CN104232595B - 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法 - Google Patents

鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法 Download PDF

Info

Publication number
CN104232595B
CN104232595B CN201410447259.0A CN201410447259A CN104232595B CN 104232595 B CN104232595 B CN 104232595B CN 201410447259 A CN201410447259 A CN 201410447259A CN 104232595 B CN104232595 B CN 104232595B
Authority
CN
China
Prior art keywords
astaxanthin
cell
crte
sphingol single
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410447259.0A
Other languages
English (en)
Other versions
CN104232595A (zh
Inventor
刘天罡
马田
周袁杰
朱发银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN INSTITUTE OF BIOTECHNOLOGY
Wuhan University WHU
Original Assignee
WUHAN INSTITUTE OF BIOTECHNOLOGY
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN INSTITUTE OF BIOTECHNOLOGY, Wuhan University WHU filed Critical WUHAN INSTITUTE OF BIOTECHNOLOGY
Priority to CN201410447259.0A priority Critical patent/CN104232595B/zh
Priority to CN201710335486.8A priority patent/CN107129995A/zh
Priority to CN201710534520.4A priority patent/CN107142250B/zh
Publication of CN104232595A publication Critical patent/CN104232595A/zh
Application granted granted Critical
Publication of CN104232595B publication Critical patent/CN104232595B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0093Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012671-Deoxy-D-xylulose-5-phosphate reductoisomerase (1.1.1.267)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13129Beta-carotene 3-hydroxylase (1.14.13.129)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y117/00Oxidoreductases acting on CH or CH2 groups (1.17)
    • C12Y117/01Oxidoreductases acting on CH or CH2 groups (1.17) with NAD+ or NADP+ as acceptor (1.17.1)
    • C12Y117/010024-Hydroxy-3-methylbut-2-enyl diphosphate reductase (1.17.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/010071-Deoxy-D-xylulose-5-phosphate synthase (2.2.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01029Geranylgeranyl diphosphate synthase (2.5.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0103215-Cis-phytoene synthase (2.5.1.32)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/011484-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase (2.7.1.148)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07062-C-Methyl-D-erythritol 4-phosphate cytidylyltransferase (2.7.7.60)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y406/00Phosphorus-oxygen lyases (4.6)
    • C12Y406/01Phosphorus-oxygen lyases (4.6.1)
    • C12Y406/010122-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (4.6.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01019Lycopene beta-cyclase (5.5.1.19)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法。本发明证实鞘氨醇单胞菌可以产生虾青素,含有能够产生虾青素的生物合成途径,发现鞘氨醇单胞菌中通过MEP途径和类胡萝卜素合成途径生成虾青素;并进一步证明该菌株中存在与现有已知基因同源性较低的crtEcrtZ基因在合成虾青素中的功能。本发明公开的鞘氨醇单胞菌的虾青素生物合成途径所需的酶及其编码基因现有技术均未报道,为生物合成代谢改造类胡萝卜素提供更多资源。鞘氨醇单胞菌可以以pBBR1MCS2为载体、EGFP为报告基因进行遗传操作,为这类环境微生物的遗传改造及降解机制的发现建立了基础。

Description

鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌 遗传操作的方法
技术领域
本发明涉及生物技术领域,具体涉及鞘氨醇单胞菌的虾青素生物合成酶及其编码基因,及在鞘氨醇单胞菌中进行遗传操作的方法。
背景技术
虾青素(Astaxanthin,又称变胞藻黄素或虾红素),属于酮式类胡萝卜素,是一种较强的天然抗氧化剂。其独特的分子结构不但使其具有超强的抗氧化活性,还具有抗衰老、抗辐射、抗肿瘤及预防心脑血管疾病的作用。目前,虾青素已在食品、饲料、保健品市场等广泛应用。然而天然虾青素的来源非常有限,目前,虾青素大多采用传统突变技术产生的Pfaffia菌株和微藻生产,但是,Pfaffia发酵存在发酵周期长的缺点,而从藻类中获得产物的生产技术仍不成熟。因此,开发新的天然虾青素资源具有重要意义。
鞘氨醇单胞菌是革兰氏阴性菌,1990年被鉴定,专性需氧,以单侧生极性鞭毛运动,多呈黄色。其黄色菌落多是由于产生类胡萝卜素导致。细胞膜与一般的革兰氏阴性菌不同,为鞘糖脂,这也使得对其的遗传操作还未成熟。目前,在Sphingomonas ATCC55669中尚无任何基因方面的信息报道,也未有相关遗传操作的文献,即使是该菌株所在的属也鲜有报道。目前,鞘氨醇单胞菌多可降解多元化的芳环化合物,是环境微生物的研究热点,其遗传操作的建立为进一步利用其降解机制建立了基础。
虾青素生物合成途径已被广泛研究并取得了巨大进展,大量关键酶基因得到克隆。目前已知的类胡萝卜素均通过类异戊二烯化合物或萜类化合物途径合成。其中,非甲羟戊酸途径MEP(nonmevalonate pathway)途径广泛存在于细菌中,它以糖酵解中间代谢物丙酮酸和3-磷酸甘油醛为前体,在脱氧木酮糖磷酸合酶作用下生成脱氧木酮糖磷酸,然后受脱氧木酮糖磷酸还原酶和异构酶催化,通过还原和异构反应将脱氧木酮糖磷酸转变成2-甲基赤藓糖醇-4-磷酸(MEP)。经胞苷三磷酸活化,腺苷三磷酸磷酸化,从而形成甲基赤藓糖醇环化焦磷酸,然后转变成IPP(异戊烯焦磷酸),IPP异构化形成DMAPP(二甲基丙烯基二磷酸)。IPP和DMAPP是合成虾青素途径的前体物质。两者在IPP异构酶作用下相互转换达到平衡,在crtE(牻牛儿基牻牛儿基焦磷酸合成酶)作用下,1个DMAPP与3个IPP分子缩合生成GGPP(牻牛儿基牻牛儿基焦磷酸)。2分子GGPP在crtB(八氢番茄红素合成酶)作用下形成第一个无色的类胡萝卜素——八氢番茄红素。八氢番茄红素经过连续的脱氢步骤(crtI)生成番茄红素。番茄红素在crtY(番茄红素β-环化酶)的作用下生成β-胡萝卜素。β-胡萝卜素在crtZ(β-胡萝卜素羟化酶)和crtW(β-胡萝卜素酮酶)的一系列作用下生成虾青素(如图1)。
通过丰富不同来源的虾青素生物合成相关基因,经重组DNA技术筛选,从而增加虾青素生物合成的生产能力,是缩短发酵周期,提高虾青素生物合成产率的重要途径,从而为虾青素进一步工业化生产打下基础。
发明内容
本发明的目的在于提供鞘氨醇单胞菌的虾青素生物合成途径所需的酶,以及这些酶的编码基因。此外,本发明还提供一种在鞘氨醇单胞菌中进行遗传操作的方法。
本发明的目的通过下述技术方案实现:
本发明通过对鞘氨醇单胞菌的提取产物进行检测,证实鞘氨醇单胞菌可以产生虾青素,含有能够产生虾青素的生物合成途径。将鞘氨醇单胞菌基因组信息在NCBI Blastp中进行比对,发现鞘氨醇单胞菌中存在MEP途径,该途径从丙酮酸经dxs,dxr,ispE,ispDF,ispG,ispH合成IPP和DMAPP;IPP和DMAPP经类胡萝卜素合成途径通过crtE,crtB,crtI,crtY,crtZ,crtW生成虾青素。在鞘氨醇单胞菌合成虾青素的这条线性通路中,所得基因除crtE,crtZ,其他基因均为唯一,并进一步证实了与现有已知基因同源性较低的crtE、crtZ基因具有相应的功能。
鞘氨醇单胞菌的虾青素生物合成途径所需的酶为如下一种或多种:
1-脱氧-D-木酮糖-5-磷酸合成酶(dxs),为641个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.1所示;该1-脱氧-D-木酮糖-5-磷酸合成酶的编码基因为GENE0427,其核苷酸序列如SEQ ID NO.2所示;
1-脱氧-D-木酮糖-5-磷酸还原异构酶(dxr),为386个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.3所示;该1-脱氧-D-木酮糖-5-磷酸还原异构酶的编码基因为GENE0904,其核苷酸序列如SEQ ID NO.4所示;
4-焦磷酸胞苷酰-2-C-甲基-D-赤藓糖醇激酶(ispE),为277个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.5所示;该4-焦磷酸胞苷酰-2-C-甲基-D-赤藓糖醇激酶的编码基因为GENE0171,其核苷酸序列如SEQ ID NO.6所示;
2-C-甲基-D-赤藓糖醇-胞苷酰转移酶和2-C-甲基-D-赤藓糖醇2,4-环二磷酸合酶(ispD&ispF)(在鞘氨醇单胞菌中为一个合酶),为345个氨基酸组成的一个蛋白质,其氨基酸序列如SEQ ID NO.7所示;该合酶的编码基因为GENE0666,其核苷酸序列如SEQ ID NO.8所示;
(E)-4-羟基-3-甲基-2-丁烯-二磷酸合酶(ispG),为378个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.9所示;该(E)-4-羟基-3-甲基-2-丁烯-二磷酸合酶的编码基因为GENE3357,其核苷酸序列如SEQ ID NO.10所示;
4-羟基-3-甲基-2-丁烯-二磷酸还原酶(ispH),为323个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.11所示;该4-羟基-3-甲基-2-丁烯-二磷酸还原酶的编码基因为GENE1218,其核苷酸序列如SEQ ID NO.12所示;
GGPP合成酶(crtE),为296个氨基酸组成的蛋白质,其氨基酸序列如SEQ ID NO.13所示;该GGPP合成酶的编码基因为GENE3518,其核苷酸序列如SEQ ID NO.14所示;
八氢番茄红素合成酶(crtB),为316个氨基酸组成的蛋白质,其氨基酸序列如SEQID NO.15所示;该八氢番茄红素合成酶的编码基因为GENE3077,其核苷酸序列如SEQ IDNO.16所示;
八氢番茄红素脱氢酶(crtI),为491个氨基酸组成的蛋白质,其氨基酸序列如SEQID NO.17所示;该八氢番茄红素脱氢酶的编码基因为GENE3193,其核苷酸序列如SEQ IDNO.18所示;
番茄红素β-环化酶(crtY),为388个氨基酸组成的蛋白质,其氨基酸序列如SEQ IDNO.19所示;该番茄红素β-环化酶的编码基因为GENE3194,其核苷酸序列如SEQ ID NO.20所示;
β–胡萝卜素羟化酶(crtZ),为172个氨基酸组成的蛋白质,其氨基酸序列如SEQ IDNO.21所示;该β–胡萝卜素羟化酶的编码基因为GENE2930,其核苷酸序列如SEQ ID NO.22所示;或β–胡萝卜素羟化酶(crtZ),为155个氨基酸组成的蛋白质,其氨基酸序列如SEQ IDNO.23所示;该β–胡萝卜素羟化酶的编码基因为GENE1181,其核苷酸序列如SEQ ID NO.24所示;
β-胡萝卜素酮酶(crtW),为238个氨基酸组成的蛋白质,其氨基酸序列如SEQ IDNO.25所示;该β-胡萝卜素酮酶的编码基因为GENE1182,其核苷酸序列如SEQ ID NO.26所示。
上述鞘氨醇单胞菌的虾青素生物合成途径所需的酶或其编码基因在生产虾青素中的应用。
一种生产虾青素的方法,包括如下步骤:将产虾青素质粒中的虾青素生物合成途径所需的酶的基因替换为上述相应的酶的编码基因;再将基因替换后的质粒转化到大肠杆菌中,通过诱导表达生产虾青素。
优选的,一种生产虾青素的方法,包括如下步骤:将产虾青素质粒中的crtE基因或crtZ基因替换为上述GGPP合成酶或β–胡萝卜素羟化酶的编码基因;再将基因替换后的质粒转化到大肠杆菌中,通过诱导表达生产虾青素。所述的产虾青素质粒优选为pFZ153。
一种在鞘氨醇单胞菌中进行遗传操作的方法,所用载体为pBBR1MCS2,报告基因为EGFP(加强型绿色荧光蛋白)。
本发明具有如下优点和效果:
本发明证实鞘氨醇单胞菌可以产生虾青素,含有能够产生虾青素的生物合成途径;发现鞘氨醇单胞菌中通过MEP途径和类胡萝卜素合成途径生成虾青素。在鞘氨醇单胞菌合成虾青素的这条线性通路中,所得基因除crtE、crtZ,其他基因均为唯一,并进一步证实了与现有已知基因同源性较低(GENE3518基因与目前已知crtE基因的同源性低于30%,GENE2930和GENE1181与目前已知crtZ基因的同源性约为60%)的crtE、crtZ基因具有相应的功能。
鞘氨醇单胞菌的虾青素生物合成途径所需的酶及其编码基因现有技术均未报道,丰富了细菌生物合成类胡萝卜素的基因多样性,并为生物合成代谢改造类胡萝卜素提供更多资源。
本发明提出了首次在Sphingomonas ATCC55669进行遗传操作的方法,为这类环境微生物的遗传改造及降解机制的发现建立了基础。
附图说明
图1是虾青素合成路线图。
图2是LC-MS检测Sphingomonas ATCC55669中虾青素结果。
图3是pFZ153质粒图谱。
图4是pTM3518质粒图谱。
图5是pTM2930质粒图谱。
图6是pTM1181质粒图谱。
图7是HPLC检测转化不同质粒的MG1655菌株的虾青素生成;2-5分别是转化pFZ153、pTM3518、pTM2930和pTM1181的菌株,1是虾青素标准品(浓度为1ppm)。
图8是转化不同质粒的MG1655菌株的虾青素产量对比。
图9是荧光显微镜检测外源EGFP蛋白在Sphingomonas ATCC55669中的表达,(A)和(B)分别是转化pBBR1MCS2和pTMB2E质粒的Sphingomonas ATCC55669。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。
除非有特殊说明,本发明中的寡核苷酸引物由苏州金唯智生物科技有限公司合成;DNA序列测定由苏州金唯智生物科技有限公司完成;除非特殊说明,本发明所用限制性内切酶、核酸外切酶、连接酶均购自NEB,DNA片段回收采用OMEGA DNA凝胶回收试剂盒,按说明书方法操作;PCR纯化采用Axygen试剂盒,按说明书方法操作。
下述实施例中所用引物见下表。
实施例1 鞘氨醇单胞菌中虾青素产物的检测
提取鞘氨醇单胞菌Sphingomonas ATCC55669(从ATCC购买)代谢产物,方法如下:
将菌种在#272培养基平板(营养肉汤8g/L,葡萄糖5g/L,琼脂1.6%)上活化,于26℃培养。挑菌落至5mL#272培养基(营养肉汤8g/L,葡萄糖5g/L)中26℃、220rpm培养,24h后转接至100mL#272培养基中26℃、220rpm培养,OD600至0.8时,转接至300mL#272培养基中26℃、220rpm培养,60h后收菌。
将菌液于8000rpm离心10min,收集菌体,加入10mL萃取剂(V丙酮:V甲醇=4:1),震荡打散菌体后,萃取10min,8000rpm、4℃离心5min,移出上清,按上述步骤再萃取3次,收集上清,旋干,加入3mL丙酮溶解,13000rpm离心10min,取上清LC-MS检测,提取过程避光。LC-MS检测结果见图2,虾青素的分子量为596.39,经过质谱检测器带一个H+,为597.39,表明鞘氨醇单胞菌Sphingomonas ATCC55669可以产生虾青素。
实施例2 鞘氨醇单胞菌中相关虾青素生物合成基因的确定
由实施例1可知,鞘氨醇单胞菌Sphingomonas ATCC55669可以产生虾青素,该菌株中含有能够产生虾青素的生物合成途径。将鞘氨醇单胞菌基因组信息在NCBI(http://www.ncbi.nlm.nih.gov/)Blastp中进行比对,发现鞘氨醇单胞菌中存在MEP途径,该途径从丙酮酸经dxs,dxr,ispE,ispDF,ispG,ispH合成IPP和DMAPP。IPP和DMAPP经类胡萝卜素合成途径通过crtE,crtB,crtI,crtY,crtZ,crtW生成虾青素。在鞘氨醇单胞菌合成虾青素的这条线性通路中,所得基因除crtE、crtZ,其他基因均为唯一。
实施例3 鞘氨醇单胞菌crtE基因和crtZ基因的扩增
从鞘氨醇单胞菌Sphingomonas ATCC55669中提取基因组DNA,提取方法如下:
(1)取50mL新鲜菌液至尖底离心管,7000rpm×5min离心,弃上清。
(2)加10mL的ddH2O,于振荡器上打散,7000rpm×5min离心,弃上清。
(3)加10mL的SET buffer(75mM NaCl,25mM EDTA,20mM Tris-Cl),于振荡器上打散,7000rpm×5min离心,弃上清。
(4)加5mL的SET buffer,于振荡器上打散,加150μL的溶菌酶(lysozyme,100mg/mL,-20℃),37℃水浴30-60min,每隔5-10min缓慢摇匀一次,至细胞壁完全裂解(鉴定细胞壁完全裂解:取少量菌液,加1滴10%SDS,菌液清澈,拉丝)。
(5)加10μL RNase A(10mg/mL),37℃水浴10min。加250μL的蛋白酶K(proteinaseK,20mg/mL,-20℃),37℃水浴30min。
(6)加5mL10%SDS,55℃水浴2h,每隔15min轻轻摇匀一次。
(7)加2mL5M NaCl,轻轻摇匀,有白色沉淀析出。
(8)将液体转移至50mL圆底离心管(Beckman),加10mL氯仿,缓慢摇匀30min(注意放气),12000rpm×15min离心(转子JA25.50,Beckman),取上清液(大口枪头),重复步骤(8)2次,最后一次将上清转移至50mL尖底离心管。
(9)加0.8倍体积的异丙醇,轻摇混匀至出现丝状DNA。将DNA挑至EP管中,加70%的乙醇洗2次,倒掉乙醇,自然风干,室温溶于一定量的ddH2O中。
将提取的基因组DNA作为PCR模板,利用引物Duet-Pan3518-F2和PanCrtI-3518-R扩增出鞘氨醇单胞菌的crtE(GENE3518)基因。PCR反应体系为40μL:15.4μL H2O,8μL5×Q5reaction buffer,8μL5×High GC Enhancer,3.2μL2.5mM dNTPs,2μL10mM正向引物,2μL10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,58℃退火30s,72℃延伸30s,30个循环;最后以72℃延伸6min。
利用引物CrtY-Pag2930-F和CrtW-Pag2930-R扩增出鞘氨醇单胞菌的crtZ(GENE2930)基因,利用引物CrtY-Pag1181-F2和CrtW-Pag1181-R扩增出鞘氨醇单胞菌的crtZ(GENE1181)基因,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL5×Q5reactionbuffer,3.2μL2.5mM dNTPs,2μL10mM正向引物,2μL10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸30s,30个循环;最后以72℃延伸5min。
实施例4 crtE基因和crtZ基因的功能验证
本实施例通过Gibson method构建有关克隆质粒,验证crtE基因和crtZ基因的功能。
图3所示为已知虾青素生物合成相关基因的克隆质粒pFZ153,其构建方法见下。
图4所示为将pFZ153中crtE基因替换为GENE3518后构建的质粒pTM3518。
图5所示为将pFZ153中crtZ基因替换为GENE2930后构建的质粒pTM2930。
图6所示为将pFZ153中crtZ基因替换为GENE1181后构建的质粒pTM1181。
1、产虾青素的阳性克隆质粒pFZ153的构建:
质粒pFZ153以pETDuet-1为骨架载体,插入片段crtEIB-idi-crtYZW完成,具体构建方法如下:
大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI(Fayin Zhu,In vitro reconstitution of mevalonate pathway and targetedengineering of farnesene overproduction in Escherichiacoli.Biotechnol.Bioeng.2014;111:1396–1405.),将idi基因片段从pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87。
以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架。从CGMCC1.2244基因组DNA扩增crtY和crtZ,引物分别为Idi-PagCrtY-F,CrtZ-PagCrtY-R;CrtY-PagCrtZ-F,CrtW-PagCrtZ-R。来源于Brevundimonas sp.SD212的CrtW经密码子优化后合成,以优化的CrtW(SEQ ID NO.27)为模板,用引物CrtZ-BreCrtW-F和BreCrtW-R扩增crtW。crtY、crtZ、crtW和质粒骨架四个片段用Giboson方法连接(Daniel G.Gibson,Enzymatic Assembly of Overlapping DNA Fragments,Methods in Enzymology,Volume498,2011,Pages349-361.)获得pFZ152。
将经密码子优化的Pantoea ananatis的crtE(SEQ ID NO.28)、crtB(SEQ IDNO.29)和crtI(SEQ ID NO.30)基因合成后(基因合成时在序列两端加NdeI和EcoRI酶切位点)克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23。
以构建pFZ152同样的方法分别以pFZ87,pFZ21,pFZ22,pFZ23为模板用引物PETduet-NcoI-R,pETduet-EcoRI-T7-F;Duet-PanCrtE-F,PanCrtI-CrtE-R;PanCrtE-CrtI-F,PanCrtB-CrtI-R;PanCrtI-CrtB-F,Duet-EcoRI-PanCrtB-R扩增质粒骨架,crtE,crtI和crtB,用Giboson方法连接获得质粒pFZ112。
将crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得pFZ153。
2、含有目的片段的pTM3518,pTM2930,pTM1181质粒构建:
该步PCR扩增模板均为质粒pFZ153。
(1)质粒构建所需片段的扩增
质粒pTM3518由片段GENE3518,pETDuet-1(3518),crtIB-idi-crtYZW(3518)构成。其中,GENE3518片段的扩增见实施例3。pETDuet-1(3518)和crtIB-idi-crtYZW(3518)片段的扩增如下:
利用引物PagCrtW-pETduet-F和PETduet-NcoI-R扩增出pETDuet-1(3518)片段,利用引物Pan3518-CrtI-F和BreCrtW-R扩增出crtIB-idi-crtYZW(3518)片段,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL5×Q5reaction buffer,3.2μL2.5mM dNTPs,2μL10mM正向引物,2μL10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNAPolymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min,30个循环;最后以72℃延伸7min。
质粒pTM2930由片段GENE2930,crtW-pETDuet-1(2930),crtEIB-idi-crtY(2930)构成。其中,GENE2930片段的扩增见实施例3。crtW-pETDuet-1(2930)和crtEIB-idi-crtY(2930)片段的扩增如下:
利用引物2930-BreCrtW-F和PETduet-NcoI-R扩增出crtW-pETDuet-1(2930)片段,利用引物Duet-PanCrtE-F和2930-PagCrtY-R扩增出crtEIB-idi-crtY(2930)片段,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL5×Q5reaction buffer,3.2μL2.5mM dNTPs,2μL10mM正向引物,2μL10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNAPolymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min,30个循环;最后以72℃延伸7min。
质粒pTM1181由片段GENE1181,crtW-pETDuet-1(1181),crtEIB-idi-crtY(1181)构成。其中,GENE1181片段的扩增见实施例3。crtW-pETDuet-1(1181)和crtEIB-idi-crtY(1181)片段的扩增如下:
利用引物1181-BreCrtW-F和PETduet-NcoI-R扩增出crtW-pETDuet-1(1181)片段,利用引物Duet-PanCrtE-F和1181-PagCrtY-R2扩增出crtEIB-idi-crtY(1181)片段,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL5×Q5reaction buffer,3.2μL2.5mM dNTPs,2μL10mM正向引物,2μL10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5High-Fidelity DNAPolymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min,30个循环;最后以72℃延伸7min。
(2)克隆质粒的获得
电泳鉴定PCR扩增产物正确后,经过胶回收各PCR扩增产物,用NanoDrop测定各PCR产物浓度。片段pETDuet-1(3518),crtIB-idi-crtYZW(3518),GENE3518;crtW-pETDuet-1(2930),crtEIB-idi-crtY(2930),GENE2930;crtW-pETDuet-1(1181),crtEIB-idi-crtY(1181),GENE1181分别用Giboson方法连接获得质粒pTM3518、pTM2930、pTM1181。
3、将质粒pTM3518、pTM2930、pTM1181、pFZ153分别转化感受态细胞MG1655(内含质粒pMH1、pFZ81(Fayin Zhu,In vitro reconstitution of mevalonate pathway andtargeted engineering of farnesene overproduction in Escherichia coli,Biotechnol.Bioeng.2014;111:1396–1405.)。挑转化子于含有34μg/mL氯霉素、50μg/mL卡那霉素、100μg/mL氨苄青霉素的LB培养基中于37℃、220rpm培养过夜。以1%接种量转接200mL含有34μg/mL氯霉素、50μg/mL卡那霉素、100μg/mL氨苄青霉素的LB培养基30℃、200rpm培养,阴性对照为内含质粒pMH1和质粒pFZ81的MG1655菌株。OD600达到0.7-0.9时加终浓度0.1mM IPTG(异丙基-β-D-硫代半乳糖苷)诱导,培养15h后取样2mL,12000rpm离心3min,去上清,加1mL萃取剂(V丙酮:V甲醇=4:1),震荡打散菌体后,超声10min,13000rpm、4℃离心10min,取上清HPLC检测,提取过程避光。
4、产物高效液相色谱(HPLC)检测
HPLC分析条件:色谱柱:4.6×250mm5μm DIONEX Acclaim120C18。流动相:A:水,B:乙腈(0.1%甲酸);0min:50%B,5min:100%B,20min:100%B,25min:50%B,27min:50%B。流速1mL/min。上样量:20μL。柱温:25℃。检测器:紫外多波长(VWD)检测器。标准品为1mg/L虾青素。
经HPLC检测结果(图6)可知,分别转化了pFZ153、pTM3518、pTM2930、pTM1181质粒的MG1655(内含质粒pMH1、pFZ81)的各个菌株的提取产物,在与虾青素标准品的同一保留时间下,均可检测到虾青素的生成,但含量有高低差别。其中,转化质粒pTM3518的MG1655菌株(内含质粒pMH1、pFZ81)虾青素产量可达2.5mg/L(如图8)。上述结果说明鞘氨醇单胞菌的crtE(GENE3518)基因、crtZ(GENE2930)基因和crtZ(GENE1181)基因具有相应的功能。
实施例5 鞘氨醇单胞菌中遗传操作的建立
本发明在Sphingomonas ATCC55669中建立了遗传操作方法,所用载体为质粒pBBR1MCS2,启动子为lac,复制子为pBBR1MCS2,本发明以外源基因EGFP(Enhanced GreenFluorescent Protein)是否表达作为该菌株遗传操作系统建立成功与否的依据。
将含有EGFP基因的商业质粒经引物EGFP A和EGFP S将EGFP基因克隆到pET28a(+)的NdeI和EcoRI位点,获得质粒pET28a-EGFP,以此作为PCR模板,利用引物EGFP-pBBR S和EGFP-pBBR A扩增出EGFP基因。PCR反应体系为20μL:13.6μL H2O,2μL10×buffer(pfu),1μL2.5mM dNTPs,1μL10mM正向引物,1μL10mM反向引物,1μL模板DNA(1-100ng),0.4μL pfuDNA polymerase。PCR反应程序为:95℃预变性3.5min;95℃变性1min,55℃退火30s,72℃延伸2min,30个循环;最后以72℃延伸5min。将该片段经KpnI和SacI双酶切回收后,插入到经KpnI和SacI双酶切处理的载体pBBR1MCS2上,该重组质粒被命名为pTMB2E。
将质粒pTMB2E经电转化操作转化感受态细胞Sphingomonas ATCC55669,于含30μg/mL卡那霉素#272培养基平板(营养肉汤8g/L,葡萄糖5g/L,琼脂1.6%)26℃培养。挑转化子至添加30μg/mL卡那霉素的5mL#272培养基中26℃、220rpm培养,阴性对照为转化pBBR1MCS2质粒的Sphingomonas ATCC55669菌株。OD600达到0.7时加终浓度0.1mM IPTG诱导,24h后取样,采用荧光显微镜检测EGFP的表达(图8)。如图9A为阴性对照,在光学显微镜下有细胞团,但在荧光显微镜下没有发现该视野下有荧光;9B为样品,在光学显微镜下观测到的细胞团在荧光显微镜下可见荧光。说明,外源基因EGFP在宿主SphingomonasATCC55669中成功表达。

Claims (4)

1.鞘氨醇单胞菌的虾青素生物合成途径中的GGPP合成酶,其特征在于:氨基酸序列如SEQ ID NO.13所示。
2.权利要求1所述的GGPP合成酶的编码基因,其特征在于:核苷酸序列SEQ ID NO.14所示。
3.权利要求1所述的酶或权利要求2所述的编码基因在生产虾青素中的应用。
4.一种生产虾青素的方法,其特征在于包括如下步骤:将产虾青素质粒中的crtE基因替换为权利要求1所述的GGPP合成酶的编码基因;再将基因替换后的质粒转化到大肠杆菌中,通过诱导表达生产虾青素;
所述的产虾青素质粒为pFZ153,其构建包括如下步骤:
(1)大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI,将idi基因片段从pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87;
(2)以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架;
从CGMCC 1.2244基因组DNA扩增crtY和crtZ,引物分别为Idi-PagCrtY-F、CrtZ-PagCrtY-R,CrtY-PagCrtZ-F、CrtW-PagCrtZ-R;
合成SEQ ID NO.27所示的CrtW,以其为模板用引物CrtZ-BreCrtW-F和BreCrtW-R扩增crtW;
crtY、crtZ、crtW和质粒骨架四个片段用Giboson方法连接获得pFZ152;
(3)将合成序列分别如SEQ ID NO.28、29、30所示的crtE、crtB和crtI,将crtE、crtB和crtI分别克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23;
(4)以构建pFZ152同样的方法分别以pFZ87、pFZ21、pFZ22、pFZ23为模板用引物PETduet-NcoI-R、pETduet-EcoRI-T7-F,Duet-PanCrtE-F、PanCrtI-CrtE-R,PanCrtE-CrtI-F、PanCrtB-CrtI-R,PanCrtI-CrtB-F、Duet-EcoRI-PanCrtB-R扩增质粒骨架,crtE,crtI和crtB,用Giboson方法连接获得质粒pFZ112;
(5)将crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得pFZ153;
上述各引物序列如下:
PagCrtY-Idi-R:CAGATCATACCGCGGCATAGTGTAATCCTCCTTTATTTAAGCTGGGTAAATG,
PagCrtW-pETduet-F:CTTATGGCGTGGTGAGAGCTAACTCGAGTCTGGTAAAGAAACCGC,
Idi-PagCrtY-F:ACCCAGCTTAAATAAAGGAGGATTACACTATGCCGCGGTATGATCTGATTC,
CrtZ-PagCrtY-R:GCATTCCAAATCCACAACATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC,
CrtY-PagCrtZ-F:CAGGCGATGCAATGAAGGAGGATTACTATATGTTGTGGATTTGGAATGCCCTGA,
CrtW-PagCrtZ-R:CCACTGCGGCGGTCATTACTCATTCCTCCTTTACTTCCCGGGTGGCGCGTC,
CrtZ-BreCrtW-F:CGCCACCCGGGAAGTAAAGGAGGAATGAGTAATGACCGCCGCAGTGGCAGAG,
BreCrtW-R:GCGGTTTCTTTACCAGACTCGAGTTAGCTCTCACCACGCCATAAG,
PETduet-NcoI-R:CATGGTATATCTCCTTCTTAAAGTTAAAC,
pETduet-EcoRI-T7-F:TAACTAGTGAATTCGAGCTCGGCGCGCCTG,
Duet-PanCrtE-F:GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACCGTGTGTGCGAAAAAAC,
PanCrtI-CrtE-R:TCACCGTGGTCGGTTTCATGGTTAATTCCTCCTTTACGACACCGCTGCCAG,
PanCrtE-CrtI-F:CTGGCAGCGGTGTCGTAAAGGAGGAATTAACCATGAAACCGACCACGGTGA,
PanCrtB-CrtI-R:TCAGCAGGGACGGATTATTCATGAGTATTACCTCCTTTAAATCAGGTCTTCCAGCATC,
PanCrtI-CrtB-F:GATGCTGGAAGACCTGATTTAAAGGAGGTAATACTCATGAATAATCCGTCCCTGCTGA,
Duet-EcoRI-PanCrtB-R:TTGTCGACCTGCAGGCGCGCCGAGCTCGAATTCACTAGTTAAACGGGGCGCTGCCAGAG。
CN201410447259.0A 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法 Active CN104232595B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410447259.0A CN104232595B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法
CN201710335486.8A CN107129995A (zh) 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法
CN201710534520.4A CN107142250B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410447259.0A CN104232595B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201710335486.8A Division CN107129995A (zh) 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法
CN201710534520.4A Division CN107142250B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用

Publications (2)

Publication Number Publication Date
CN104232595A CN104232595A (zh) 2014-12-24
CN104232595B true CN104232595B (zh) 2017-07-11

Family

ID=52221497

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710335486.8A Pending CN107129995A (zh) 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法
CN201710534520.4A Active CN107142250B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用
CN201410447259.0A Active CN104232595B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201710335486.8A Pending CN107129995A (zh) 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法
CN201710534520.4A Active CN107142250B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用

Country Status (1)

Country Link
CN (3) CN107129995A (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318878B (zh) * 2015-07-06 2019-12-20 中国科学院青岛生物能源与过程研究所 一种高产虾青素红酵母工程菌及其构建方法
CN111032855A (zh) * 2017-06-01 2020-04-17 尼普生物股份有限公司 微生物体中异源类胡萝卜素的产生
CN107858395A (zh) * 2017-12-21 2018-03-30 杭州爱蔻思生物科技有限公司 制备天然虾青素和其他类胡萝卜素的同步萃取发酵方法
CN109536518A (zh) * 2018-10-31 2019-03-29 昆明理工大学 一种八氢番茄红素脱氢酶基因RKcrtI及其应用
CN109652388B (zh) * 2018-12-20 2021-05-04 江南大学 一段可用于编码番茄红素脱氢酶的基因
CN109750021A (zh) * 2019-03-25 2019-05-14 中国海洋大学 一种扇贝类胡萝卜素氧化裂解酶基因及其应用
CN111454854B (zh) * 2020-05-02 2022-05-06 昆明理工大学 一株产虾青素的红冬孢酵母基因工程菌株
CN112029782B (zh) * 2020-09-11 2022-04-22 深圳大学 一种β-胡萝卜素羟化酶及其基因与应用
CN115807026B (zh) * 2022-08-01 2023-09-01 深圳大学 一种莱茵衣藻中虾青素合成路径的构建方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773729A (zh) * 2012-10-22 2014-05-07 中国科学院上海生命科学研究院 高效合成萜类化合物的重组大肠杆菌底盘细胞及其制法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118812A1 (ja) * 2004-06-04 2005-12-15 Marine Biotechnology Institute Co., Ltd. カロテノイドケトラーゼ及びカロテノイドヒドロキシラーゼ遺伝子を利用したアスタキサンチンまたはその代謝物の製造法
US7091031B2 (en) * 2004-08-16 2006-08-15 E. I. Du Pont De Nemours And Company Carotenoid hydroxylase enzymes
CN103865818A (zh) * 2012-12-07 2014-06-18 上海来益生物药物研究开发中心有限责任公司 一种产虾青素基因工程菌的构建方法
CN103805623B (zh) * 2014-01-17 2016-02-03 河北大学 一种虾青素合成基因重组质粒及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773729A (zh) * 2012-10-22 2014-05-07 中国科学院上海生命科学研究院 高效合成萜类化合物的重组大肠杆菌底盘细胞及其制法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Astaxanthin formation in the marine photosynthetic bacterium Rhodovulum sulfidophilum expressing crtI, crtY, crtW and crtZ;Daikichi Mukoyama等;《FEMS Microbiology Letters》;20061027;第265卷(第1期);图1 *
Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa;Asker D等;《FEMS Microbiol Lett.》;20070622;第273卷(第2期);摘要 *

Also Published As

Publication number Publication date
CN104232595A (zh) 2014-12-24
CN107142250A (zh) 2017-09-08
CN107142250B (zh) 2019-09-10
CN107129995A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
CN104232595B (zh) 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法
Lauersen et al. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii
Bian et al. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6
Lindberg et al. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
Netzer et al. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: Heterologous expression and evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases
Ma et al. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli
CN103764818B (zh) 用于重组产生藏红花化合物的方法和物质
KR101834020B1 (ko) 이소프레노이드 경로로부터 화학 및 제약 제품의 생산을 위한 미생물 조작
Yuan et al. Combinatorial engineering of mevalonate pathway for improved amorpha‐4, 11‐diene production in budding yeast
Wang et al. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae
CN110229772B (zh) 一种提高七稀甲萘醌产量的重组枯草芽孢杆菌及其应用
CN113652385B (zh) 一种高产乳酰-n-四糖的微生物的构建方法及应用
CN111321087A (zh) 一种产β-胡萝卜素的解脂耶氏酵母基因工程菌及其应用
CN113564193B (zh) 一种微生物基因表达命运共同体及其构建方法和应用
CN114107152B (zh) 一种高产3-岩藻糖基乳糖微生物的构建方法及应用
CN103243066A (zh) 一种生产番茄红素的菌株及其应用
CN107794273A (zh) 一种合成dl‑丙氨酸的三基因共表达载体及应用
CN108753808A (zh) 一种重组表达载体、重组表达宿主及其用于合成腺苷三磷酸的方法
JP5405030B2 (ja) 組換え大腸菌及びそれを用いたイソプレノイドの製造方法
Song et al. Development of highly characterized genetic bioparts for efficient gene expression in CO2-fixing Eubacterium limosum
Brück et al. Production of macrocyclic sesqui‐and diterpenes in heterologous microbial hosts: A systems approach to harness Nature’s molecular diversity
CN107354118A (zh) 一种具有γ‑松油烯合成能力的基因工程菌及其构建方法与应用
CN103937841B (zh) 烯酰辅酶a水合酶在己二酸生物合成中的应用
CN111607546B (zh) 一种高产法尼烯的基因工程菌及其构建方法与应用
Emelianov et al. Engineered Methylococcus capsulatus Bath for efficient methane conversion to isoprene

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant