CN107142250A - 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用 - Google Patents
鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用 Download PDFInfo
- Publication number
- CN107142250A CN107142250A CN201710534520.4A CN201710534520A CN107142250A CN 107142250 A CN107142250 A CN 107142250A CN 201710534520 A CN201710534520 A CN 201710534520A CN 107142250 A CN107142250 A CN 107142250A
- Authority
- CN
- China
- Prior art keywords
- astaxanthin
- crtz
- plasmid
- petduet
- crti
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1022—Transferases (2.) transferring aldehyde or ketonic groups (2.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/001—Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0073—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0093—Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P23/00—Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01267—1-Deoxy-D-xylulose-5-phosphate reductoisomerase (1.1.1.267)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/13—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
- C12Y114/13129—Beta-carotene 3-hydroxylase (1.14.13.129)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y117/00—Oxidoreductases acting on CH or CH2 groups (1.17)
- C12Y117/01—Oxidoreductases acting on CH or CH2 groups (1.17) with NAD+ or NADP+ as acceptor (1.17.1)
- C12Y117/01002—4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (1.17.1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y202/00—Transferases transferring aldehyde or ketonic groups (2.2)
- C12Y202/01—Transketolases and transaldolases (2.2.1)
- C12Y202/01007—1-Deoxy-D-xylulose-5-phosphate synthase (2.2.1.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01029—Geranylgeranyl diphosphate synthase (2.5.1.29)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01032—15-Cis-phytoene synthase (2.5.1.32)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01148—4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase (2.7.1.148)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/0706—2-C-Methyl-D-erythritol 4-phosphate cytidylyltransferase (2.7.7.60)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y406/00—Phosphorus-oxygen lyases (4.6)
- C12Y406/01—Phosphorus-oxygen lyases (4.6.1)
- C12Y406/01012—2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (4.6.1.12)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y505/00—Intramolecular lyases (5.5)
- C12Y505/01—Intramolecular lyases (5.5.1)
- C12Y505/01019—Lycopene beta-cyclase (5.5.1.19)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用。本发明证实了鞘氨醇单胞菌可以产生虾青素,含有能够产生虾青素的生物合成途径,并进一步证实了该菌株中存在与现有已知基因同源性较低的crtZ基因在合成虾青素中的功能。鞘氨醇单胞菌的β–胡萝卜素羟化酶的氨基酸序列如SEQ ID NO.3或4所示,其编码基因的核苷酸序列如SEQ ID NO.5或6所示,该酶或编码基因可用于生产虾青素。本发明的β–胡萝卜素羟化酶及其编码基因,丰富了细菌生物合成类胡萝卜素的基因多样性,并为生物合成代谢改造类胡萝卜素提供了更多资源。
Description
本发明专利申请是申请号为“2014104472590”的发明专利的分案申请,原申请的申请日为“2014.09.03”,申请号为“2014104472590”,发明名称为“鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法”。
技术领域
本发明涉及生物技术领域,具体涉及鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用。
背景技术
虾青素(Astaxanthin,又称变胞藻黄素或虾红素),属于酮式类胡萝卜素,是一种较强的天然抗氧化剂。其独特的分子结构不但使其具有超强的抗氧化活性,还具有抗衰老、抗辐射、抗肿瘤及预防心脑血管疾病的作用。目前,虾青素已在食品、饲料、保健品市场等广泛应用。然而天然虾青素的来源非常有限,目前,虾青素大多采用传统突变技术产生的Pfaffia菌株和微藻生产,但是,Pfaffia发酵存在发酵周期长的缺点,而从藻类中获得产物的生产技术仍不成熟。因此,开发新的天然虾青素资源具有重要意义。
鞘氨醇单胞菌是革兰氏阴性菌,1990年被鉴定,专性需氧,以单侧生极性鞭毛运动,多呈黄色。其黄色菌落多是由于产生类胡萝卜素导致。细胞膜与一般的革兰氏阴性菌不同,为鞘糖脂,这也使得对其的遗传操作还未成熟。目前,在Sphingomonas ATCC 55669中尚无任何基因方面的信息报道,也未有相关遗传操作的文献,即使是该菌株所在的属也鲜有报道。目前,鞘氨醇单胞菌多可降解多元化的芳环化合物,是环境微生物的研究热点,其遗传操作的建立为进一步利用其降解机制建立了基础。
虾青素生物合成途径已被广泛研究并取得了巨大进展,大量关键酶基因得到克隆。目前已知的类胡萝卜素均通过类异戊二烯化合物或萜类化合物途径合成。其中,非甲羟戊酸途径 MEP(nonmevalonate pathway)途径广泛存在于细菌中,它以糖酵解中间代谢物丙酮酸和3- 磷酸甘油醛为前体,在脱氧木酮糖磷酸合酶作用下生成脱氧木酮糖磷酸,然后受脱氧木酮糖磷酸还原酶和异构酶催化,通过还原和异构反应将脱氧木酮糖磷酸转变成2-甲基赤藓糖醇-4- 磷酸(MEP)。经胞苷三磷酸活化,腺苷三磷酸磷酸化,从而形成甲基赤藓糖醇环化焦磷酸,然后转变成IPP(异戊烯焦磷酸),IPP异构化形成DMAPP(二甲基丙烯基二磷酸)。IPP和 DMAPP是合成虾青素途径的前体物质。两者在IPP异构酶作用下相互转换达到平衡,在crtE (牻牛儿基牻牛儿基焦磷酸合成酶)作用下,1个DMAPP与3个IPP分子缩合生成GGPP (牻牛儿基牻牛儿基焦磷酸)。2分子GGPP在crtB(八氢番茄红素合成酶)作用下形成第一个无色的类胡萝卜素——八氢番茄红素。八氢番茄红素经过连续的脱氢步骤(crtI)生成番茄红素。番茄红素在crtY(番茄红素β-环化酶)的作用下生成β-胡萝卜素。β-胡萝卜素在crtZ (β-胡萝卜素羟化酶)和crtW(β-胡萝卜素酮酶)的一系列作用下生成虾青素(如图1)。
通过丰富不同来源的虾青素生物合成相关基因,经重组DNA技术筛选,从而增加虾青素生物合成的生产能力,是缩短发酵周期,提高虾青素生物合成产率的重要途径,从而为虾青素进一步工业化生产打下基础。
发明内容
本发明的目的在于提供鞘氨醇单胞菌的虾青素生物合成途径中的β–胡萝卜素羟化酶,以及该酶的编码基因。本发明的目的还在于提供所述β–胡萝卜素羟化酶或其编码基因在生产虾青素中的应用。
本发明的目的通过下述技术方案实现:
本发明通过对鞘氨醇单胞菌的提取产物进行检测,证实鞘氨醇单胞菌可以产生虾青素,含有能够产生虾青素的生物合成途径。并进一步证实了在鞘氨醇单胞菌合成虾青素的这条线性通路中,与现有已知基因同源性较低的crtE、crtZ基因具有相应的功能。
鞘氨醇单胞菌的GGPP合成酶(crtE),为296个氨基酸组成的蛋白质,其氨基酸序列如 SEQ ID NO.1所示;该GGPP合成酶的编码基因为GENE3518,其核苷酸序列如SEQ ID NO.2所示。
鞘氨醇单胞菌的β–胡萝卜素羟化酶(crtZ),为172个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.3所示;该β–胡萝卜素羟化酶的编码基因为GENE2930,其核苷酸序列如SEQ ID NO.4所示。或鞘氨醇单胞菌的β–胡萝卜素羟化酶(crtZ),为155个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.5所示;该β–胡萝卜素羟化酶的编码基因为GENE1181,其核苷酸序列如SEQ ID NO.6所示。
上述GGPP合成酶、β–胡萝卜素羟化酶或其编码基因在生产虾青素中的应用。
一种生产虾青素的方法,包括如下步骤:将产虾青素质粒中的crtE基因或crtZ基因替换为上述GGPP合成酶或β–胡萝卜素羟化酶的编码基因;再将基因替换后的质粒转化到大肠杆菌中,通过诱导表达生产虾青素。
所述的产虾青素质粒为pFZ153,其构建包括如下步骤:
(1)大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI,将idi基因片段从pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87;
(2)以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架;
从CGMCC 1.2244基因组DNA扩增crtY和crtZ,引物分别为Idi-PagCrtY-F、 CrtZ-PagCrtY-R,CrtY-PagCrtZ-F、CrtW-PagCrtZ-R;
合成SEQ ID NO.7所示的CrtW,以其为模板用引物CrtZ-BreCrtW-F和BreCrtW-R扩增 crtW;
crtY、crtZ、crtW和质粒骨架四个片段用Giboson方法连接获得pFZ152;
(3)合成序列分别如SEQ ID NO.8、9、10所示的crtE、crtB和crtI,将crtE、crtB和crtI分别克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23;
(4)以构建pFZ152同样的方法分别以pFZ87、pFZ21、pFZ22、pFZ23为模板用引物PETduet-NcoI-R、pETduet-EcoRI-T7-F,Duet-PanCrtE-F、PanCrtI-CrtE-R,PanCrtE-CrtI-F、 PanCrtB-CrtI-R,PanCrtI-CrtB-F、Duet-EcoRI-PanCrtB-R扩增质粒骨架,crtE,crtI和crtB,用Giboson方法连接获得质粒pFZ112;
(5)将crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得 pFZ153;
上述各引物序列如下:
PagCrtY-Idi-R:CAGATCATACCGCGGCATAGTGTAATCCTCCTTTATTTAAGCTGGGT AAATG,
PagCrtW-pETduet-F:CTTATGGCGTGGTGAGAGCTAACTCGAGTCTGGTAAAGAAACC GC,
Idi-PagCrtY-F:ACCCAGCTTAAATAAAGGAGGATTACACTATGCCGCGGTATGATCT GATTC,
CrtZ-PagCrtY-R:GCATTCCAAATCCACAACATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC,
CrtY-PagCrtZ-F:CAGGCGATGCAATGAAGGAGGATTACTATATGTTGTGGATTTGGAATGCCCTGA,
CrtW-PagCrtZ-R:CCACTGCGGCGGTCATTACTCATTCCTCCTTTACTTCCCGGGTGGC GCGTC,
CrtZ-BreCrtW-F:CGCCACCCGGGAAGTAAAGGAGGAATGAGTAATGACCGCCGCAG TGGCAGAG,
BreCrtW-R:GCGGTTTCTTTACCAGACTCGAGTTAGCTCTCACCACGCCATAAG,
PETduet-NcoI-R:CATGGTATATCTCCTTCTTAAAGTTAAAC,
pETduet-EcoRI-T7-F:TAACTAGTGAATTCGAGCTCGGCGCGCCTG,
Duet-PanCrtE-F:GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACCGTGTGTGCGAAAAAAC,
PanCrtI-CrtE-R:TCACCGTGGTCGGTTTCATGGTTAATTCCTCCTTTACGACACCGCTG CCAG,
PanCrtE-CrtI-F:CTGGCAGCGGTGTCGTAAAGGAGGAATTAACCATGAAACCGACCA CGGTGA,
PanCrtB-CrtI-R:TCAGCAGGGACGGATTATTCATGAGTATTACCTCCTTTAAATCAGGTCTTCCAGCATC,
PanCrtI-CrtB-F:GATGCTGGAAGACCTGATTTAAAGGAGGTAATACTCATGAATAATCCGTCCCTGCTGA,
Duet-EcoRI-PanCrtB-R:TTGTCGACCTGCAGGCGCGCCGAGCTCGAATTCACTAGTTAAACGGGGCGCTGCCAGAG。
本发明具有如下优点和效果:
本发明证实鞘氨醇单胞菌可以产生虾青素,含有能够产生虾青素的生物合成途径;并进一步证实了与现有已知基因同源性较低(GENE3518基因与目前已知crtE基因的同源性低于 30%,GENE2930和GENE1181与目前已知crtZ基因的同源性约为60%)的crtE、crtZ基因具有相应的功能。
本发明的GGPP合成酶、β–胡萝卜素羟化酶及其编码基因,丰富了细菌生物合成类胡萝卜素的基因多样性,并为生物合成代谢改造类胡萝卜素提供了更多资源。
附图说明
图1是虾青素合成路线图。
图2是LC-MS检测Sphingomonas ATCC 55669中虾青素结果。
图3是pFZ153质粒图谱。
图4是pTM3518质粒图谱。
图5是pTM2930质粒图谱。
图6是pTM1181质粒图谱。
图7是HPLC检测转化不同质粒的MG1655菌株的虾青素生成;2-5分别是转化pFZ153、pTM3518、pTM2930和pTM1181的菌株,1是虾青素标准品(浓度为1ppm)。
图8是转化不同质粒的MG1655菌株的虾青素产量对比。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。
除非有特殊说明,本发明中的寡核苷酸引物由苏州金唯智生物科技有限公司合成;DNA 序列测定由苏州金唯智生物科技有限公司完成;除非特殊说明,本发明所用限制性内切酶、核酸外切酶、连接酶均购自NEB,DNA片段回收采用OMEGA DNA凝胶回收试剂盒,按说明书方法操作;PCR纯化采用Axygen试剂盒,按说明书方法操作。
下述实施例中所用引物见下表。
实施例1鞘氨醇单胞菌中虾青素产物的检测
提取鞘氨醇单胞菌Sphingomonas ATCC 55669(从ATCC购买)代谢产物,方法如下:
将菌种在#272培养基平板(营养肉汤8g/L,葡萄糖5g/L,琼脂1.6%)上活化,于26℃培养。挑菌落至5mL#272培养基(营养肉汤8g/L,葡萄糖5g/L)中26℃、220rpm培养,24h 后转接至100mL#272培养基中26℃、220rpm培养,OD600至0.8时,转接至300mL#272培养基中26℃、220rpm培养,60h后收菌。
将菌液于8000rpm离心10min,收集菌体,加入10mL萃取剂(V丙酮:V甲醇=4:1),震荡打散菌体后,萃取10min,8000rpm、4℃离心5min,移出上清,按上述步骤再萃取3次,收集上清,旋干,加入3mL丙酮溶解,13000rpm离心10min,取上清LC-MS检测,提取过程避光。LC-MS检测结果见图2,虾青素的分子量为596.39,经过质谱检测器带一个H+,为 597.39,表明鞘氨醇单胞菌Sphingomonas ATCC 55669可以产生虾青素。
实施例2鞘氨醇单胞菌中相关虾青素生物合成基因的确定
由实施例1可知,鞘氨醇单胞菌Sphingomonas ATCC 55669可以产生虾青素,该菌株中含有能够产生虾青素的生物合成途径。将鞘氨醇单胞菌基因组信息在NCBI (http://www.ncbi.nlm.nih.gov/)Blastp中进行比对,发现鞘氨醇单胞菌中存在MEP途径,该途径从丙酮酸经dxs,dxr,ispE,ispDF,ispG,ispH合成IPP和DMAPP。IPP和DMAPP经类胡萝卜素合成途径通过crtE,crtB,crtI,crtY,crtZ,crtW生成虾青素。在鞘氨醇单胞菌合成虾青素的这条线性通路中,所得基因除crtE、crtZ,其他基因均为唯一。
实施例3鞘氨醇单胞菌crtE基因和crtZ基因的扩增
从鞘氨醇单胞菌Sphingomonas ATCC 55669中提取基因组DNA,提取方法如下:
(1)取50mL新鲜菌液至尖底离心管,7000rpm×5min离心,弃上清。
(2)加10mL的ddH2O,于振荡器上打散,7000rpm×5min离心,弃上清。
(3)加10mL的SET buffer(75mM NaCl,25mM EDTA,20mM Tris-Cl),于振荡器上打散,7000rpm×5min离心,弃上清。
(4)加5mL的SET buffer,于振荡器上打散,加150μL的溶菌酶(lysozyme,100mg/mL, -20℃),37℃水浴30-60min,每隔5-10min缓慢摇匀一次,至细胞壁完全裂解(鉴定细胞壁完全裂解:取少量菌液,加1滴10%SDS,菌液清澈,拉丝)。
(5)加10μL RNase A(10mg/mL),37℃水浴10min。加250μL的蛋白酶K(proteinaseK,20mg/mL,-20℃),37℃水浴30min。
(6)加5mL 10%SDS,55℃水浴2h,每隔15min轻轻摇匀一次。
(7)加2mL 5M NaCl,轻轻摇匀,有白色沉淀析出。
(8)将液体转移至50mL圆底离心管(Beckman),加10mL氯仿,缓慢摇匀30min(注意放气),12000rpm×15min离心(转子JA25.50,Beckman),取上清液(大口枪头),重复步骤(8)2次,最后一次将上清转移至50mL尖底离心管。
(9)加0.8倍体积的异丙醇,轻摇混匀至出现丝状DNA。将DNA挑至EP管中,加70%的乙醇洗2次,倒掉乙醇,自然风干,室温溶于一定量的ddH2O中。
将提取的基因组DNA作为PCR模板,利用引物Duet-Pan3518-F2和PanCrtI-3518-R扩增出鞘氨醇单胞菌的crtE(GENE3518)基因。PCR反应体系为40μL:15.4μL H2O,8μL 5×Q5reaction buffer,8μL 5×High GC Enhancer,3.2μL 2.5mM dNTPs,2μL 10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,58℃退火30s,72℃延伸30s,30个循环;最后以72℃延伸6min。
利用引物CrtY-Pag2930-F和CrtW-Pag2930-R扩增出鞘氨醇单胞菌的crtZ(GENE2930) 基因,利用引物CrtY-Pag 1181-F2和CrtW-Pag 1181-R扩增出鞘氨醇单胞菌的crtZ(GENE1181) 基因,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL 5×Q5reaction buffer,3.2μL 2.5mM dNTPs,2μL 10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5 High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火 30s,72℃延伸30s,30个循环;最后以72℃延伸5min。
实施例4crtE基因和crtZ基因的功能验证
本实施例通过Gibson method构建有关克隆质粒,验证crtE基因和crtZ基因的功能。
图3所示为已知虾青素生物合成相关基因的克隆质粒pFZ153,其构建方法见下。
图4所示为将pFZ153中crtE基因替换为GENE3518后构建的质粒pTM3518。
图5所示为将pFZ153中crtZ基因替换为GENE2930后构建的质粒pTM2930。
图6所示为将pFZ153中crtZ基因替换为GENE1181后构建的质粒pTM1181。
1、产虾青素的阳性克隆质粒pFZ153的构建:
质粒pFZ153以pETDuet-1为骨架载体,插入片段crtEIB-idi-crtYZW完成,具体构建方法如下:
大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI(Fayin Zhu,In vitro reconstitution of mevalonate pathway and targetedengineering of farnesene overproduction in Escherichiacoli.Biotechnol.Bioeng.2014;111:1396–1405.),将idi基因片段从 pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87。
以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架。从CGMCC 1.2244基因组DNA扩增crtY和crtZ,引物分别为Idi-PagCrtY-F,CrtZ-PagCrtY-R;CrtY-PagCrtZ-F,CrtW-PagCrtZ-R。来源于Brevundimonas sp.SD212的CrtW经密码子优化后合成,以优化的CrtW(SEQ ID NO.7)为模板,用引物CrtZ-BreCrtW-F和BreCrtW-R扩增crtW。crtY、crtZ、crtW和质粒骨架四个片段用Giboson方法连接(Daniel G.Gibson,Enzymatic Assembly of Overlapping DNA Fragments,Methods in Enzymology,Volume498,2011,Pages 349-361.)获得pFZ152。
将经密码子优化的Pantoea ananatis的crtE(SEQ ID NO.8)、crtB(SEQ ID NO.9)和 crtI(SEQ ID NO.10)基因合成后(基因合成时在序列两端加NdeI和EcoRI酶切位点)克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23。
以构建pFZ152同样的方法分别以pFZ87,pFZ21,pFZ22,pFZ23为模板用引物PETduet-NcoI-R,pETduet-EcoRI-T7-F;Duet-PanCrtE-F,PanCrtI-CrtE-R;PanCrtE-CrtI-F, PanCrtB-CrtI-R;PanCrtI-CrtB-F,Duet-EcoRI-PanCrtB-R扩增质粒骨架,crtE,crtI和crtB,用Giboson方法连接获得质粒pFZ112。
将crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得pFZ153。
2、含有目的片段的pTM3518,pTM2930,pTM1181质粒构建:
该步PCR扩增模板均为质粒pFZ153。
(1)质粒构建所需片段的扩增
质粒pTM3518由片段GENE3518,pETDuet-1(3518),crtIB-idi-crtYZW(3518)构成。其中,GENE3518片段的扩增见实施例3。pETDuet-1(3518)和crtIB-idi-crtYZW(3518)片段的扩增如下:
利用引物PagCrtW-pETduet-F和PETduet-NcoI-R扩增出pETDuet-1(3518)片段,利用引物Pan3518-CrtI-F和BreCrtW-R扩增出crtIB-idi-crtYZW(3518)片段,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL 5×Q5reaction buffer,3.2μL 2.5mM dNTPs,2μL10mM 正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNAPolymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min,30个循环;最后以72℃延伸7min。
质粒pTM2930由片段GENE2930,crtW-pETDuet-1(2930),crtEIB-idi-crtY(2930)构成。其中,GENE2930片段的扩增见实施例3。crtW-pETDuet-1(2930)和crtEIB-idi-crtY(2930) 片段的扩增如下:
利用引物2930-BreCrtW-F和PETduet-NcoI-R扩增出crtW-pETDuet-1(2930)片段,利用引物Duet-PanCrtE-F和2930-PagCrtY-R扩增出crtEIB-idi-crtY(2930)片段,两个反应的 PCR反应体系均为40μL:23.4μL H2O,8μL 5×Q5reaction buffer,3.2μL 2.5mMdNTPs,2μL 10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min, 30个循环;最后以72℃延伸7min。
质粒pTM1181由片段GENE1181,crtW-pETDuet-1(1181),crtEIB-idi-crtY(1181)构成。其中,GENE1181片段的扩增见实施例3。crtW-pETDuet-1(1181)和crtEIB-idi-crtY(1181) 片段的扩增如下:
利用引物1181-BreCrtW-F和PETduet-NcoI-R扩增出crtW-pETDuet-1(1181)片段,利用引物Duet-PanCrtE-F和1181-PagCrtY-R2扩增出crtEIB-idi-crtY(1181)片段,两个反应的PCR 反应体系均为40μL:23.4μL H2O,8μL 5×Q5reaction buffer,3.2μL 2.5mMdNTPs,2μL 10mM 正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min, 30个循环;最后以72℃延伸7min。
(2)克隆质粒的获得
电泳鉴定PCR扩增产物正确后,经过胶回收各PCR扩增产物,用NanoDrop测定各PCR产物浓度。片段pETDuet-1(3518),crtIB-idi-crtYZW(3518),GENE3518;crtW-pETDuet-1(2930),crtEIB-idi-crtY(2930),GENE2930;crtW-pETDuet-1(1181),crtEIB-idi-crtY(1181), GENE1181分别用Giboson方法连接获得质粒pTM3518、pTM2930、pTM1181。
3、将质粒pTM3518、pTM2930、pTM1181、pFZ153分别转化感受态细胞MG1655(内含质粒pMH1、pFZ81(Fayin Zhu,In vitro reconstitution of mevalonate pathway andtargeted engineering of farnesene overproduction in Escherichia coli,Biotechnol.Bioeng.2014;111: 1396–1405.)。挑转化子于含有34μg/mL氯霉素、50μg/mL卡那霉素、100μg/mL氨苄青霉素的LB培养基中于37℃、220rpm培养过夜。以1%接种量转接200mL含有34μg/mL氯霉素、50μg/mL卡那霉素、100μg/mL氨苄青霉素的LB培养基30℃、200rpm培养,阴性对照为内含质粒pMH1和质粒pFZ81的MG1655菌株。OD600达到0.7-0.9时加终浓度0.1mM IPTG (异丙基-β-D-硫代半乳糖苷)诱导,培养15h后取样2mL,12000rpm离心3min,去上清,加1mL萃取剂(V丙酮:V甲醇=4:1),震荡打散菌体后,超声10min,13000rpm、4℃离心10min,取上清HPLC检测,提取过程避光。
4、产物高效液相色谱(HPLC)检测
HPLC分析条件:色谱柱:4.6×250mm 5μm DIONEX Acclaim 120C18。流动相:A:水,B:乙腈(0.1%甲酸);0min:50%B,5min:100%B,20min:100%B,25min:50%B,27min: 50%B。流速1mL/min。上样量:20μL。柱温:25℃。检测器:紫外多波长(VWD)检测器。标准品为1mg/L虾青素。
经HPLC检测结果(图7)可知,分别转化了pFZ153、pTM3518、pTM2930、pTM1181 质粒的MG1655(内含质粒pMH1、pFZ81)的各个菌株的提取产物,在与虾青素标准品的同一保留时间下,均可检测到虾青素的生成,但含量有高低差别。其中,转化质粒pTM3518的 MG1655菌株(内含质粒pMH1、pFZ81)虾青素产量可达2.5mg/L(如图8)。上述结果说明鞘氨醇单胞菌的crtE(GENE3518)基因、crtZ(GENE2930)基因和crtZ(GENE1181)基因具有相应的功能。
SEQUENCE LISTING
<110> 武汉生物技术研究院,武汉大学
<120> 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用
<130> 1
<160> 10
<170> PatentIn version 3.5
<210> 1
<211> 296
<212> PRT
<213> Sphingomonas ATCC 55669
<400> 1
Met Thr Thr Thr Leu Asp Ala Ala Leu Ala Arg Met Ser Ala Asp Ile
1 5 10 15
Asp Ala Arg Phe Ala Arg Leu Leu Ala Ile Pro Asp Asp Pro Arg Ala
20 25 30
Asp Leu Tyr Arg Ala Met Arg His Ala Ala Ile Gly Gly Gly Lys Arg
35 40 45
Leu Arg Pro Leu Leu Val Gly Ala Thr Ala Asp Leu Phe Gly Val Asp
50 55 60
Arg Asp Cys Ser Gly Asp Val Ala Leu Ala Val Glu Ala Ile His Val
65 70 75 80
Tyr Ser Leu Ile His Asp Asp Leu Pro Ala Met Asp Asp Asp Asp Leu
85 90 95
Arg Arg Gly Lys Pro Thr Val His Lys Ala Phe Asp Glu Ala Thr Ala
100 105 110
Ile Leu Ala Gly Asp Cys Leu His Ala Leu Ala Phe Glu Ile Leu Ala
115 120 125
Asp Pro Arg Thr His Ala Asp Pro Phe Val Arg Ala Glu Leu Val Met
130 135 140
Glu Leu Ala Arg Ala Ser Gly Pro Gly Gly Met Ala Gly Gly Gln Met
145 150 155 160
Met Asp Leu Val Ala Glu Arg Ser Arg Phe Asp Leu Ala Thr Val Thr
165 170 175
Arg Leu Gln Gln Met Lys Thr Gly Ala Leu Ile Ser Val Ser Val Glu
180 185 190
Leu Gly Ala Ile Leu Gly Arg Val Pro Pro Glu Gly Arg Arg Ser Leu
195 200 205
His Gly Tyr Ala His Asp Leu Gly Leu Ala Phe Gln Ile Ala Asp Asp
210 215 220
Leu Leu Asp Ala Glu Gly Asp Glu Ala Val Val Gly Lys Ala Leu Arg
225 230 235 240
Lys Asp Gly Glu Ala Gly Lys Glu Thr Phe Leu Ser Leu Leu Gly Val
245 250 255
Asp Arg Ala Arg Glu Gln Cys Arg Met Leu Val Asp Gln Ala Val Arg
260 265 270
His Leu His Gly Tyr Gly Ala Glu Ala Asp Val Leu Arg Glu Val Ala
275 280 285
Arg Tyr Val Val Glu Arg Asp Arg
290 295
<210> 2
<211> 891
<212> DNA
<213> Sphingomonas ATCC 55669
<400> 2
atgacgacga cgctcgatgc ggcactggcg cgcatgtccg cggacatcga cgcgcggttc 60
gcccggctgc tggcgatccc cgacgatccc cgcgccgatc tgtatcgcgc gatgcggcat 120
gcggcgatcg gcggcggcaa gcggctgcgg ccgctgctgg tcggcgcgac cgccgatctg 180
ttcggcgtcg accgcgactg ttcgggcgac gtcgcgctcg cggtggaggc gatccacgtc 240
tattcgctga tccacgacga tctgccggcg atggacgacg acgacctgcg ccgcggcaag 300
ccgaccgtcc acaaggcatt tgacgaggcg accgcgatcc tcgccggcga ctgcctgcac 360
gcgctggcgt tcgagatcct cgccgatccc aggacgcacg ccgatccctt cgtccgcgcc 420
gagctggtga tggaactggc gcgcgcctcc gggccgggcg gcatggccgg cgggcagatg 480
atggacctcg tcgccgaacg ctcgcgcttc gatctcgcca ccgtcacccg gctgcagcag 540
atgaagaccg gcgcgctgat ctccgtttcg gtggagctgg gtgcgatcct cggccgcgtg 600
ccgccggagg ggcggcgcag cctgcacggc tatgcgcacg acctcggcct cgccttccag 660
atcgccgacg acctgctcga tgccgagggc gacgaggcgg tggtcggcaa ggcgctgcgc 720
aaggacggcg aggcgggcaa ggagacgttc ctctcgctgc tcggcgtcga ccgggcgcgc 780
gagcaatgcc gcatgctcgt cgaccaggcg gtacggcacc tccacgggta cggcgccgaa 840
gccgacgtgc tgcgcgaggt cgcgcgctac gtcgtcgaac gcgatcgctg a 891
<210> 3
<211> 172
<212> PRT
<213> Sphingomonas ATCC 55669
<400> 3
Met Pro Trp Leu His Gly Ile Pro Leu Phe Leu Val Thr Val Ile Gly
1 5 10 15
Met Glu Ala Phe Ala Tyr Ala Ala His Arg Trp Val Met His Gly Pro
20 25 30
Gly Trp Phe Leu His Ala Ser His His Arg Lys Arg Thr Gly Ala Trp
35 40 45
Glu Leu Asn Asp Leu Tyr Ala Ala Ile Phe Ala Val Pro Ser Phe Val
50 55 60
Leu Leu Leu Gly Gly Leu Gln Trp Gly Trp Trp Pro Gly Phe Val Trp
65 70 75 80
Ile Gly Ala Gly Ile Ala Ala Tyr Gly Ala Ile Tyr Phe Gly Phe His
85 90 95
Asp Ile Ile Val His Gln Arg Ile Pro Thr Arg Tyr Leu Pro Arg Ser
100 105 110
Ala Tyr Met Arg Arg Ile Val Gln Ala His Arg Leu His His Val Val
115 120 125
Glu Thr Arg Glu Gly Asn Val Ser Phe Gly Phe Leu Val Ala Pro Arg
130 135 140
Pro Glu Asp Leu Lys Ala Glu Leu Lys Arg Arg Gly Arg Gln Gly Val
145 150 155 160
Arg Ala Pro Ala Ala Glu Gln Thr Leu Ala Glu Lys
165 170
<210> 4
<211> 519
<212> DNA
<213> Sphingomonas ATCC 55669
<400> 4
atgccctggc tccacggcat ccccctcttc ctcgtcaccg tgatcggcat ggaggcgttc 60
gcttatgccg cgcaccgctg ggtgatgcac ggcccgggct ggttcctgca cgcgagccat 120
catcgcaaac ggacaggcgc atgggagctc aacgacctct atgccgcgat cttcgcggtg 180
ccgtcgttcg ttctgctgct cggcgggctg caatggggct ggtggccggg attcgtctgg 240
atcggcgcgg ggatcgccgc ctacggcgcg atctacttcg gttttcacga catcatcgtt 300
caccagcgga tcccaacgcg ctatctcccg agatcggcgt acatgcgtcg catcgtccag 360
gcgcatcggc tgcatcacgt cgtcgagacg cgcgagggca acgtcagctt cggcttcctc 420
gtcgcgccgc gacccgaaga cctcaaggcc gaactcaaac gacgcggccg gcagggggtg 480
cgcgcaccgg ccgcggagca gacgttggca gaaaagtaa 519
<210> 5
<211> 155
<212> PRT
<213> Sphingomonas ATCC 55669
<400> 5
Met Ala Trp Tyr Glu Lys Leu Ala Val Val Val Gly Met Val Leu Phe
1 5 10 15
Met Glu Cys Phe Ala Trp Ala Thr His Lys Tyr Val Met His Gly Trp
20 25 30
Gly Trp Gly Trp His Arg Ser His His Glu Pro His Glu Gly Ala Phe
35 40 45
Glu Lys Asn Asp Leu Tyr Ala Ile Thr Phe Ala Val Ile Val Val Thr
50 55 60
Leu Phe Val Val Gly Leu Arg Trp Glu Pro Leu Trp Trp Ala Ala Leu
65 70 75 80
Gly Ile Thr Val Tyr Gly Gly Ile Tyr Ala Phe Val His Asp Met Met
85 90 95
Val His Gln Arg Phe Gly Met Arg Trp Val Pro Arg Arg Gly Tyr Ser
100 105 110
Lys Arg Leu Leu Gln Ala His Arg Leu His His Ala Val Lys Gly Lys
115 120 125
Glu Gly Gly Val Ser Phe Gly Phe Leu Phe Ala Pro Asp Pro Ala Lys
130 135 140
Leu Lys Arg Lys Leu Ala Asp Arg Val Gly Arg
145 150 155
<210> 6
<211> 468
<212> DNA
<213> Sphingomonas ATCC 55669
<400> 6
atggcctggt acgagaagct ggccgtggtt gtcggcatgg tgctgttcat ggagtgtttc 60
gcctgggcga cgcacaaata tgtcatgcac ggctggggct ggggctggca ccggtcgcat 120
cacgagccgc acgagggcgc gttcgagaag aacgatctct atgcgatcac cttcgcggtg 180
atcgtcgtca ccttgttcgt cgtcggcctg cgctgggagc ccttgtggtg ggcggcgttg 240
ggcatcaccg tctatggcgg tatctacgcc ttcgtccacg acatgatggt ccaccagcgg 300
ttcggcatgc gctgggtgcc gcggcgcggc tattccaagc ggctgttgca ggcgcaccgg 360
ctgcaccatg cggtgaaggg caaggagggc ggcgtcagct tcggcttcct gttcgcaccc 420
gatccggcga agctgaagcg caagctcgcc gatcgcgtcg ggcgatga 468
<210> 7
<211> 735
<212> DNA
<213> Brevundimonas sp. SD212
<400> 7
atgaccgccg cagtggcaga gccgcgtatc gttccgcgtc agacctggat tggcctgacc 60
ctggccggca tgattgttgc cggctggggc agcctgcatg tttacggcgt gtacttccac 120
cgctggggca ccagtagcct ggtgatcgtg ccggccatcg tggcagtgca gacctggctg 180
agcgtgggcc tgttcatcgt ggcacacgac gcaatgcacg gtagtttagc cccgggtcgt 240
cctcgtttaa acgccgccgt gggtcgtctg accttaggcc tgtacgccgg ctttcgcttc 300
gaccgcctga agaccgccca tcacgcacac catgcagcac ctggtaccgc cgacgacccg 360
gatttctatg caccggcacc tcgcgccttc ttaccgtggt tcctgaactt cttccgcacc 420
tacttcggct ggcgcgagat ggccgtgtta accgccctgg tgctgatcgc cttattcggt 480
ctgggtgcac gccctgccaa cctgctgacc ttctgggcag cccctgcact gctgagcgcc 540
ttacagctgt tcaccttcgg cacatggctg ccgcaccgcc ataccgatca gccgtttgcc 600
gacgcccacc atgcacgtag cagtggctac ggccctgtgc tgagcctgct gacctgcttc 660
