凝胶的制备方法
CN104926343B (zh) 含界面相的硅酸铝纤维增强氧化物陶瓷及其制备方法
CN108658616B (zh) 一种ZrO2-SiO2基复合材料的低温快速制备方法
CN103265331A (zh) 一种适用于石墨材料的C/SiC/Na2Si03抗氧化复合涂层及其制备方法
CN104892013A (zh) SiC基复合材料的制备方法
CN101531535B (zh) 连续纤维增强无机聚合物基复合材料的制备方法
CN109608218A (zh) 一种自愈合陶瓷基复合材料及其低温快速制备方法
Li et al. Preparation and characterization of Nextel 720/alumina ceramic matrix composites via an improved prepreg process
CN104926345B (zh) 一种氧化铝纤维增强碳化硅‑硅酸铝陶瓷及其制备方法
Ji et al. Mullite nanosheet/titania nanorod/silica composite aerogels for high-temperature thermal insulation
CN102206089B (zh) 一种三维碳纤维织物增强莫来石陶瓷的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant