CN107129995A - 一种产虾青素基因工程菌的构建方法 - Google Patents

一种产虾青素基因工程菌的构建方法 Download PDF

Info

Publication number
CN107129995A
CN107129995A CN201710335486.8A CN201710335486A CN107129995A CN 107129995 A CN107129995 A CN 107129995A CN 201710335486 A CN201710335486 A CN 201710335486A CN 107129995 A CN107129995 A CN 107129995A
Authority
CN
China
Prior art keywords
plasmid
astaxanthin
petduet
crti
crtz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710335486.8A
Other languages
English (en)
Inventor
刘天罡
马田
朱发银
周袁杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN INSTITUTE OF BIOTECHNOLOGY
Wuhan University WHU
Original Assignee
WUHAN INSTITUTE OF BIOTECHNOLOGY
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN INSTITUTE OF BIOTECHNOLOGY, Wuhan University WHU filed Critical WUHAN INSTITUTE OF BIOTECHNOLOGY
Priority to CN201710335486.8A priority Critical patent/CN107129995A/zh
Publication of CN107129995A publication Critical patent/CN107129995A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0093Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012671-Deoxy-D-xylulose-5-phosphate reductoisomerase (1.1.1.267)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13129Beta-carotene 3-hydroxylase (1.14.13.129)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y117/00Oxidoreductases acting on CH or CH2 groups (1.17)
    • C12Y117/01Oxidoreductases acting on CH or CH2 groups (1.17) with NAD+ or NADP+ as acceptor (1.17.1)
    • C12Y117/010024-Hydroxy-3-methylbut-2-enyl diphosphate reductase (1.17.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/010071-Deoxy-D-xylulose-5-phosphate synthase (2.2.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01029Geranylgeranyl diphosphate synthase (2.5.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0103215-Cis-phytoene synthase (2.5.1.32)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/011484-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase (2.7.1.148)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07062-C-Methyl-D-erythritol 4-phosphate cytidylyltransferase (2.7.7.60)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y406/00Phosphorus-oxygen lyases (4.6)
    • C12Y406/01Phosphorus-oxygen lyases (4.6.1)
    • C12Y406/010122-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (4.6.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01019Lycopene beta-cyclase (5.5.1.19)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种产虾青素基因工程菌的构建方法,属于生物技术领域。本发明产虾青素基因工程菌的构建方法包括如下步骤:将产虾青素质粒pFZ153转化内含质粒pMH1、pFZ81的MG1655大肠杆菌感受态细胞,得到产虾青素基因工程菌。本发明构建的产虾青素基因工程菌通过IPTG诱导表达后虾青素产量可达2.0 mg/L左右。

Description

一种产虾青素基因工程菌的构建方法
本发明专利申请是申请号为“2014104472590”的发明专利的分案申请,原申请的申请日为“2014.09.03”,申请号为“2014104472590”,发明名称为“鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法”。
技术领域
本发明涉及生物技术领域,具体涉及一种产虾青素基因工程菌的构建方法。
背景技术
虾青素(Astaxanthin,又称变胞藻黄素或虾红素),属于酮式类胡萝卜素,是一种较强的天然抗氧化剂。其独特的分子结构不但使其具有超强的抗氧化活性,还具有抗衰老、抗辐射、抗肿瘤及预防心脑血管疾病的作用。目前,虾青素已在食品、饲料、保健品市场等广泛应用。然而天然虾青素的来源非常有限,目前,虾青素大多采用传统突变技术产生的Pfaffia菌株和微藻生产,但是,Pfaffia发酵存在发酵周期长的缺点,而从藻类中获得产物的生产技术仍不成熟。因此,开发新的天然虾青素资源具有重要意义。
鞘氨醇单胞菌是革兰氏阴性菌,1990年被鉴定,专性需氧,以单侧生极性鞭毛运动,多呈黄色。其黄色菌落多是由于产生类胡萝卜素导致。细胞膜与一般的革兰氏阴性菌不同,为鞘糖脂,这也使得对其的遗传操作还未成熟。目前,在Sphingomonas ATCC 55669中尚无任何基因方面的信息报道,也未有相关遗传操作的文献,即使是该菌株所在的属也鲜有报道。目前,鞘氨醇单胞菌多可降解多元化的芳环化合物,是环境微生物的研究热点,其遗传操作的建立为进一步利用其降解机制建立了基础。
虾青素生物合成途径已被广泛研究并取得了巨大进展,大量关键酶基因得到克隆。目前已知的类胡萝卜素均通过类异戊二烯化合物或萜类化合物途径合成。其中,非甲羟戊酸途径MEP(nonmevalonate pathway)途径广泛存在于细菌中,它以糖酵解中间代谢物丙酮酸和3-磷酸甘油醛为前体,在脱氧木酮糖磷酸合酶作用下生成脱氧木酮糖磷酸,然后受脱氧木酮糖磷酸还原酶和异构酶催化,通过还原和异构反应将脱氧木酮糖磷酸转变成2-甲基赤藓糖醇-4-磷酸(MEP)。经胞苷三磷酸活化,腺苷三磷酸磷酸化,从而形成甲基赤藓糖醇环化焦磷酸,然后转变成IPP(异戊烯焦磷酸),IPP 异构化形成DMAPP(二甲基丙烯基二磷酸)。IPP和DMAPP是合成虾青素途径的前体物质。两者在IPP异构酶作用下相互转换达到平衡,在crtE(牻牛儿基牻牛儿基焦磷酸合成酶)作用下,1个DMAPP与3个IPP 分子缩合生成GGPP(牻牛儿基牻牛儿基焦磷酸)。2分子GGPP在crtB(八氢番茄红素合成酶)作用下形成第一个无色的类胡萝卜素——八氢番茄红素。八氢番茄红素经过连续的脱氢步骤(crtI)生成番茄红素。番茄红素在crtY(番茄红素β-环化酶)的作用下生成β-胡萝卜素。β-胡萝卜素在crtZ(β-胡萝卜素羟化酶)和crtW(β-胡萝卜素酮酶)的一系列作用下生成虾青素(如图1)。
通过丰富不同来源的虾青素生物合成相关基因,经重组DNA技术筛选,从而增加虾青素生物合成的生产能力,是缩短发酵周期,提高虾青素生物合成产率的重要途径,从而为虾青素进一步工业化生产打下基础。
发明内容
本发明的目的在于提供一种产虾青素基因工程菌的构建方法以及通过该方法得到的基因工程菌。
本发明的目的通过下述技术方案实现:
一种产虾青素基因工程菌的构建方法,包括如下步骤:将产虾青素质粒pFZ153转化内含质粒pMH1、pFZ81的MG1655大肠杆菌感受态细胞,得到产虾青素基因工程菌;其中,产虾青素质粒pFZ153通过包括如下步骤的方法得到:
(1)大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI,将idi基因片段从pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87。
(2)以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架;
从CGMCC 1.2244基因组DNA扩增crtYcrtZ,引物分别为Idi-PagCrtY-F、CrtZ-PagCrtY-R,CrtY-PagCrtZ-F、CrtW-PagCrtZ-R;
合成SEQ ID NO.1所示的CrtW,以其为模板用引物CrtZ-BreCrtW-F和BreCrtW-R扩增crtW
crtYcrtZcrtW和质粒骨架四个片段用Giboson方法连接获得pFZ152。
(3)将合成序列分别如SEQ ID NO.2、3、4所示的crtEcrtBcrtI,将crtEcrtBcrtI分别克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23。
(4)以构建pFZ152同样的方法分别以pFZ87、pFZ21、pFZ22、pFZ23为模板用引物PETduet-NcoI-R、pETduet-EcoRI-T7-F,Duet-PanCrtE-F、PanCrtI-CrtE-R,PanCrtE-CrtI-F、PanCrtB-CrtI-R,PanCrtI-CrtB-F、Duet-EcoRI-PanCrtB-R扩增质粒骨架、crtEcrtIcrtB,用Giboson方法连接获得质粒pFZ112。
(5)将crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得产虾青素质粒pFZ153。
上述各引物序列如下:
PagCrtY-Idi-R:CAGATCATACCGCGGCATAGTGTAATCCTCCTTTATTTAAGCTGGGTAAATG,
PagCrtW-pETduet-F:CTTATGGCGTGGTGAGAGCTAACTCGAGTCTGGTAAAGAAACCGC,
Idi-PagCrtY-F:ACCCAGCTTAAATAAAGGAGGATTACACTATGCCGCGGTATGATCTGATTC,
CrtZ-PagCrtY-R:GCATTCCAAATCCACAACATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC,
CrtY-PagCrtZ-F:CAGGCGATGCAATGAAGGAGGATTACTATATGTTGTGGATTTGGAATGCCCTGA,
CrtW-PagCrtZ-R:CCACTGCGGCGGTCATTACTCATTCCTCCTTTACTTCCCGGGTGGCGCGTC,
CrtZ-BreCrtW-F:CGCCACCCGGGAAGTAAAGGAGGAATGAGTAATGACCGCCGCAGTGGCAGAG,
BreCrtW-R: GCGGTTTCTTTACCAGACTCGAGTTAGCTCTCACCACGCCATAAG,
PETduet-NcoI-R: CATGGTATATCTCCTTCTTAAAGTTAAAC,
pETduet-EcoRI-T7-F: TAACTAGTGAATTCGAGCTCGGCGCGCCTG,
Duet-PanCrtE-F:GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACCGTGTGTGCGAAAAAAC,
PanCrtI-CrtE-R:TCACCGTGGTCGGTTTCATGGTTAATTCCTCCTTTACGACACCGCTGCCAG,
PanCrtE-CrtI-F:CTGGCAGCGGTGTCGTAAAGGAGGAATTAACCATGAAACCGACCACGGTGA,
PanCrtB-CrtI-R:TCAGCAGGGACGGATTATTCATGAGTATTACCTCCTTTAAATCAGGTCTTCCAGCATC,
PanCrtI-CrtB-F:GATGCTGGAAGACCTGATTTAAAGGAGGTAATACTCATGAATAATCCGTCCCTGCTGA,
Duet-EcoRI-PanCrtB-R:TTGTCGACCTGCAGGCGCGCCGAGCTCGAATTCACTAGTTAAACGGGGCGCTGCCAGAG。
一种产虾青素基因工程菌,通过上述方法得到。
本发明具有如下优点和效果:本发明构建的产虾青素基因工程菌通过IPTG诱导表达后虾青素产量可达2.0 mg/L左右(图8)。
附图说明
图1是虾青素合成路线图。
图2是LC-MS检测Sphingomonas ATCC 55669中虾青素结果。
图3是pFZ153质粒图谱。
图4是pTM3518质粒图谱。
图5是pTM2930质粒图谱。
图6是pTM1181质粒图谱。
图7是HPLC检测转化不同质粒的MG1655菌株的虾青素生成;2-5分别是转化pFZ153、pTM3518、pTM2930和 pTM1181的菌株,1是虾青素标准品(浓度为1ppm)。
图8是转化不同质粒的MG1655菌株的虾青素产量对比。
图9是荧光显微镜检测外源EGFP蛋白在Sphingomonas ATCC 55669中的表达,(A)和(B)分别是转化pBBR1MCS2和pTMB2E质粒的Sphingomonas ATCC 55669。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。
除非有特殊说明,本发明中的寡核苷酸引物由苏州金唯智生物科技有限公司合成;DNA序列测定由苏州金唯智生物科技有限公司完成;除非特殊说明,本发明所用限制性内切酶、核酸外切酶、连接酶均购自NEB,DNA片段回收采用OMEGA DNA凝胶回收试剂盒,按说明书方法操作;PCR纯化采用Axygen试剂盒,按说明书方法操作。
下述实施例中所用引物见下表。
引物名称 序列(5'到3')
Duet-Pan3518-F2 GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACGACGACGCTCGATGCGG
PanCrtI-3518-R TCACCGTGGTCGGTTTCATGGTTAATTCCTCCTTCAGCGATCGCGTTCGACGACG
CrtY-Pag2930-F CAGGCGATGCAATGAAGGAGGATTACTATATGCCCTGGCTCCACGGCATCC
CrtW-Pag2930-R CCACTGCGGCGGTCATTACTCATTCCTCCTTTACTTTTCTGCCAACGTCTGC
CrtY-Pag 1181-F2 CAGGCGATGCAATGAAGGAGGATTACTATATGGCCTGGTACGAGAAGCTGG
CrtW-Pag 1181-R CCACTGCGGCGGTCATTACTCATTCCTCCTTCATCGCCCGACGCGATCGGCG
PagCrtY-Idi-R CAGATCATACCGCGGCATAGTGTAATCCTCCTTTATTTAAGCTGGGTAAATG
PagCrtW-pETduet-F CTTATGGCGTGGTGAGAGCTAACTCGAGTCTGGTAAAGAAACCGC
Idi-PagCrtY-F ACCCAGCTTAAATAAAGGAGGATTACACTATGCCGCGGTATGATCTGATTC
CrtZ-PagCrtY-R GCATTCCAAATCCACAACATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC
CrtY-PagCrtZ-F CAGGCGATGCAATGAAGGAGGATTACTATATGTTGTGGATTTGGAATGCCCTGA
CrtW-PagCrtZ-R CCACTGCGGCGGTCATTACTCATTCCTCCTTTACTTCCCGGGTGGCGCGTC
CrtZ-BreCrtW-F CGCCACCCGGGAAGTAAAGGAGGAATGAGTAATGACCGCCGCAGTGGCAGAG
BreCrtW-R GCGGTTTCTTTACCAGACTCGAGTTAGCTCTCACCACGCCATAAG
PETduet-NcoI-R CATGGTATATCTCCTTCTTAAAGTTAAAC
pETduet-EcoRI-T7-F TAACTAGTGAATTCGAGCTCGGCGCGCCTG
Duet-PanCrtE-F GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACCGTGTGTGCGAAAAAAC
PanCrtI-CrtE-R TCACCGTGGTCGGTTTCATGGTTAATTCCTCCTTTACGACACCGCTGCCAG
PanCrtE-CrtI-F CTGGCAGCGGTGTCGTAAAGGAGGAATTAACCATGAAACCGACCACGGTGA
PanCrtB-CrtI-R TCAGCAGGGACGGATTATTCATGAGTATTACCTCCTTTAAATCAGGTCTTCCAGCATC
PanCrtI-CrtB-F GATGCTGGAAGACCTGATTTAAAGGAGGTAATACTCATGAATAATCCGTCCCTGCTGA
Duet-EcoRI-PanCrtB-R TTGTCGACCTGCAGGCGCGCCGAGCTCGAATTCACTAGTTAAACGGGGCGCTGCCAGAG
Pan3518-CrtI-F CGTCGTCGAACGCGATCGCTGAAGGAGGAATTAACCATGAAACCGACCACGGTGA
2930-BreCrtW-F GCAGACGTTGGCAGAAAAGTAAAGGAGGAATGAGTAATGACCGCCGCAGTGGCAGAG
2930-PagCrtY-R GGATGCCGTGGAGCCAGGGCATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC
1181-BreCrtW-F CGCCGATCGCGTCGGGCGATGAAGGAGGAATGAGTAATGACCGCCGCAGTGGCAGAG
1181-PagCrtY-R2 CCAGCTTCTCGTACCAGGCCATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC
EGFP S CAGACATATGGTGAGCAAGGGCGAGGAGC
EGFP A CGCAGAATTCTTACTTGTACAGCTCGTCCATGCC
EGFP-pBBR S CGGGGTACCTCTAGAAAAATAATTTTGTTTAACTT
EGFP-pBBR A CCGCTCGAGTGCGGCCGCAAGCTTGTC
实施例1 鞘氨醇单胞菌中虾青素产物的检测
提取鞘氨醇单胞菌Sphingomonas ATCC 55669(从ATCC购买)代谢产物,方法如下:
将菌种在#272培养基平板(营养肉汤8g/L,葡萄糖5g/L,琼脂1.6%)上活化,于26℃培养。挑菌落至5mL #272培养基(营养肉汤8g/L,葡萄糖5g/L)中26℃、220rpm培养,24h后转接至100mL #272培养基中26℃、220rpm培养,OD600至0.8时,转接至300mL #272培养基中26℃、220rpm培养,60h后收菌。
将菌液于8000rpm离心10min,收集菌体,加入10mL萃取剂(V丙酮:V甲醇=4:1),震荡打散菌体后,萃取10min,8000rpm、4 ℃离心5min,移出上清,按上述步骤再萃取3次,收集上清,旋干,加入3mL丙酮溶解,13000rpm离心10min,取上清LC-MS检测,提取过程避光。LC-MS检测结果见图2,虾青素的分子量为596.39,经过质谱检测器带一个H+,为597.39,表明鞘氨醇单胞菌Sphingomonas ATCC 55669可以产生虾青素。
实施例2 鞘氨醇单胞菌中相关虾青素生物合成基因的确定
由实施例1可知,鞘氨醇单胞菌Sphingomonas ATCC 55669可以产生虾青素,该菌株中含有能够产生虾青素的生物合成途径。将鞘氨醇单胞菌基因组信息在NCBI(http://www.ncbi.nlm.nih.gov/)Blastp中进行比对,发现鞘氨醇单胞菌中存在MEP途径,该途径从丙酮酸经dxsdxrispEispDFispGispH合成IPP和DMAPP。IPP和DMAPP经类胡萝卜素合成途径通过crtEcrtBcrtIcrtYcrtZcrtW生成虾青素。在鞘氨醇单胞菌合成虾青素的这条线性通路中,所得基因除crtEcrtZ,其他基因均为唯一。
实施例3 鞘氨醇单胞菌crtE基因和crtZ基因的扩增
从鞘氨醇单胞菌Sphingomonas ATCC 55669中提取基因组DNA,提取方法如下:
(1)取50mL新鲜菌液至尖底离心管,7000rpm×5min离心,弃上清。
(2)加10mL的ddH2O,于振荡器上打散,7000rpm×5min离心,弃上清。
(3)加10mL的SET buffer(75mM NaCl,25mM EDTA,20mM Tris-Cl),于振荡器上打散,7000rpm×5min离心,弃上清。
(4)加5mL的SET buffer,于振荡器上打散,加150μL的溶菌酶(lysozyme,100mg/mL,-20℃),37℃水浴30-60min,每隔5-10min缓慢摇匀一次,至细胞壁完全裂解(鉴定细胞壁完全裂解:取少量菌液,加1滴10% SDS,菌液清澈,拉丝)。
(5)加10μL RNase A(10mg/mL),37℃水浴10min。加250μL的蛋白酶K(proteinaseK,20mg/mL,-20℃),37℃水浴30min。
(6)加5mL 10% SDS,55℃水浴2h,每隔15min轻轻摇匀一次。
(7)加2mL 5M NaCl,轻轻摇匀,有白色沉淀析出。
(8)将液体转移至50mL圆底离心管(Beckman),加10mL氯仿,缓慢摇匀30min(注意放气),12000rpm×15min离心(转子JA25.50,Beckman),取上清液(大口枪头),重复步骤(8)2次,最后一次将上清转移至50mL尖底离心管。
(9)加0.8倍体积的异丙醇,轻摇混匀至出现丝状DNA。将DNA挑至EP管中,加70%的乙醇洗2次,倒掉乙醇,自然风干,室温溶于一定量的ddH2O中。
将提取的基因组DNA作为PCR模板,利用引物Duet-Pan3518-F2和PanCrtI-3518-R扩增出鞘氨醇单胞菌的crtE(GENE3518)基因。PCR反应体系为40μL:15.4μL H2O,8μL 5×Q5reaction buffer,8μL 5×High GC Enhancer,3.2μL 2.5mM dNTPs,2μL 10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5 High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,58℃退火30s,72℃延伸30s,30个循环;最后以72℃延伸6min。
利用引物CrtY-Pag2930-F和CrtW-Pag2930-R扩增出鞘氨醇单胞菌的crtZ(GENE2930)基因,利用引物CrtY-Pag 1181-F2和CrtW-Pag 1181-R扩增出鞘氨醇单胞菌的crtZ(GENE1181)基因,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL 5×Q5reaction buffer,3.2μL 2.5mM dNTPs,2μL 10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5 High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸30s,30个循环;最后以72℃延伸5min。
实施例4 crtE基因和crtZ基因的功能验证
本实施例通过Gibson method构建有关克隆质粒,验证crtE基因和crtZ基因的功能。
图3所示为已知虾青素生物合成相关基因的克隆质粒pFZ153,其构建方法见下。
图4所示为将pFZ153中crtE基因替换为GENE3518后构建的质粒pTM3518。
图5所示为将pFZ153中crtZ基因替换为GENE2930后构建的质粒pTM2930。
图6所示为将pFZ153中crtZ基因替换为GENE1181后构建的质粒pTM1181。
1、产虾青素的阳性克隆质粒pFZ153的构建:
质粒pFZ153以pETDuet-1为骨架载体,插入片段crtEIB-idi-crtYZW完成,具体构建方法如下:
大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI(FayinZhu, In vitro reconstitution of mevalonate pathway and targeted engineeringof farnesene overproduction in Escherichia coli. Biotechnol. Bioeng. 2014;111: 1396–1405.),将idi基因片段从pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87。
以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架。从CGMCC 1.2244基因组DNA扩增crtYcrtZ,引物分别为Idi-PagCrtY-F,CrtZ-PagCrtY-R;CrtY-PagCrtZ-F,CrtW-PagCrtZ-R。来源于Brevundimonas sp. SD212的CrtW经密码子优化后合成,以优化的CrtW(SEQ ID NO.1)为模板,用引物CrtZ-BreCrtW-F和BreCrtW-R扩增crtWcrtYcrtZcrtW和质粒骨架四个片段用Giboson方法连接(Daniel G. Gibson,Enzymatic Assembly of Overlapping DNA Fragments, Methods in Enzymology,Volume 498, 2011, Pages 349-361.)获得pFZ152。
将经密码子优化的Pantoea ananatiscrtE(SEQ ID NO.2)、crtB(SEQ ID NO.3)和crtI(SEQ ID NO.4)基因合成后(基因合成时在序列两端加NdeI和EcoRI酶切位点)克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23。
以构建pFZ152同样的方法分别以pFZ87,pFZ21,pFZ22,pFZ23为模板用引物PETduet-NcoI-R,pETduet-EcoRI-T7-F;Duet-PanCrtE-F,PanCrtI-CrtE-R;PanCrtE-CrtI-F,PanCrtB-CrtI-R;PanCrtI-CrtB-F,Duet-EcoRI-PanCrtB-R扩增质粒骨架,crtEcrtIcrtB,用Giboson方法连接获得质粒pFZ112。
crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得pFZ153。
2、含有目的片段的pTM3518,pTM2930,pTM1181质粒构建:
该步PCR扩增模板均为质粒pFZ153。
(1)质粒构建所需片段的扩增
质粒pTM3518由片段 GENE3518,pETDuet-1(3518),crtIB-idi-crtYZW(3518)构成。其中,GENE3518片段的扩增见实施例3。pETDuet-1(3518)和crtIB-idi-crtYZW(3518)片段的扩增如下:
利用引物PagCrtW-pETduet-F和PETduet-NcoI-R扩增出pETDuet-1(3518)片段,利用引物Pan3518-CrtI-F和BreCrtW-R扩增出crtIB-idi-crtYZW(3518)片段,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL 5×Q5 reaction buffer,3.2μL 2.5mM dNTPs,2μL 10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5 High-Fidelity DNAPolymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min,30个循环;最后以72℃延伸7min。
质粒pTM2930由片段GENE2930,crtW-pETDuet-1(2930),crtEIB-idi-crtY(2930)构成。其中,GENE2930片段的扩增见实施例3。crtW-pETDuet-1(2930)和crtEIB-idi-crtY(2930)片段的扩增如下:
利用引物2930-BreCrtW-F和PETduet-NcoI-R扩增出crtW-pETDuet-1(2930)片段,利用引物Duet-PanCrtE-F和2930-PagCrtY-R扩增出crtEIB-idi-crtY(2930)片段,两个反应的PCR反应体系均为40μL:23.4μL H2O,8μL 5×Q5 reaction buffer,3.2μL 2.5mM dNTPs,2μL 10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.4μL Q5 High-FidelityDNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min,30个循环;最后以72℃延伸7min。
质粒pTM1181由片段GENE1181,crtW-pETDuet-1(1181),crtEIB-idi-crtY(1181)构成。其中,GENE1181片段的扩增见实施例3。crtW-pETDuet-1(1181)和crtEIB-idi-crtY(1181)片段的扩增如下:
利用引物1181-BreCrtW-F和PETduet-NcoI-R扩增出crtW-pETDuet-1(1181)片段,利用引物Duet-PanCrtE-F和1181-PagCrtY-R2扩增出crtEIB-idi-crtY(1181)片段,两个反应的PCR反应体系均为40 μL:23.4 μL H2O,8 μL 5×Q5 reaction buffer,3.2 μL 2.5mMdNTPs,2 μL 10mM正向引物,2 μL 10mM反向引物,1 μL模板DNA(1-100ng),0.4 μL Q5High-Fidelity DNA Polymerase。PCR反应程序为:98℃预变性30s;98℃变性10s,55℃退火30s,72℃延伸3min,30个循环;最后以72℃延伸7min。
(2)克隆质粒的获得
电泳鉴定PCR扩增产物正确后,经过胶回收各PCR扩增产物,用NanoDrop测定各PCR产物浓度。片段pETDuet-1(3518),crtIB-idi-crtYZW(3518),GENE3518;crtW-pETDuet-1(2930),crtEIB-idi-crtY(2930),GENE2930;crtW-pETDuet-1(1181),crtEIB-idi-crtY(1181),GENE1181分别用Giboson方法连接获得质粒pTM3518、pTM2930、pTM1181。
3、将质粒pTM3518、pTM2930、pTM1181、pFZ153分别转化感受态细胞MG1655(内含质粒pMH1、pFZ81(Fayin Zhu, In vitro reconstitution of mevalonate pathway andtargeted engineering of farnesene overproduction in Escherichia coli,Biotechnol. Bioeng. 2014;111: 1396–1405.)。挑转化子于含有34 μg/mL氯霉素、50 μg/mL卡那霉素、100 μg/mL氨苄青霉素的LB培养基中于37 ℃、220 rpm培养过夜。以1%接种量转接200 mL含有34μg/mL氯霉素、50 μg/mL卡那霉素、100 μg/mL氨苄青霉素的LB培养基30℃、200 rpm培养,阴性对照为内含质粒pMH1和质粒pFZ81的MG1655菌株。OD600达到0.7-0.9时加终浓度0.1mM IPTG(异丙基-β-D-硫代半乳糖苷)诱导,培养15h后取样2 mL,12000 rpm离心3min,去上清,加1 mL萃取剂(V丙酮:V甲醇=4:1),震荡打散菌体后,超声10 min,13000rpm、4℃离心10 min,取上清HPLC检测,提取过程避光。
4、产物高效液相色谱(HPLC)检测
HPLC分析条件:色谱柱:4.6×250mm 5μm DIONEX Acclaim 120 C18。流动相:A:水,B:乙腈(0.1%甲酸);0min:50%B,5min:100%B,20min:100%B,25min:50%B,27min:50%B。流速1mL/min。上样量:20 μL。柱温:25 ℃。检测器:紫外多波长(VWD)检测器。标准品为1 mg/L虾青素。
经HPLC检测结果(图7)可知,分别转化了pFZ153、pTM3518、pTM2930、pTM1181质粒的MG1655(内含质粒pMH1、pFZ81)的各个菌株的提取产物,在与虾青素标准品的同一保留时间下,均可检测到虾青素的生成,但含量有高低差别。其中,转化质粒pTM3518的MG1655菌株(内含质粒pMH1、pFZ81)虾青素产量可达2.5 mg/L(如图8)。上述结果说明鞘氨醇单胞菌的crtE(GENE3518)基因、crtZ(GENE2930)基因和crtZ(GENE1181)基因具有相应的功能。
实施例5 鞘氨醇单胞菌中遗传操作的建立
本发明在SphingomonasATCC 55669中建立了遗传操作方法,所用载体为质粒pBBR1MCS2,启动子为lac,复制子为pBBR1MCS2,本发明以外源基因EGFP(Enhanced GreenFluorescent Protein)是否表达作为该菌株遗传操作系统建立成功与否的依据。
将含有EGFP基因的商业质粒经引物EGFP A和EGFP S将EGFP基因克隆到pET28a(+)的NdeI和EcoRI位点,获得质粒pET28a-EGFP,以此作为PCR模板,利用引物EGFP-pBBR S和EGFP-pBBR A扩增出EGFP基因。PCR反应体系为20 μL:13.6 μL H2O,2 μL 10×buffer(pfu),1 μL 2.5mM dNTPs,1 μL 10mM正向引物,1 μL 10mM反向引物,1 μL模板DNA(1-100ng),0.4 μL pfu DNA polymerase。PCR反应程序为:95℃预变性3.5min;95℃变性1min,55℃退火30s,72℃延伸2min,30个循环;最后以72℃延伸5min。将该片段经KpnI和SacI双酶切回收后,插入到经KpnI和SacI双酶切处理的载体pBBR1MCS2上,该重组质粒被命名为pTMB2E。
将质粒pTMB2E经电转化操作转化感受态细胞Sphingomonas ATCC 55669,于含30μg/mL 卡那霉素#272培养基平板(营养肉汤8g/L,葡萄糖5g/L,琼脂1.6%)26℃培养。挑转化子至添加30 μg/mL卡那霉素的5 mL #272培养基中26℃、220 rpm培养,阴性对照为转化pBBR1MCS2质粒的Sphingomonas ATCC 55669菌株。OD600达到0.7时加终浓度0.1mM IPTG诱导,24h后取样,采用荧光显微镜检测EGFP的表达(图9)。如图9A为阴性对照,在光学显微镜下有细胞团,但在荧光显微镜下没有发现该视野下有荧光;9B为样品,在光学显微镜下观测到的细胞团在荧光显微镜下可见荧光。说明,外源基因EGFP在宿主Sphingomonas ATCC55669中成功表达。
SEQUENCE LISTING
<110> 武汉生物技术研究院,武汉大学
<120> 一种产虾青素基因工程菌的构建方法
<130> 1
<160> 4
<170> PatentIn version 3.5
<210> 1
<211> 735
<212> DNA
<213> Brevundimonas sp. SD212
<400> 1
atgaccgccg cagtggcaga gccgcgtatc gttccgcgtc agacctggat tggcctgacc 60
ctggccggca tgattgttgc cggctggggc agcctgcatg tttacggcgt gtacttccac 120
cgctggggca ccagtagcct ggtgatcgtg ccggccatcg tggcagtgca gacctggctg 180
agcgtgggcc tgttcatcgt ggcacacgac gcaatgcacg gtagtttagc cccgggtcgt 240
cctcgtttaa acgccgccgt gggtcgtctg accttaggcc tgtacgccgg ctttcgcttc 300
gaccgcctga agaccgccca tcacgcacac catgcagcac ctggtaccgc cgacgacccg 360
gatttctatg caccggcacc tcgcgccttc ttaccgtggt tcctgaactt cttccgcacc 420
tacttcggct ggcgcgagat ggccgtgtta accgccctgg tgctgatcgc cttattcggt 480
ctgggtgcac gccctgccaa cctgctgacc ttctgggcag cccctgcact gctgagcgcc 540
ttacagctgt tcaccttcgg cacatggctg ccgcaccgcc ataccgatca gccgtttgcc 600
gacgcccacc atgcacgtag cagtggctac ggccctgtgc tgagcctgct gacctgcttc 660
cattttggcc gccaccatga gcaccacctg acaccttggc gtccgtggtg gcgcttatgg 720
cgtggtgaga gctaa 735
<210> 2
<211> 909
<212> DNA
<213> Pantoea ananatis
<400> 2
atgaccgtgt gtgcgaaaaa acatgtgcat ctgacccgtg acgccgccga acaactgctg 60
gccgacatcg accgccgcct ggatcaactg ctgccggttg aaggcgaacg tgatgtggtt 120
ggtgcagcaa tgcgtgaagg cgcgctggca ccgggtaaac gtattcgccc gatgctgctg 180
ctgctgaccg cgcgtgatct gggttgcgca gtcagtcacg atggtctgct ggacctggca 240
tgtgctgtcg aaatggttca tgcggctagc ctgatcctgg atgacatgcc gtgcatggat 300
gacgcaaaac tgcgtcgcgg tcgtccgacc attcatagcc actatggtga acacgttgca 360
atcctggcag cagtcgcact gctgtctaaa gcctttggcg tgattgcaga tgcagacggt 420
ctgacgccgc tggcaaaaaa ccgtgctgtc agtgaactgt ccaatgcgat cggtatgcag 480
ggtctggtgc agggccaatt caaagacctg agtgaaggtg acaaaccgcg ctccgcagaa 540
gctattctga tgaccaacca ctttaaaacc tctacgctgt tctgcgcatc tatgcagatg 600
gcttctatcg ttgcgaatgc cagctctgaa gcccgtgatt gtctgcatcg ctttagcctg 660
gatctgggcc aggcattcca actgctggat gacctgaccg atggcatgac cgacacgggt 720
aaagattcaa accaggacgc gggcaaatcg acgctggtga atctgctggg tccgcgtgca 780
gttgaagaac gtctgcgcca gcatctgcaa ctggcttcag aacacctgtc ggcagcttgt 840
caacatggtc acgcaacgca gcacttcatc caagcctggt tcgataaaaa actggcagcg 900
gtgtcgtaa 909
<210> 3
<211> 930
<212> DNA
<213> Pantoea ananatis
<400> 3
atgaataatc cgtccctgct gaatcacgct gttgaaacga tggctgtcgg ctctaaatca 60
tttgctaccg cttctaaact gttcgacgca aaaacccgtc gctccgttct gatgctgtat 120
gcgtggtgcc gtcattgtga tgacgtcatt gatgaccaga cgctgggttt tcaggcacgt 180
caaccggcac tgcagacccc ggaacaacgt ctgatgcagc tggaaatgaa aacgcgccaa 240
gcatacgctg gtagccagat gcacgaaccg gcctttgcgg ccttccagga agtcgcgatg 300
gcccatgata ttgcaccggc ttatgcgttt gaccacctgg aaggcttcgc gatggatgtg 360
cgtgaagcac agtactctca actggatgac accctgcgct attgctacca tgtggcgggc 420
gtggttggtc tgatgatggc ccagatcatg ggcgttcgtg ataacgcaac cctggatcgt 480
gcgtgcgacc tgggtctggc tttccagctg acgaatattg cacgtgatat cgtggatgac 540
gcccatgcag gccgctgtta tctgccggcg tcatggctgg aacacgaagg tctgaacaaa 600
gaaaattacg cagctccgga aaaccgtcaa gctctgtcgc gcatcgcgcg tcgcctggtt 660
caggaagccg aaccgtatta cctgagcgct accgcaggtc tggcaggtct gccgctgcgt 720
tctgcctggg caattgctac ggcgaaacaa gtctatcgca aaatcggcgt caaagtggaa 780
caggctggtc agcaagcgtg ggatcagcgt caaagtacca cgaccccgga aaaactgacc 840
ctgctgctgg cggcctccgg tcaggcgctg acctcccgta tgcgtgctca tccgccgcgt 900
ccggcccatc tgtggcaacg tccgctgtaa 930
<210> 4
<211> 1479
<212> DNA
<213> Pantoea ananatis
<400> 4
atgaaaccga ccacggtgat tggtgctggc tttggcggcc tggctctggc gattcgtctg 60
caagcggctg gcattccggt gctgctgctg gaacagcgtg ataaaccggg cggtcgcgcc 120
tatgtttacg aagatcaagg ctttaccttc gacgctggtc cgaccgtcat tacggacccg 180
agtgcgatcg aagaactgtt tgcgctggcc ggcaaacagc tgaaagaata tgttgaactg 240
ctgccggtca ccccgtttta ccgtctgtgc tgggaatctg gtaaagtgtt caactatgat 300
aatgaccaga cgcgcctgga agctcaaatt cagcaattca acccgcgtga tgttgaaggc 360
tatcgccagt ttctggacta cagtcgtgcc gtgttcaaag aaggctatct gaaactgggt 420
accgttccgt ttctgtcctt ccgtgatatg ctgcgtgcag ccccgcagct ggcaaaactg 480
caagcctggc gtagcgtgta ttctaaagtt gctagctaca tcgaagatga acacctgcgc 540
caggcgttta gtttccattc cctgctggtt ggcggcaatc cgtttgccac cagctctatt 600
tatacgctga tccatgcact ggaacgtgaa tggggtgtct ggtttccgcg cggcggtacc 660
ggcgcgctgg tgcagggtat gattaaactg ttccaggatc tgggcggcga agtggttctg 720
aacgcccgcg ttagccacat ggaaaccacg ggcaataaaa tcgaagcagt ccatctggaa 780
gatggtcgtc gctttctgac ccaggcagtg gcttctaacg cagatgtcgt gcacacgtat 840
cgtgacctgc tgagccagca tccggcagct gtgaaacagt ctaacaaact gcaaaccaaa 900
cgcatgtcaa attcgctgtt tgttctgtac ttcggcctga accatcacca tgatcagctg 960
gcgcaccata cggtctgttt tggcccgcgt tatcgcgaac tgattgacga aatctttaat 1020
cacgatggtc tggcggaaga cttctcactg tacctgcacg cgccgtgcgt gaccgatagt 1080
tccctggcac cggaaggctg tggttcgtat tacgtcctgg caccggtgcc gcacctgggt 1140
accgctaacc tggattggac ggtggaaggt ccgaaactgc gtgaccgcat ttttgcctat 1200
ctggaacagc actacatgcc gggcctgcgt agccaactgg ttacccatcg catgttcacg 1260
ccgtttgatt tccgtgacca gctgaatgca tatcatggtt cagctttttc ggttgaaccg 1320
gtcctgaccc aatccgcatg gttccgtccg cacaaccgcg ataaaaccat tacgaatctg 1380
tacctggttg gcgcgggtac gcatccgggc gccggtatcc cgggtgtgat tggctcggcg 1440
aaagcgacgg ctggcctgat gctggaagac ctgatttaa 1479

Claims (2)

1.一种产虾青素基因工程菌的构建方法,其特征在于:包括如下步骤:将产虾青素质粒pFZ153转化内含质粒pMH1、pFZ81的MG1655大肠杆菌感受态细胞,得到产虾青素基因工程菌;其中,产虾青素质粒pFZ153通过包括如下步骤的方法得到:
(1)大肠杆菌来源的idi基因通过PCR扩增克隆到载体pET28a(+)上获得质粒pGZI,将idi基因片段从pGZI中用NdeI和XhoI切下插入到pETduet-1相应位点获得pFZ87;
(2)以pFZ87为模板用引物PagCrtY-Idi-R和PagCrtW-pETduet-F扩增质粒骨架;
从CGMCC 1.2244基因组DNA扩增crtYcrtZ,引物分别为Idi-PagCrtY-F、CrtZ-PagCrtY-R,CrtY-PagCrtZ-F、CrtW-PagCrtZ-R;
合成SEQ ID NO.1所示的CrtW,以其为模板用引物CrtZ-BreCrtW-F和BreCrtW-R扩增crtW
crtYcrtZcrtW和质粒骨架四个片段用Giboson方法连接获得pFZ152;
(3)将合成序列分别如SEQ ID NO.2、3、4所示的crtEcrtBcrtI,将crtEcrtBcrtI分别克隆到pET28a(+)的NdeI和EcoRI位点获得pFZ21、pFZ22和pFZ23;
(4)以构建pFZ152同样的方法分别以pFZ87、pFZ21、pFZ22、pFZ23为模板用引物PETduet-NcoI-R、pETduet-EcoRI-T7-F,Duet-PanCrtE-F、PanCrtI-CrtE-R,PanCrtE-CrtI-F、PanCrtB-CrtI-R,PanCrtI-CrtB-F、Duet-EcoRI-PanCrtB-R扩增质粒骨架、crtEcrtIcrtB,用Giboson方法连接获得质粒pFZ112;
(5)将crtE-crtI-crtB用NdeI和EcoRI从pFZ112上切下插入到pFZ152对应的位点获得产虾青素质粒pFZ153;
上述各引物序列如下:
PagCrtY-Idi-R:CAGATCATACCGCGGCATAGTGTAATCCTCCTTTATTTAAGCTGGGTAAATG,
PagCrtW-pETduet-F:CTTATGGCGTGGTGAGAGCTAACTCGAGTCTGGTAAAGAAACCGC,
Idi-PagCrtY-F:ACCCAGCTTAAATAAAGGAGGATTACACTATGCCGCGGTATGATCTGATTC,
CrtZ-PagCrtY-R:GCATTCCAAATCCACAACATATAGTAATCCTCCTTCATTGCATCGCCTGTTGAC,
CrtY-PagCrtZ-F:CAGGCGATGCAATGAAGGAGGATTACTATATGTTGTGGATTTGGAATGCCCTGA,
CrtW-PagCrtZ-R:CCACTGCGGCGGTCATTACTCATTCCTCCTTTACTTCCCGGGTGGCGCGTC,
CrtZ-BreCrtW-F:CGCCACCCGGGAAGTAAAGGAGGAATGAGTAATGACCGCCGCAGTGGCAGAG,
BreCrtW-R: GCGGTTTCTTTACCAGACTCGAGTTAGCTCTCACCACGCCATAAG,
PETduet-NcoI-R: CATGGTATATCTCCTTCTTAAAGTTAAAC,
pETduet-EcoRI-T7-F: TAACTAGTGAATTCGAGCTCGGCGCGCCTG,
Duet-PanCrtE-F:GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACCGTGTGTGCGAAAAAAC,
PanCrtI-CrtE-R:TCACCGTGGTCGGTTTCATGGTTAATTCCTCCTTTACGACACCGCTGCCAG,
PanCrtE-CrtI-F:CTGGCAGCGGTGTCGTAAAGGAGGAATTAACCATGAAACCGACCACGGTGA,
PanCrtB-CrtI-R:TCAGCAGGGACGGATTATTCATGAGTATTACCTCCTTTAAATCAGGTCTTCCAGCATC,
PanCrtI-CrtB-F:GATGCTGGAAGACCTGATTTAAAGGAGGTAATACTCATGAATAATCCGTCCCTGCTGA,
Duet-EcoRI-PanCrtB-R:TTGTCGACCTGCAGGCGCGCCGAGCTCGAATTCACTAGTTAAACGGGGCGCTGCCAGAG。
2.一种产虾青素基因工程菌,其特征在于:通过权利要求1所述的方法得到。
CN201710335486.8A 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法 Pending CN107129995A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710335486.8A CN107129995A (zh) 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410447259.0A CN104232595B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法
CN201710335486.8A CN107129995A (zh) 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410447259.0A Division CN104232595B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法

Publications (1)

Publication Number Publication Date
CN107129995A true CN107129995A (zh) 2017-09-05

Family

ID=52221497

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710335486.8A Pending CN107129995A (zh) 2014-09-03 2014-09-03 一种产虾青素基因工程菌的构建方法
CN201410447259.0A Active CN104232595B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法
CN201710534520.4A Active CN107142250B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201410447259.0A Active CN104232595B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法
CN201710534520.4A Active CN107142250B (zh) 2014-09-03 2014-09-03 鞘氨醇单胞菌的β–胡萝卜素羟化酶及其编码基因与其在生产虾青素中的应用

Country Status (1)

Country Link
CN (3) CN107129995A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318878A (zh) * 2015-07-06 2017-01-11 中国科学院青岛生物能源与过程研究所 一种高产虾青素红酵母工程菌及其构建方法
CN107858395A (zh) * 2017-12-21 2018-03-30 杭州爱蔻思生物科技有限公司 制备天然虾青素和其他类胡萝卜素的同步萃取发酵方法
CN111454854A (zh) * 2020-05-02 2020-07-28 昆明理工大学 一株产虾青素的红冬孢酵母基因工程菌株
CN115807026A (zh) * 2022-08-01 2023-03-17 深圳大学 一种莱茵衣藻中虾青素合成路径的构建方法及应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111032855A (zh) * 2017-06-01 2020-04-17 尼普生物股份有限公司 微生物体中异源类胡萝卜素的产生
CN109536518A (zh) * 2018-10-31 2019-03-29 昆明理工大学 一种八氢番茄红素脱氢酶基因RKcrtI及其应用
CN109652388B (zh) * 2018-12-20 2021-05-04 江南大学 一段可用于编码番茄红素脱氢酶的基因
CN109750021A (zh) * 2019-03-25 2019-05-14 中国海洋大学 一种扇贝类胡萝卜素氧化裂解酶基因及其应用
CN112029782B (zh) * 2020-09-11 2022-04-22 深圳大学 一种β-胡萝卜素羟化酶及其基因与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780281A1 (en) * 2004-06-04 2007-05-02 Marine Biotechnology Institute Co., Ltd. Method of producing astaxanthin or metabolic product thereof by using carotenoid ketolase and carotenoid hydroxylase genes
CN103805623A (zh) * 2014-01-17 2014-05-21 河北大学 一种虾青素合成基因重组质粒及其制备方法和用途
CN103865818A (zh) * 2012-12-07 2014-06-18 上海来益生物药物研究开发中心有限责任公司 一种产虾青素基因工程菌的构建方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091031B2 (en) * 2004-08-16 2006-08-15 E. I. Du Pont De Nemours And Company Carotenoid hydroxylase enzymes
CN103773729B (zh) * 2012-10-22 2017-07-11 中国科学院上海生命科学研究院 高效合成萜类化合物的重组大肠杆菌底盘细胞及其制法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780281A1 (en) * 2004-06-04 2007-05-02 Marine Biotechnology Institute Co., Ltd. Method of producing astaxanthin or metabolic product thereof by using carotenoid ketolase and carotenoid hydroxylase genes
CN103865818A (zh) * 2012-12-07 2014-06-18 上海来益生物药物研究开发中心有限责任公司 一种产虾青素基因工程菌的构建方法
CN103805623A (zh) * 2014-01-17 2014-05-21 河北大学 一种虾青素合成基因重组质粒及其制备方法和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAYIN ZHU等: "In Vitro Reconstitution of Mevalonate Pathway and Targeted Engineering of Farnesene Overproduction in Escherichia coli", 《BIOTECHNOLOGY AND BIOENGINEERING》 *
LUAN TAO等: "Engineering a β-carotene ketolase for astaxanthin production", 《METABOLIC ENGINEERING》 *
SEON-KANG CHOI等: "Characterization of β-Carotene Ketolases,CrtW,from Marine Bacteria by Complementation Analysis in Escherichia coli", 《MARINE BIOTECHNOLOGY》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318878A (zh) * 2015-07-06 2017-01-11 中国科学院青岛生物能源与过程研究所 一种高产虾青素红酵母工程菌及其构建方法
CN106318878B (zh) * 2015-07-06 2019-12-20 中国科学院青岛生物能源与过程研究所 一种高产虾青素红酵母工程菌及其构建方法
CN107858395A (zh) * 2017-12-21 2018-03-30 杭州爱蔻思生物科技有限公司 制备天然虾青素和其他类胡萝卜素的同步萃取发酵方法
CN111454854A (zh) * 2020-05-02 2020-07-28 昆明理工大学 一株产虾青素的红冬孢酵母基因工程菌株
CN111454854B (zh) * 2020-05-02 2022-05-06 昆明理工大学 一株产虾青素的红冬孢酵母基因工程菌株
CN115807026A (zh) * 2022-08-01 2023-03-17 深圳大学 一种莱茵衣藻中虾青素合成路径的构建方法及应用
CN115807026B (zh) * 2022-08-01 2023-09-01 深圳大学 一种莱茵衣藻中虾青素合成路径的构建方法及应用
WO2024026963A1 (zh) * 2022-08-01 2024-02-08 深圳大学 一种莱茵衣藻中虾青素合成路径的构建方法及应用

Also Published As

Publication number Publication date
CN107142250A (zh) 2017-09-08
CN107142250B (zh) 2019-09-10
CN104232595B (zh) 2017-07-11
CN104232595A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN104232595B (zh) 鞘氨醇单胞菌的虾青素合成酶及其编码基因和鞘氨醇单胞菌遗传操作的方法
Lauersen et al. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii
Lindberg et al. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
Bian et al. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6
CN103764818B (zh) 用于重组产生藏红花化合物的方法和物质
Wang et al. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae
CN103602627B (zh) 一种产n-乙酰神经氨酸大肠杆菌工程菌及其构建方法和应用
Yuan et al. Combinatorial engineering of mevalonate pathway for improved amorpha‐4, 11‐diene production in budding yeast
CN110229772B (zh) 一种提高七稀甲萘醌产量的重组枯草芽孢杆菌及其应用
CN113652385B (zh) 一种高产乳酰-n-四糖的微生物的构建方法及应用
EA024979B1 (ru) Рекомбинантные бактерии и их применение для получения этанола
CN104357418B (zh) 一种糖基转移酶及其突变体在合成人参皂苷Rh2中的应用
CN111321087A (zh) 一种产β-胡萝卜素的解脂耶氏酵母基因工程菌及其应用
CN113684164B (zh) 一种高产乳酰-n-新四糖的微生物的构建方法及应用
CN114107152B (zh) 一种高产3-岩藻糖基乳糖微生物的构建方法及应用
CN103243066A (zh) 一种生产番茄红素的菌株及其应用
CN113151340B (zh) 一种提高β-胡萝卜素产量的基因工程菌及其应用
Tran et al. Metabolic engineering of ketocarotenoids biosynthetic pathway in Chlamydomonas reinhardtii strain CC-4102
CN114058525A (zh) 一种高产角鲨烯基因工程菌及其构建方法与应用
CN105779489B (zh) 利用Pcry3Aa启动子构建高表达海藻糖合成酶工程菌的方法
CN107354118A (zh) 一种具有γ‑松油烯合成能力的基因工程菌及其构建方法与应用
CN114214218A (zh) 一种产虾青素的工程菌及其制备方法和应用
CN111607546B (zh) 一种高产法尼烯的基因工程菌及其构建方法与应用
CN103937841B (zh) 烯酰辅酶a水合酶在己二酸生物合成中的应用
CN113174397B (zh) 一种利用无细胞体系高效合成番茄红素的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170905