cattttggcc gccaccatga gcaccacctg acaccttggc gtccgtggtg gcgcttatgg 720
cgtggtgaga gctaa 735
<210> 8
<211> 909
<212> DNA
<213> Pantoea ananatis
<400> 8
atgaccgtgt gtgcgaaaaa acatgtgcat ctgacccgtg acgccgccga acaactgctg 60
gccgacatcg accgccgcct ggatcaactg ctgccggttg aaggcgaacg tgatgtggtt 120
ggtgcagcaa tgcgtgaagg cgcgctggca ccgggtaaac gtattcgccc gatgctgctg 180
ctgctgaccg cgcgtgatct gggttgcgca gtcagtcacg atggtctgct ggacctggca 240
tgtgctgtcg aaatggttca tgcggctagc ctgatcctgg atgacatgcc gtgcatggat 300
gacgcaaaac tgcgtcgcgg tcgtccgacc attcatagcc actatggtga acacgttgca 360
atcctggcag cagtcgcact gctgtctaaa gcctttggcg tgattgcaga tgcagacggt 420
ctgacgccgc tggcaaaaaa ccgtgctgtc agtgaactgt ccaatgcgat cggtatgcag 480
ggtctggtgc agggccaatt caaagacctg agtgaaggtg acaaaccgcg ctccgcagaa 540
gctattctga tgaccaacca ctttaaaacc tctacgctgt tctgcgcatc tatgcagatg 600
gcttctatcg ttgcgaatgc cagctctgaa gcccgtgatt gtctgcatcg ctttagcctg 660
gatctgggcc aggcattcca actgctggat gacctgaccg atggcatgac cgacacgggt 720
aaagattcaa accaggacgc gggcaaatcg acgctggtga atctgctggg tccgcgtgca 780
gttgaagaac gtctgcgcca gcatctgcaa ctggcttcag aacacctgtc ggcagcttgt 840
caacatggtc acgcaacgca gcacttcatc caagcctggt tcgataaaaa actggcagcg 900
gtgtcgtaa 909
<210> 9
<211> 930
<212> DNA
<213> Pantoea ananatis
<400> 9
atgaataatc cgtccctgct gaatcacgct gttgaaacga tggctgtcgg ctctaaatca 60
tttgctaccg cttctaaact gttcgacgca aaaacccgtc gctccgttct gatgctgtat 120
gcgtggtgcc gtcattgtga tgacgtcatt gatgaccaga cgctgggttt tcaggcacgt 180
caaccggcac tgcagacccc ggaacaacgt ctgatgcagc tggaaatgaa aacgcgccaa 240
gcatacgctg gtagccagat gcacgaaccg gcctttgcgg ccttccagga agtcgcgatg 300
gcccatgata ttgcaccggc ttatgcgttt gaccacctgg aaggcttcgc gatggatgtg 360
cgtgaagcac agtactctca actggatgac accctgcgct attgctacca tgtggcgggc 420
gtggttggtc tgatgatggc ccagatcatg ggcgttcgtg ataacgcaac cctggatcgt 480
gcgtgcgacc tgggtctggc tttccagctg acgaatattg cacgtgatat cgtggatgac 540
gcccatgcag gccgctgtta tctgccggcg tcatggctgg aacacgaagg tctgaacaaa 600
gaaaattacg cagctccgga aaaccgtcaa gctctgtcgc gcatcgcgcg tcgcctggtt 660
caggaagccg aaccgtatta cctgagcgct accgcaggtc tggcaggtct gccgctgcgt 720
tctgcctggg caattgctac ggcgaaacaa gtctatcgca aaatcggcgt caaagtggaa 780
caggctggtc agcaagcgtg ggatcagcgt caaagtacca cgaccccgga aaaactgacc 840
ctgctgctgg cggcctccgg tcaggcgctg acctcccgta tgcgtgctca tccgccgcgt 900
ccggcccatc tgtggcaacg tccgctgtaa 930
<210> 10
<211> 1479
<212> DNA
<213> Pantoea ananatis
<400> 10
atgaaaccga ccacggtgat tggtgctggc tttggcggcc tggctctggc gattcgtctg 60
caagcggctg gcattccggt gctgctgctg gaacagcgtg ataaaccggg cggtcgcgcc 120
tatgtttacg aagatcaagg ctttaccttc gacgctggtc cgaccgtcat tacggacccg 180
agtgcgatcg aagaactgtt tgcgctggcc ggcaaacagc tgaaagaata tgttgaactg 240
ctgccggtca ccccgtttta ccgtctgtgc tgggaatctg gtaaagtgtt caactatgat 300
aatgaccaga cgcgcctgga agctcaaatt cagcaattca acccgcgtga tgttgaaggc 360
tatcgccagt ttctggacta cagtcgtgcc gtgttcaaag aaggctatct gaaactgggt 420
accgttccgt ttctgtcctt ccgtgatatg ctgcgtgcag ccccgcagct ggcaaaactg 480
caagcctggc gtagcgtgta ttctaaagtt gctagctaca tcgaagatga acacctgcgc 540
caggcgttta gtttccattc cctgctggtt ggcggcaatc cgtttgccac cagctctatt 600
tatacgctga tccatgcact ggaacgtgaa tggggtgtct ggtttccgcg cggcggtacc 660
ggcgcgctgg tgcagggtat gattaaactg ttccaggatc tgggcggcga agtggttctg 720
aacgcccgcg ttagccacat ggaaaccacg ggcaataaaa tcgaagcagt ccatctggaa 780
gatggtcgtc gctttctgac ccaggcagtg gcttctaacg cagatgtcgt gcacacgtat 840
cgtgacctgc tgagccagca tccggcagct gtgaaacagt ctaacaaact gcaaaccaaa 900
cgcatgtcaa attcgctgtt tgttctgtac ttcggcctga accatcacca tgatcagctg 960
gcgcaccata cggtctgttt tggcccgcgt tatcgcgaac tgattgacga aatctttaat 1020
cacgatggtc tggcggaaga cttctcactg tacctgcacg cgccgtgcgt gaccgatagt 1080
tccctggcac cggaaggctg tggttcgtat tacgtcctgg caccggtgcc gcacctgggt 1140
accgctaacc tggattggac ggtggaaggt ccgaaactgc gtgaccgcat ttttgcctat 1200
ctggaacagc actacatgcc gggcctgcgt agccaactgg ttacccatcg catgttcacg 1260
ccgtttgatt tccgtgacca gctgaatgca tatcatggtt cagctttttc ggttgaaccg 1320
gtcctgaccc aatccgcatg gttccgtccg cacaaccgcg ataaaaccat tacgaatctg 1380
tacctggttg gcgcgggtac gcatccgggc gccggtatcc cgggtgtgat tggctcggcg 1440
aaagcgacgg ctggcctgat gctggaagac ctgatttaa 1479
Claims (4)
1.鞘氨醇单胞菌的β–胡萝卜素羟化酶,其特征在于:氨基酸序列如SEQ ID NO.3或4所示。
2.权利要求1所述的β–胡萝卜素羟化酶的编码基因,其特征在于:核苷酸序列如SEQ IDNO.5或6所示。
3.权利要求1所述的β–胡萝卜素羟化酶或权利要求2所述的编码基因在生产虾青素中的应用。
4.一种生产虾青素的方法,其特征在于包括如下步骤:将产虾青素质粒中的crtZ基因替换为权利要求1所述的β–胡萝卜素羟化酶的编码基因;再将基因替换后的质粒转化到大肠杆菌中,通过诱导表达生产虾青素;
所述的产虾青素质粒为pFZ153,其构建包括如下步骤:
(1)大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI,将idi基因片段从pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87;
(2)以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架;
从CGMCC 1.2244基因组DNA扩增crtY和crtZ,引物分别为Idi-PagCrtY-F、CrtZ-PagCrtY-R,CrtY-PagCrtZ-F、CrtW-PagCrtZ-R;
合成SEQ ID NO.7所示的CrtW,以其为模板用引物CrtZ-BreCrtW-F和BreCrtW-R扩增crtW;
crtY、crtZ、crtW和质粒骨架四个片段用Giboson方法连接获得pFZ152;
(3)合成序列分别如SEQ ID NO.8、9、10所示的crtE、crtB和crtI,将crtE、crtB和crtI分别克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23;
(4)以构建pFZ152同样的方法分别以pFZ87、pFZ21、pFZ22、pFZ23为模板用引物PETduet-NcoI-R、pETduet-EcoRI-T7-F,Duet-PanCrtE-F、PanCrtI-CrtE-R,PanCrtE-CrtI-F、PanCrtB-CrtI-R,PanCrtI-CrtB-F、Duet-EcoRI-PanCrtB-R扩增质粒骨架,crtE,crtI和crtB,用Giboson方法连接获得质粒pFZ112;
(5)将crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得pFZ153;
上述各引物序列如下:
PagCrtY-Idi-R:CAGATCATACCGCGGCATAGTGTAATCCTCCTTTATTTAAGCTGGGTAAATG,
PagCrtW-pETduet-F:CTTATGGCGTGGTGAGAGCTAACTCGAGTCTGGTAAAGAAACCGC,
Idi-PagCrtY-F:ACCCAGCTTAAATAAAGGAGGATTACACTATGCCGCGGTATGATCTGATTC,
CrtZ-PagCrtY-R:GCATTCCAAATCCACAACATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC,
CrtY-PagCrtZ-F:CAGGCGATGCAATGAAGGAGGATTACTATATGTTGTGGATTTGGAATGCCCTGA,
CrtW-PagCrtZ-R:CCACTGCGGCGGTCATTACTCATTCCTCCTTTACTTCCCGGGTGGCGCGTC,
CrtZ-BreCrtW-F:CGCCACCCGGGAAGTAAAGGAGGAATGAGTAATGACCGCCGCAGTGGCAGAG,
BreCrtW-R:GCGGTTTCTTTACCAGACTCGAGTTAGCTCTCACCACGCCATAAG,
PETduet-NcoI-R:CATGGTATATCTCCTTCTTAAAGTTAAAC,
pETduet-EcoRI-T7-F:TAACTAGTGAATTCGAGCTCGGCGCGCCTG,
Duet-PanCrtE-F:GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACCGTGTGTGCGAAAAAAC,
PanCrtI-CrtE-R:TCACCGTGGTCGGTTTCATGGTTAATTCCTCCTTTACGACACCGCTGCCAG,
PanCrtE-CrtI-F:CTGGCAGCGGTGTCGTAAAGGAGGAATTAACCATGAAACCGACCACGGTGA,
PanCrtB-CrtI-R:TCAGCAGGGACGGATTATTCATGAGTATTACCTCCTTTAAATCAGGTCTTCCAGCATC,
PanCrtI-CrtB-F:GATGCTGGAAGACCTGATTTAAAGGAGGTAATACTCATGAATAATCCGTCCCTGCTGA,
Duet-EcoRI-PanCrtB-R:TTGTCGACCTGCAGGCGCGCCGAGCTCGAATTCACTAGTTAAACGGGGCGCTGCCAGAG。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710534520.4A CN107142250B (zh) | 2014-09-03 | 2014-09-03 | 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410447259.0A CN104232595B (zh) | 2014-09-03 | 2014-09-03 | 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法 |
CN201710534520.4A CN107142250B (zh) | 2014-09-03 | 2014-09-03 | 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410447259.0A Division CN104232595B (zh) | 2014-09-03 | 2014-09-03 | 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107142250A true CN107142250A (zh) | 2017-09-08 |
CN107142250B CN107142250B (zh) | 2019-09-10 |
Family
ID=52221497
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710335486.8A Pending CN107129995A (zh) | 2014-09-03 | 2014-09-03 | 一种产虾青素基因工程菌的构建方法 |
CN201710534520.4A Active CN107142250B (zh) | 2014-09-03 | 2014-09-03 | 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用 |
CN201410447259.0A Active CN104232595B (zh) | 2014-09-03 | 2014-09-03 | 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710335486.8A Pending CN107129995A (zh) | 2014-09-03 | 2014-09-03 | 一种产虾青素基因工程菌的构建方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410447259.0A Active CN104232595B (zh) | 2014-09-03 | 2014-09-03 | 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法 |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN107129995A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109750021A (zh) * | 2019-03-25 | 2019-05-14 | 中国海洋大学 | 一种扇贝类胡萝卜素氧化裂解酶基因及其应用 |
CN111454854A (zh) * | 2020-05-02 | 2020-07-28 | 昆明理工大学 | 一株产虾青素的红冬孢酵母基因工程菌株 |
CN112029782A (zh) * | 2020-09-11 | 2020-12-04 | 深圳大学 | 一种β-胡萝卜素羟化酶及其基因与应用 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106318878B (zh) * | 2015-07-06 | 2019-12-20 | 中国科学院青岛生物能源与过程研究所 | 一种高产虾青素红酵母工程菌及其构建方法 |
CN111032855A (zh) * | 2017-06-01 | 2020-04-17 | 尼普生物股份有限公司 | 微生物体中异源类胡萝卜素的产生 |
CN107858395A (zh) * | 2017-12-21 | 2018-03-30 | 杭州爱蔻思生物科技有限公司 | 制备天然虾青素和其他类胡萝卜素的同步萃取发酵方法 |
CN109536518A (zh) * | 2018-10-31 | 2019-03-29 | 昆明理工大学 | 一种八氢番茄红素脱氢酶基因RKcrtI及其应用 |
CN109652388B (zh) * | 2018-12-20 | 2021-05-04 | 江南大学 | 一段可用于编码番茄红素脱氢酶的基因 |
CN115807026B (zh) * | 2022-08-01 | 2023-09-01 | 深圳大学 | 一种莱茵衣藻中虾青素合成路径的构建方法及应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101432436A (zh) * | 2004-08-16 | 2009-05-13 | 纳幕尔杜邦公司 | 类胡萝卜素羟化酶 |
US7999151B2 (en) * | 2004-06-04 | 2011-08-16 | Kirin Holdings Kabushiki Kaisha | Method of producing astaxanthin or metabolic product thereof by using carotenoid ketolase and carotenoid hydroxylase genes |
CN103805623A (zh) * | 2014-01-17 | 2014-05-21 | 河北大学 | 一种虾青素合成基因重组质粒及其制备方法和用途 |
CN103865818A (zh) * | 2012-12-07 | 2014-06-18 | 上海来益生物药物研究开发中心有限责任公司 | 一种产虾青素基因工程菌的构建方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103773729B (zh) * | 2012-10-22 | 2017-07-11 | 中国科学院上海生命科学研究院 | 高效合成萜类化合物的重组大肠杆菌底盘细胞及其制法和应用 |
-
2014
- 2014-09-03 CN CN201710335486.8A patent/CN107129995A/zh active Pending
- 2014-09-03 CN CN201710534520.4A patent/CN107142250B/zh active Active
- 2014-09-03 CN CN201410447259.0A patent/CN104232595B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7999151B2 (en) * | 2004-06-04 | 2011-08-16 | Kirin Holdings Kabushiki Kaisha | Method of producing astaxanthin or metabolic product thereof by using carotenoid ketolase and carotenoid hydroxylase genes |
CN101432436A (zh) * | 2004-08-16 | 2009-05-13 | 纳幕尔杜邦公司 | 类胡萝卜素羟化酶 |
CN103865818A (zh) * | 2012-12-07 | 2014-06-18 | 上海来益生物药物研究开发中心有限责任公司 | 一种产虾青素基因工程菌的构建方法 |
CN103805623A (zh) * | 2014-01-17 | 2014-05-21 | 河北大学 | 一种虾青素合成基因重组质粒及其制备方法和用途 |
Non-Patent Citations (4)
Title |
---|
FAYIN ZHU等: "In Vitro Reconstitution of Mevalonate Pathway and Targeted Engineering of Farnesene Overproduction in Escherichia coli", 《BIOTECHNOLOGY AND BIOENGINEERING》 * |
LUAN TAO等: "Engineering a β-carotene ketolase for astaxanthin production", 《METABOLIC ENGINEERING》 * |
SEON-KANG CHOI等: "Characterization of β-Carotene Ketolases, CrtW, from Marine Bacteria by Complementation Analysis in Escherichia coli", 《MARINE BIOTECHNOLOGY》 * |
刘晓瑞: "一株鞘氨醇杆菌合成类胡萝卜素的分子机制和代谢杂环的氧化压力研究", 《中国博士学位论文全文数据库基础科学辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109750021A (zh) * | 2019-03-25 | 2019-05-14 | 中国海洋大学 | 一种扇贝类胡萝卜素氧化裂解酶基因及其应用 |
CN111454854A (zh) * | 2020-05-02 | 2020-07-28 | 昆明理工大学 | 一株产虾青素的红冬孢酵母基因工程菌株 |
CN112029782A (zh) * | 2020-09-11 | 2020-12-04 | 深圳大学 | 一种β-胡萝卜素羟化酶及其基因与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN104232595B (zh) | 2017-07-11 |
CN104232595A (zh) | 2014-12-24 |
CN107142250B (zh) | 2019-09-10 |
CN107129995A (zh) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107142250B (zh) | 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用 | |
CN111712570B (zh) | 一种生产阿洛酮糖及其衍生物的工程菌株及其构建方法和应用 | |
CN113652385B (zh) | 一种高产乳酰-n-四糖的微生物的构建方法及应用 | |
CN104357418B (zh) | 一种糖基转移酶及其突变体在合成人参皂苷Rh2中的应用 | |
CN106190937A (zh) | 一种构建重组大肠杆菌生物合成2’‑岩藻乳糖的方法 | |
CN113684164B (zh) | 一种高产乳酰-n-新四糖的微生物的构建方法及应用 | |
CN104762247B (zh) | 提高生产子囊霉素产量的基因工程菌株及构建方法 | |
CN114107152B (zh) | 一种高产3-岩藻糖基乳糖微生物的构建方法及应用 | |
CN103243066A (zh) | 一种生产番茄红素的菌株及其应用 | |
CN108753808A (zh) | 一种重组表达载体、重组表达宿主及其用于合成腺苷三磷酸的方法 | |
CN107794273A (zh) | 一种合成dl‑丙氨酸的三基因共表达载体及应用 | |
Xie et al. | Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria | |
CN114874964A (zh) | 一种高产2′-岩藻糖基乳糖的重组大肠杆菌的构建方法及应用 | |
CN105779489B (zh) | 利用Pcry3Aa启动子构建高表达海藻糖合成酶工程菌的方法 | |
CN107354118A (zh) | 一种具有γ‑松油烯合成能力的基因工程菌及其构建方法与应用 | |
CN104862326B (zh) | 一种绿僵菌氧甲基转移酶及其应用 | |
CN113832092A (zh) | 一种提高乳酰-n-岩藻五糖产量的基因工程菌及其生产方法 | |
CN111607546B (zh) | 一种高产法尼烯的基因工程菌及其构建方法与应用 | |
CN116411002A (zh) | 一种高产核苷酸糖的工程菌及其制备方法 | |
CN113174397B (zh) | 一种利用无细胞体系高效合成番茄红素的方法 | |
CN109055417A (zh) | 一种重组微生物、其制备方法及其在生产辅酶q10中的应用 | |
CN115820702A (zh) | 一种重组大肠杆菌静息细胞催化异戊烯醇高效制备冷杉醇的方法 | |
JP5526381B2 (ja) | セスキテルペン変換酵素遺伝子及びそれを利用した酸化セスキテルペンの製造方法 | |
WO2022094445A1 (en) | Genome-modified bacterial strains for large scale bioprocesses | |
JP2011125272A (ja) | 新規セスキテルペン合成酵素遺伝子及びそれを利用したセスキテルペンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |