CN107126764A - 熔喷过滤介质 - Google Patents

熔喷过滤介质 Download PDF

Info

Publication number
CN107126764A
CN107126764A CN201710133180.4A CN201710133180A CN107126764A CN 107126764 A CN107126764 A CN 107126764A CN 201710133180 A CN201710133180 A CN 201710133180A CN 107126764 A CN107126764 A CN 107126764A
Authority
CN
China
Prior art keywords
layer
product
melt
filter medium
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710133180.4A
Other languages
English (en)
Inventor
约翰·A·韦茨
大卫·托马斯·希利
威廉·S·弗里曼
约翰·L·曼斯
马克·罗兰兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hollingsworth and Vose Co
Original Assignee
Hollingsworth and Vose Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hollingsworth and Vose Co filed Critical Hollingsworth and Vose Co
Publication of CN107126764A publication Critical patent/CN107126764A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0681The layers being joined by gluing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/10Multiple layers

Abstract

本发明涉及熔喷过滤介质、以及相关的组件、系统和方法。本发明提供一种制品,其包括:第一层;含有熔喷材料的第二层;和在所述第一层和第二层之间的粘合剂材料。

Description

熔喷过滤介质
本申请是申请日为2008年11月7日,申请号为“200880124466.5”,发明名称为“熔喷过滤介质”的中国专利申请的分案申请。
相关申请的交叉引用
本申请根据35 U.S.C.§119(e)(1)要求提交于2007年11月9日的USSN 60/986,642的优先权,其全部内容通过引用并入本文。
技术领域
本公开一般涉及过滤介质,以及相关的组件、系统和方法。
背景技术
过滤介质用于多种系统。通常通过使液体或气体通过介质以利用介质从液体或气体中除去不需要的物质(例如粒子)。
发明内容
本公开一般涉及过滤介质,以及相关的组件、系统和方法。
一方面,本公开的特征在于一种包括第一层、第二层和第三层的制品。第二层包含熔喷材料。第三层包含粘合剂并且位于第一层和第二层之间。
另一方面,本公开的特征在于一种包括第一层、第二层和第三层的制品。任选地,第三层可以是稀松布。第二层包含熔喷材料。稀松布位于第一层和第二层之间,或者第二层位于第一层和稀松布之间。
又一方面,本公开的特征在于一种包括第一层、第二层和第三层的制品。第二层包含熔喷材料,且第三层位于第一层和第二层之间。所述制品为过滤介质。
再一方面,本公开的特征在于一种包括外壳和由该外壳支撑的过滤介质的组件。过滤介质可以为例如在此之前三段中所述的任意制品。
又一方面,本公开的特征在于一种具有至少90%的初始捕尘效率和至少50g/m2的容尘量的过滤介质。
再一方面,本公开的特征在于一种具有至少90%的周期性捕尘效率和至少50g/m2的容尘量的过滤介质。
另一方面,本公开的特征在于一种初始可洗性测试时间为至少4小时的过滤介质。
又一方面,本公开的特征在于一种具有至少80%的煤烟粒子捕获效率的过滤介质。
再一方面,本公开的特征在于一种具有至少30%的NaCl粒子过滤效率以及至少40分钟的NaCl粒子捕获测试时间的过滤介质。
又一方面,本公开的特征在于一种具有至少45%的液体过滤效率的过滤介质。
再一方面,本公开的特征在于一种包括形成概述部分的前述自然段中所述的任意制品和/或过滤介质的方法。
另一方面,本公开的特征在于一种包括使熔喷材料粘附到包括基材的制品上以提供过滤介质的方法。
再一方面,本公开的特征在于一种包括用稀松布支撑熔喷材料以提供第一制品,以及使该第一制品与基材接合在一起以提供过滤介质的方法。
又一方面,本公开的特征在于一种包括第一层和第二层的过滤介质。第二层可以与第一层不同。第二层包含第一熔喷材料。第一层可以为例如熔喷材料或者电纺材料。在一些实施方案中,第一层和第二层是由另一层支撑的。
另一方面,本公开的特征在于一种包括第一层、第二层和第三层的过滤介质。第二层包括多种纤维,并且第二层的厚度为至少5微米。第三层包括稀松布或者粘合剂材料。
又一方面,本公开的特征在于在概述部分的前述自然段中所述的任意制品和/或过滤介质,其老化可洗性测试时间是初始可洗性测试时间的至少70%。
再一方面,本公开的特征在于一种老化可洗性测试时间是初始可洗性测试时间的至少70%的过滤介质。
另一方面,本公开的特征在于在概述部分的任一前述自然段中所述的制品和/或过滤介质,其液体过滤保持效率为至少60%。
又一方面,本公开的特征在于一种具有至少60%的液体过滤保持效率的过滤介质。
再一方面,本公开的特征在于一种包括基材和与该基材接合的熔喷材料的制品。
另一方面,本公开的特征在于一种具有多个峰和谷的熔喷层,其中相邻谷之间的距离为至少400微米。
又一方面,本公开的特征在于一种包括第一层和与第一层接合的第二层的制品,所述第二层包含平均直径为至多1.5微米的纤维。
一方面,本公开的特征在于一种制品,该制品包括具有第一面和第二面的第一层、包含熔喷材料的第二层,以及在第一层的第一面和第二层之间的材料。该制品在第一层的第一面上具有至少150密耳的波纹沟道宽度、至少8密耳的波纹深度,并且在第一层的第二面上具有至少8密耳的波纹深度。
另一方面,本公开的特征在于一种制品,该制品包括具有第一面和第二面的第一层、包含纤维的第二层,以及在第一层的第一面和第二层之间的材料。第二层中至少5%的纤维在基本垂直于第二层的表面的方向上延伸至少0.3微米的距离。该制品在第一层的第一面上具有至少150密耳的波纹沟道宽度、至少8密耳的波纹深度,并且在第一层的第二面上具有至少8密耳的波纹深度。
又一方面,本公开的特征在于一种制品,该制品包括具有第一面和第二面的第一层、包含纤维直径几何标准偏差大于1.3的纤维的第二层,以及在第一层的第一面和第二层之间的材料。该制品在第一层的第一面上具有至少150密耳的波纹沟道宽度、至少8密耳的波纹深度,并且在第一层的第二面上具有至少8密耳的波纹深度。
再一方面,本公开的特征在于一种制品,该制品包括具有第一面和第二面的第一层、含有熔喷材料的第二层,以及在第一层的第一面和第二层之间的材料。该制品为波形制品,具有至少25%的保持波纹(retained corrugation)。
一方面,本公开的特征在于一种制品,该制品包括具有第一面和第二面的第一层;含有纤维的第二层,其中第二层中至少5%的纤维在基本垂直于第二层的表面的方向上延伸至少0.3微米的距离;以及在第一层的第一面和第二层之间的材料。该制品为波形制品,具有至少25%的保持波纹。
另一方面,本公开的特征在于一种制品,该制品包括具有第一面和第二面的第一层;包含纤维直径几何标准偏差大于1.3的纤维的第二层;以及在第一层的第一面和第二层之间的材料。该制品为波形制品,具有至少25%的保持波纹。
又一方面,本公开的特征在于一种制品,该制品包括第一层、含有熔喷材料的第二层,以及在第一层和第二层之间的粘合剂材料。所述粘合剂材料存在于第一层和第二层之间的至少70%的面积中。
再一方面,本公开的特征在于一种制品,该制品包括第一层、含有纤维的第二层,以及在第一层和第二层之间的粘合剂材料。所述粘合剂材料存在于第一层和第二层之间的至少70%的面积中,并且第二层中至少5%的纤维在基本垂直于第二层的表面的方向上延伸至少0.3微米的距离。
一方面,本公开的特征在于一种制品,该制品包括第一层、含有纤维的第二层,以及在第一层和第二层之间的粘合剂材料。所述粘合剂材料存在于第一层和第二层之间的至少70%的面积中,并且第二层中的纤维具有大于1.3的纤维直径几何标准偏差。
另一方面,本公开的特征在于一种制品,该制品包括第一层、含有熔喷材料的第二层,以及在第一层和第二层之间的粘合剂材料。第一层和第二层之间的平均剥离强度为至少0.5盎司/英寸。
又一方面,本公开的特征在于一种制品,该制品包括第一层;含有纤维的第二层,其中第二层中至少5%的纤维在基本垂直于第二层的表面的方向上延伸至少0.3微米的距离;以及在第一层和第二层之间的粘合剂材料。第一层和第二层之间的平均剥离强度为至少0.5盎司/英寸。
再一方面,本公开的特征在于一种制品,该制品包括第一层、包含纤维直径几何标准偏差大于1.3的纤维的第二层,以及在第一层和第二层之间的粘合剂材料。第一层和第二层之间的平均剥离强度为至少0.5盎司/英寸。
一方面,本公开的特征在于一种制品,该制品包括第一层、含有熔喷材料的第二层,以及在第一层和第二层之间的粘合剂材料。该粘合剂材料的开放时间(open time)为至少15秒。
另一方面,本公开的特征在于一种制品,该制品包括第一层、含有纤维的第二层,以及在第一层和第二层之间的粘合剂材料。该粘合剂材料的开放时间为至少15秒,并且第二层中至少5%的纤维在基本垂直于第二层的表面的方向上延伸至少0.3微米的距离。
又一方面,本公开的特征在于一种制品,该制品包括第一层、含有纤维的第二层,以及在第一层和第二层之间的粘合剂材料。该粘合剂材料的开放时间为至少15秒,并且第二层中的纤维具有大于1.3的几何标准偏差。
再一方面,本公开的特征在于一种制品,该制品包括第一层和含有熔喷材料的第二层。该制品在4微米的粒径下具有至多20%的β衰变。
又一方面,本公开的特征在于一种方法,其包括使用20磅/线性英寸~40磅/线性英寸的压力使熔喷材料粘附到包括基材的制品上以提供过滤介质。
实施方案可以显示出以下的一个或多个优点。
实施方案可以提供以下的一个或多个优点。在某些实施方案中,过滤介质可以比较耐用、较好地捕获细粒、较好地容纳材料(例如粉尘),显示出较好的可洗性、较好的煤烟捕获性和/或较好的液体过滤性。在一些实施方案中,过滤介质可以同时显示出通常不能由至少一些已知的过滤介质所同时提供的优点。例如,在某些实施方案中,过滤介质可以有效地捕获细粒,同时也较为耐用。作为另一实例,在一些实施方案中,过滤介质有效地捕获粒子,同时也具有良好的容纳物质(例如粉尘)的能力。作为又一实例,在某些实施方案中,过滤介质可以在保持或增加粒子捕获容量的同时,显示出提高的粒子捕获效率。在某些实施方案中,可以以较快、较便宜和/或较简单的方式来制造过滤介质以及相关的过滤系统。在一些实施方案中,本文所公开的方法可以用来提供具有良好波纹性能的波形制品(例如波形过滤介质)。例如,波形制品可以包括具有粘合剂和置于其上的其他层的基材(其在提供时是波形的),其中最终制品的波纹性能(例如波纹深度)与在具有该粘合剂和置于其上的其他层之前所提供的基材的波纹深度没有明显区别。作为另一实例,波形制品可以包括具有粘合剂和置于其上的其他层的基材(其在提供时是波形的),其中具有粘合剂和其他层的制品一面的波纹性能(例如波纹深度)与该制品另一面的波纹深度没有明显区别。
附图说明
基于以下说明以及附图,可以更好地理解本公开,其中:
图1是过滤介质的截面图;
图2是褶裥式过滤介质的截面图;
图3是包括过滤介质的过滤组件的部分剖示的透视图;
图4是波形过滤介质的截面图;
图5是配置用于制造过滤介质的系统的示意图;
图6是熔喷层的截面图;以及
图7是配置用于制造过滤介质的系统的示意图。
具体实施方式
本公开一般涉及过滤介质以及相关组件、系统和方法。图1是一种示例性过滤介质10的截面图,过滤介质10包括基材12、中间层14和熔喷层16。图2描述了过滤介质10的典型打褶构造。图3示出一种示例性过滤组件100的剖示透视图,其包括过滤外壳101、滤筒102、内筛108和外筛103。过滤介质10置于滤筒102中。在使用过程中,气体经由开口104进入组件100,然后经过内筛108、过滤介质10和外筛103。气体随后经由开口106离开过滤组件100。
I.过滤介质
A.基材
通常使用基材12为过滤介质10提供机械完整性。
基材12可以由一个或多个材料层形成。材料的实例包括玻璃、纤维素、合成材料、陶瓷、聚合物、棉、大麻、碳和金属。通常,基材12包含一种或多种材料的纤维。示例性的纤维类型包括天然纤维、有机纤维和无机纤维。可以使用纤维和/或材料的组合。在某些实施方案中,基材12可以包括一个或多个不合纤维的层。可以用于基材12中的非纤维材料的实例包括开孔泡沫结构。例如,开孔泡沫结构可以由诸如聚烯烃和聚苯乙烯之类的聚合物制成。
可以采用任意适当的方法来制造基材12。在一些实施方案中,基材12是由包括成网(例如湿法成网、干法成网、直接成网)、梳理、纺粘、熔喷和薄膜原纤化的方法制成的。基材的特定构造可以取决于过滤介质的预期应用,并且可以改变该特定构造以获得期望的结构性能,包括劲度、强度、成褶性、耐温性。例如,当过滤介质10被设计用于重载空气过滤系统、燃气轮机过滤系统、机动车空气过滤系统和/或脉冲清洁应用时,基材12可以是湿法成网纸,例如纤维素或者合成/纤维素共混物。作为另一实例,当过滤介质10被设计用于HVAC过滤系统、液体过滤系统、HEPA过滤系统和/或电池隔离器时,基材12可以是湿法成网纸(例如,由纤维素、玻璃和/或合成纤维制成)、粗梳非织造布、纺粘非织造布、熔喷非织造布或者气流成网布(例如,合成的或纤维素)。
一般而言,基材12可以具有任意期望的厚度。通常,基材12厚为至少200微米(例如,300微米、400微米、500微米、600微米),和/或至多1500微米(例如,1400微米、1300微米、1200微米、1100微米、1000微米)。在一些实施方案中,基材12的厚度为200微米~1500微米(例如,200微米~1000微米、400微米~1000微米)。如本文所提及的,基材12的厚度是按照TAPPI T411测定的。
通常基材12的基重选择为使得基材12为过滤介质10提供期望量的机械完整性。在某些实施方案中,基材12的基重为至少25g/m2(例如,50g/m2、75g/m2),和/或至多250g/m2(例如,200g/m2、150g/m2)。例如,在一些实施方案中,基材12的基重为25g/m2~200g/m2(例如,50g/m2~200g/m2、75g/m2~150g/m2)。如本文所提及的,基重是按照ASTM D-846测定的。
基材12可被设计成具有任意期望的透气率。在一些实施方案中,基材12的透气率为至少3立方英寸每分钟(CFM)(例如10CFM、25CFM、),和/或至多400CFM(例如,300CFM、200CFM、150CFM、100CFM)。例如,在某些实施方案中,基材12的透气率为2CFM~400CFM(例如,10CFM~300CFM、25CFM~200CFM)。如本文所用的,透气率是按照ASTM F778-88在0.5英寸水柱的压力下测定的。
基材12也可以被设计成具有任意期望的过滤效率。在某些实施方案中,基材12具有小于10%(例如小于8%、小于5%)的NaCl粒子过滤效率(在32升/分钟的流速下测量)(参见下文关于NaCl粒子过滤效率测试的讨论)。
尽管图1中示出的基材12是连续的,但是在一些实施方案中,基材12可以是不连续的。例如,基材12可以由本身可以是连续或不连续的长丝(纱线)形成。另外或作为替代方案,基材12可以是其中具有孔的材料的形式(例如,丝网形式)。另外或作为替代方案,基材12可以是材料碎片(例如点)的形式。
B.中间层
1.粘合剂
在一些实施方案中,层14是由粘附到层12和16上的粘合剂(例如,热熔性粘合剂、压敏性粘合剂、热塑性粘合剂、热固性粘合剂、)形成的。通常,粘合剂是聚合物。聚合物的实例包括乙烯-乙酸乙烯酯共聚物、聚烯烃(例如,聚乙烯、聚丙烯、非晶聚烯烃)、聚酰胺(例如尼龙)、环氧化物、氰基丙烯酸酯、聚氨酯(例如潮气固化型聚氨酯)和聚酯。在一些实施方案中,粘合剂是乙烯-乙酸乙烯酯共聚物。市售材料的实例包括以商品名HM 4379、M2751和H3199得自Bostik(Wauwatosa,WI),以及以商品名H312得自Heartland(Germantown,WI)的非晶聚烯烃粘合剂。市售材料的实例也包括以商品名HM4199、HM4156和Vitel4361B得自Bostik(Wauwatosa,WI)的共聚酯。市售材料的实例还包括以商品名HM 4289LV和HM4229得自Bostik(Wauwatosa,WI)的聚酰胺。
在一些实施方案中,层14是由直径小于4微米且几何标准偏差为1.4的纤维网形成的。
粘合剂层14的厚度通常可以根据需要进行选择。在一些实施方案中,粘合剂层14的厚度为至少5微米(例如,至少10微米、至少25微米),和/或至多100微米(例如,至多75微米、至多50微米)。例如,按扫描电子显微镜法测定的,粘合剂层14的厚度可以为5微米~100微米(例如,5微米~75微米、5微米~50微米)。
一般而言,粘合剂层14的基重可以根据需要进行选择。在一些实施方案中,粘合剂层14的基重为至多10g/m2(至多8g/m2、至多5g/m2),和/或至少0.5g/m2(例如,至少1g/m2、至少2g/m2)。例如,在一些实施方案中,粘合剂层14的基重可以为0.5g/m2~10g/m2(例如,1g/m2~8g/m2、2g/m2~5g/m2)。
尽管图1中示出的粘合剂14是连续的,但是在一些实施方案中,粘合剂14可以是不连续的。例如,粘合剂14可以是其中具有孔的材料的形式(例如,丝网形式)。另外或作为替代方案,粘合剂14可以是材料碎片(例如点)的形式。通常,当考虑制品10的预期用途时,层12和层16之间的粘合剂14的量能在提供层12和层16之间提供适当粘附即足矣。例如,在一些实施方案中,粘合剂14存在于层12和层14之间至少70%(例如至少75%、至少80%、至少85%、至少90%、至少95%、至少99%、100%)的面积中。
一般而言,粘合剂14选择为使得层12和层16之间的平均剥离强度为至少0.5盎司/英寸宽度(例如,至少1盎司/英寸宽度、至少1.5盎司/英寸宽度)。在一些实施方案中,粘合剂14选择为使得层12和层16之间的平均剥离强度为至多4盎司/英寸宽度。如本文所用的,第一层/粘合剂/第二层构造的“平均剥离强度”如下进行测定。该测试是ASTM D903的修正版,使用Thwing-Albert Intellect II张力测试仪。将样品切成2英寸×7英寸的切片,并且在加工方向上进行剥离。将来自Intertape Inc.(Montreal,Quebec,Canada)的TUFFLEX(TF4150 85447)胶带应用于试样的涂布表面的长度以牢牢地与顶层接合,从而能够使层合体分离。使用半英寸预剥离器来开始分层。测试仪十字头和顶部气夹(air grip)以每分钟12英寸的速度从固定的底部气夹移动。当十字头和顶部气夹从初始位置移动4英寸时,结束测试。记录作为载荷函数的最大剥离强度和最小剥离强度,所述载荷是由荷重元件测量的。从整个测试过程中由荷重元件测量的载荷计算平均剥离强度。通过除以2将所有的剥离强度都分成一半来报道每英寸宽度的剥离强度。
通常,粘合剂14选择为具有适当的用于下面制造工艺的开放时间。例如,粘合剂14的开放时间应该足以使得其在它施加于一个层(例如层12或层16)的时间和粘合剂14接触另一层(例如层16或层12)的时间之间不会变得不粘。在一些实施方案中,粘合剂14的开放时间为至少15秒(例如至少20秒、至少30秒、至少40秒)。在某些实施方案中,层14的开放时间至多60秒。如本文所用的,按照ASTM D4497,使用1/16英寸宽的粘合剂珠粒测定粘合剂的“开放时间”。
2.稀松布
在一些实施方案中,层14充当熔喷层16的载体层(稀松布)(参见下面的工艺讨论)。在这样的实施方案中,稀松布14通常与层12和层16接合在一起(例如,层合在一起)。
例如,稀松布14可以由聚合物形成。聚合物的实例包括聚酯、聚酰胺和聚烯烃。任选地,稀松布14由纺粘非织造材料或者粗梳非织造材料形成。在一些实施方案中,稀松布14是由纺粘聚丙烯形成的。
通常,稀松布14的厚度可以根据需要进行选择。在某些实施方案中,稀松布14为至少50微米(例如,至少100微米、至少200微米)厚,和/或至多1000微米(例如,至多900微米、至多750微米)厚。例如,稀松布14的厚度可以为50微米到1000微米(例如,100微米到900微米、250微米到750微米)厚。如本文所提及的,稀松布14的厚度是按照TAPPI T411进行测定的。
一般而言,稀松布14的基重可以根据需要进行选择。在一些实施方案中,粘合剂层14的基重为至多100g/m2(至多90g/m2、至多75g/m2),和/或至少5g/m2(例如至少10g/m2、至少20g/m2)。例如,在一些实施方案中,粘合剂层14可以具有5g/m2~100g/m2(例如5g/m2~90g/m2、5g/m2~75g/m2)的基重。
尽管图1中示出的稀松布14是连续的,但在一些实施方案中,稀松布14可以是不连续的。例如,稀松布14可以是其中具有孔的材料的形式(例如,丝网形式)。另外或作为替代方案,稀松布14可以是材料碎片(例如点)的形式。
C.熔喷层
层16是通过如下所讨论的熔喷工艺形成的。一般而言,层16是由平均直径为至多1.5微米(例如至多1.4微米、至多1.3微米、至多1.2微米、至多1.1微米、至多1微米),和/或至少0.2微米(例如至少0.3微米、至少0.4微米、至少0.5微米)的纤维形成的,所述平均直径是采用扫描电子显微镜法测量的。例如,在一些实施方案中,层16由平均直径为0.2微米~1.5微米(例如0.3微米~1.4微米、0.4微米~1.3微米)的纤维形成。又如,在某些实施方案中,层16由平均直径为0.2微米~0.5微米(例如0.3微米~0.5微米、0.4微米~0.5微米、0.2微米~0.4微米、0.2微米~0.3微米、0.3微米~0.4微米)的纤维形成。一般而言,熔喷材料中至少5%(例如至少10%、至少25%、至少50%、至少60%、至少75%)的纤维在如图1中箭头所示的基本垂直于第二层表面的方向上延伸至少0.3微米的距离。
通常,熔喷材料由一种或多种聚合物形成。示例性的聚合物包括聚烯烃(例如聚丙烯)、聚酯(例如聚对苯二甲酸丁二醇酯、聚萘二甲酸丁二醇酯)、聚酰胺(例如尼龙)、聚碳酸酯、聚苯硫醚、聚苯乙烯、聚氨酯(例如热塑性聚氨酯)。任选地,聚合物可以含有氟原子。这样的聚合物的实例包括PVDF和PTFE。
层16通常可以具有任意期望的厚度。在一些实施方案中,层16为至少5微米(例如至少10微米、至少20微米)厚,和/或至多250微米(例如200微米、150微米)厚。例如,层16可以为5微米~250微米(例如10微米~200微米、20微米~150微米)厚。采用扫描电子显微镜法来测定层16的厚度。不希望受理论的束缚,据信,采用本文所述的方法,可以获得比典型的电纺纤维层更厚和/或经济上可行,和/或比典型的熔喷纤维层(例如由于考虑如机械完整性)更薄和/或经济上可行的熔喷纤维层。
层16的基重通常可以根据需要进行选择。在一些实施方案中,层16的基重为至少1g/m2(例如至少10g/m2、至少25g/m2),和/或至多100g/m2(至多90g/m2、至多75g/m2)。例如,在某些实施方案中,层16具有1g/m2~100g/m2(例如10g/m2~90g/m2、25g/m2~75g/m2)的基重。不希望受缚于理论,据信,使用本文所述的方法,可以获得基重比典型的电纺纤维层更大和/或经济上可行,和/或基重比典型的熔喷纤维层(例如由于考虑如机械完整性和/或瞬间层合)更小的熔喷纤维层。
层16的透气率也可以根据需要变化。在一些实施方案中,层16的透气率为至多500CFM(例如至多250CFM、至多200CFM),和/或至少20CFM(例如至少50CFM、至少100CFM)。例如,在一些实施方案中,层16的透气率可以为20CFM~500CFM(例如,50CFM~250CFM、100CFM~200CFM)。通常,层16的透气率(Perm)是通过等式(1/Perm)=(l/Perm1)+(1/Perm2)测定的,其中Perm是过滤介质10(包括层12、层14和层16)的透气率,Perm1是熔喷层16的透气率,而Perm2是基材层12的透气率。例如,如果熔喷层16的透气率为300CFM且基材12的透气率为70CFM,则过滤介质10的透气率为56.8CFM,这是因为1/56.8=1/300+1/70。
尽管图1中示出的层16是连续的,但在一些实施方案中,层16可以是不连续的。例如,层16可以是其中具有孔的材料的形式(例如,丝网形式)。另外或作为替代方案,层16可以是材料碎片(例如点)的形式。
D.过滤介质性能
一般而言,过滤介质10的厚度可以根据需要进行选择。过滤介质10的厚度为从层12的外表面到层16的外表面的距离。在层14为粘合剂的实施方案中,过滤介质10可以具有至少200微米(例如,至少300微米、至少400微米)的制品厚度,和/或至多1500微米(例如至多1000微米、至多750微米)的厚度。例如,在这样的实施方案中,过滤介质10的厚度为200微米~1500微米(例如300微米~1000微米、400微米~750微米)。在层14为稀松布的实施方案中,过滤介质10可以具有至少200微米(例如,至少300微米、至少400微米)的制品厚度,和/或至多2500微米(例如至多2000微米、至多1500微米)的厚度。例如,在这样的实施方案中,过滤介质10的厚度为200微米~2500微米(例如300微米~2000微米、400微米~1500微米)。
通常,过滤介质10可以具有任意期望的基重。在层14为粘合剂的实施方案中,过滤介质10可以具有至多500g/m2(例如至多400g/m2、至多300g/m2),和/或至少30g/m2(例如至少75g/m2、至少100g/m2)的基重。在层14为稀松布的实施方案中,过滤介质10可以具有至多600g/m2(例如至多500g/m2、至多400g/m2),和/或至少50g/m2(例如至少100g/m2、至少150g/m2)的基重。
通常可以根据需要选择过滤介质10的透气率。在一些实施方案中,过滤介质10的透气率为至多300CFM(例如至多200CFM、至多100CFM),和/或至少1CFM(例如至少10CFM、至少25CFM)。例如,在一些实施方案中,过滤介质10可以具有1CFM~300CFM(例如10CFM~200CFM、25CFM~100CFM)的透气率。
在一些实施方案中,过滤介质10可以表现出良好的捕尘能力。例如,在一些实施方案中,过滤介质10具有至少80%(例如至少约85%、至少约90%)的初始捕尘效率(参见下面关于初始捕尘效率测试说明的讨论)。在某些实施方案中,过滤介质10的周期性捕尘效率为至少约90%(例如至少约95%、至少约97%)(参见下面关于周期性捕尘效率测试说明的讨论)。在一些实施方案中,过滤介质10具有至少80%(例如至少约85%、至少约90%)的初始捕尘效率和至少约90%(例如至少约95%、至少约97%)的周期性捕尘效率。
在某些实施方案中,过滤介质10具有良好的容尘性能。例如,在某些实施方案中,过滤介质10可以具有至少50g/m2(例如至少60g/m2、至少70g/m2)的容尘量(参见下面关于容尘量测试说明的讨论)。
在一些实施方案中,过滤介质10具有良好的捕尘和良好的容尘性能。例如,在一些实施方案中,过滤介质10具有至少80%(例如至少约85%、至少约90%)的初始捕尘效率和至少50g/m2(例如至少60g/m2、至少70g/m2)的容尘量。又如,在一些实施方案中,过滤介质10具有至少90%(例如至少约95%、至少约97%)的周期性捕尘效率和至少50g/m2(例如至少60g/m2、至少70g/m2)的容尘量。不希望受缚于理论,据信,由本文所述的方法至少在一些实施方案中可以同时提供良好的捕尘和良好的容尘性能,其中制品可以包括具有较小平均纤维直径(例如0.8微米以下)并且没有电纺涂层致密且比电纺涂层厚的熔喷纤维层。
在某些实施方案中,过滤介质10具有良好的细粒捕获性能。例如,在一些实施方案中,过滤介质10具有至少40分钟(例如至少50分钟、至少60分钟、至少2小时)的NaCl粒子捕获测试时间(参见下面关于NaCl粒子捕获测试说明的讨论)。
在一些实施方案中,可以较容易地从过滤介质10中除去粉尘。例如,在一些实施方案中,过滤介质10具有至少4小时(例如至少5小时、至少6小时)的初始可洗性测试时间(参见下面关于初始可洗性测试说明的讨论)。在某些实施方案中,过滤介质10的老化可洗性测试时间为初始可洗性测试时间(参见下面关于老化可洗性测试说明的讨论)的至少70%(例如至少80%、至少90%)。
在一些实施方案中,过滤介质10可以表现出良好的NaCl粒子过滤效率和良好的NaCl粒子捕获。例如,在一些实施方案中,过滤介质10可以具有至少30%(例如至少40%、至少50%)的NaCl粒子过滤效率和至少40分钟(例如至少50分钟、至少60分钟)的NaCl粒子捕获测试时间(参见下面关于NaCl粒子捕获效率测试和NaCl粒子捕获测试说明的讨论)。不希望受缚于理论,据信,由本文所述的方法至少在一些实施方案中可以同时提供良好的NaCl粒子过滤效率和良好的NaCl粒子捕获,其中制品可以包括具有较小平均纤维直径(例如0.8微米以下)并且没有电纺涂层致密且比电纺涂层厚的熔喷纤维层。
在某些实施方案中,过滤介质10可以具有良好的液体过滤性能。例如,在某些实施方案中,过滤介质10在给定粒度下具有至少45%(例如至少50%、至少60%)的液体过滤效率(参见下面关于液体过滤效率测试说明的讨论)。又如,在一些实施方案中,过滤介质10在给定粒度和时间下具有至少60%(例如至少65%、至少70%)的液体过滤保持效率(参见下面关于液体过滤效率测试说明的讨论)。
在某些实施方案中,制品10在4微米的粒度下可以具有至多20%(例如至多15%、至多10%、至多5%)的β衰变。在一些实施方案中,制品10在4微米的粒度下具有至少1%的β衰变。如本文所用的,制品“在4微米粒度下的β衰变”是按照ISO 16889:1999测试程序测定的。
在一些实施方案中,制品可以是波形的。任选地,波形制品也可以是打褶的。
图4示出具有基材12、粘合剂14和熔喷层16的制品30。制品30具有重复的波纹图案,该波纹图案具有由距离“c”描述的波纹沟道宽度,该距离为重复波纹图案中从一个峰到其最邻近的峰之间的距离。一般而言,制品30可以具有任意期望的波纹沟道宽度。在一些实施方案中,波纹沟道宽度“c”为至少150密耳(例如至少160密耳、167密耳~173密耳、至少225密耳、至少250密耳、247密耳~253密耳、150密耳~335密耳)。
在一些实施方案中,制品30在基材12的面12A上具有由距离“d1”描述的波纹深度,其为重复波纹图案中从层16的峰到层14的谷的距离。在一些实施方案中,波纹深度“d1”为至少8密耳(例如至少10密耳、至少12密耳、至少14密耳、至少16密耳),和/或至多25密耳(例如至多20密耳)。
在某些实施方案中,制品30在基材12的面12B上具有由距离“d2”描述的波纹深度,其为重复波纹图案中从基材12的面12B的峰到基材12的面12B的谷的距离。在一些实施方案中,波纹深度“d2”为至少8密耳(例如至少10密耳、至少12密耳、至少14密耳、至少16密耳),和/或至多25密耳(例如至多20密耳)。
在一些实施方案中,制品30具有至少25%(例如至少30%、至少40%、至少50%、至少60%、至少70%)的保持波纹。如本文所用的,制品30的“保持波纹”是通过用重复波纹图案中从基材12的面12A的峰到基材12的面12A的谷之间的距离(在层14施加到基材12的面12A之前测量)除以波纹深度“d1”,并用100%乘以该值来确定的。不希望受缚于理论,据信,可以由本文公开的方法产生保持波纹,其中层12是在与层16分离的网上形成的,并且这些层随后相互粘附。在一些实例中,选择适当的压力可以提高保持波纹,前提是所选的压力足够高以实现期望的粘附性同时又足够低以实现有利的保持波纹性能。
II.过滤组件和系统
过滤组件100可以是多种过滤组件中的任一种。过滤组件的实例包括燃气轮机过滤组件、重载空气过滤组件、机动车空气过滤组件、HVAC空气过滤组件、HEPA过滤组件、真空袋式过滤组件、燃料过滤组件和油过滤组件。这样的过滤组件可以结合到相应的过滤系统(例如燃气轮机过滤系统、重载空气过滤系统、机动车空气过滤系统、HVAC空气过滤系统、HEPA过滤系统、真空袋式过滤系统、燃料过滤系统和油过滤系统)中。真空过滤袋系统通常用于家用真空吸尘器。在这样的实施方案中,可以任选地通过用熔喷材料涂布纸来制造过滤介质。在某些实施方案中,可以使用湿法成网或干法成网产品(例如纤维素、聚合物、玻璃)来制造过滤介质。可以任选地将过滤介质折叠成多种构造(例如平板、圆柱)中的任一种。
通常可以根据需要选择过滤介质10相对于通过过滤组件/过滤系统的气流的取向。在一些实施方案中,熔喷层16在气流通过过滤组件/系统的方向上是基材12的上游。在某些实施方案中,熔喷层16在气流通过过滤组件/系统的方向上是基材12的下游。例如,在气体过滤系统为燃气轮机过滤系统或者重载空气过滤系统的一些实施方案中,熔喷层16在气流通过过滤组件/系统的方向上可以是基材12的上游。又如,在期望提高的深层过滤的一些实施方案中,熔喷层16在气流通过过滤组件/系统的方向上可以是基材12的下游。
III.制造过滤介质的方法
1.粘合剂
一般而言,在使用粘合剂层14的实施方案中,所述制造方法包括向基材12施加层14,随后向粘合剂14施加熔喷层16,因此,在过滤介质10当中,基材12和熔喷层16都粘附到粘合剂层14上。
在一些实施方案中,用粘合剂层14制造过滤介质10涉及连续(例如辊到辊)工艺。该工艺可以例如包括使用多个辊到辊系统。例如,一个辊到辊系统可以用来形成熔喷层16,而另一个辊到辊系统可以用来将层14粘附到基材12上。在这样的系统中,辊到辊系统可以配置为使得粘合剂层14以连续的方式接触熔喷层16并且这两层变得相互粘附。
图5示出系统200的一种实施方案,系统200可以用于形成具有粘合剂层14的过滤介质10。系统200包括第一辊到辊系统210和第二辊到辊系统220。
系统210包括辊212a、212b、212c和212d,当这些辊旋转时它们使连续带214移动。系统212还包括挤出机216。当辊212a~212d旋转时,聚合物(例如任选具有一种或多种添加剂)被真空拉入挤出机216中,并且从挤出机的开端到末端(通常缓慢地)加热该聚合物,使得聚合物更易于流动。所加热的聚合物被喂入熔体泵中,所述熔体泵控制聚合物的通量(1b/h)。然后聚合物通过具有一系列孔的模嘴。据信,在一些实施方案中,每个孔的聚合物的通量可能对纤维直径具有较强的影响。当聚合物从模嘴出来时,高速的热空气在模嘴的每一个面上都撞击聚合物。据信,该空气可以将纤维减细至最终的纤维尺寸。据信,在一些实施方案中,纤维直径可以随着工艺空气通量的增加而减小,和/或纤维直径可以随着工艺空气温度的升高而减小。在出现纤维细化的区域中,存在骤冷空气,这形成其中在相同全年温度(temperature year round)下出现成纤的区域。从模嘴到收集器的距离使得可以控制材料的密度(例如,随着收集器距离的增加,纤维速度下降且纤维温度降低,因此纤维的堆积较不致密,产生更加膨松的网)。随着距离的增加,纤维的速度通常会下降,制得更加膨松的过滤介质。收集器吸力也是受控的,这同样影响材料的膨松度。据信,在一些实施方案中,过滤介质的网基重可能随着带速的增加而下降,和/或过滤介质的基重可能随着聚合物通量的增加而增加。
通常可以根据需要选择对于模具来说孔的尺寸和每英寸孔的数目。在一些实施方案中,模具可以具有35个孔每英寸,该孔为0.0125″。在某些实施方案中,模具可以具有70个孔每英寸,该孔为0.007″。可以任选使用其他的模具。
系统220包括辊222a、222b、222c和222d,当这些辊旋转时它们使基材12移动。在辊222a和222b之间,系统220包括向基材12施加粘合剂的台226。在靠近辊222b和212a的区域中,粘合剂接触熔喷层16,熔喷层16离开带214并粘附到粘合剂上。然后基材/粘合剂/熔喷层复合材料通过带电装置228。带电装置228用于使该复合材料带电(通常,特别是熔喷层)。据信,这可以产生细粒捕获性能提高的过滤介质。据信,带电工艺可以使电荷嵌入熔喷材料中。
台226通常可以根据需要进行选择。在一些实施方案(例如当期望具有较高的粘合剂覆盖率时)中,台226可以是计量粘合剂系统。该计量的粘合剂系统可以配置为施加相对高度分散且均匀量的粘合剂。在某些实施方案中,台226是具有Signature喷嘴的Nordson精确计量齿轮粘合剂涂布机系统,每英寸可以具有12个提供分散的粘附线(adhesion lane)的喷嘴,其中所述线的中心点之间的间隙为2毫米并且每个喷嘴具有0.06英寸直径的孔。
一般而言,选择温度以适当软化(例如熔融)要形成层16的材料。例如,在一些实施方案中,材料被加热到至少350°F(例如至少375°F、至少400°F),和/或至多600°F(例如550°F、至多500°F)的温度。例如,可以将材料加热到350°F~600°F(例如375°F~550°F、400°F~500°F)的温度。
一般而言,工艺空气是在形成纤维的模嘴的任一面上加热过的空气。该加热过的空气(通常与模嘴的温度相同)撞击纤维并且有助于将纤维细化至最终的纤维尺寸。据信,在一些实施方案中,纤维直径可以随着空气体积的增加而减小。可以视情况选择工艺空气的体积。在一些实施方案中,工艺空气的体积为至少2500磅/小时-米(例如至少2750磅/小时-米、至少3000磅/小时-米),和/或至多4000磅/小时-米(例如至多3750磅/小时-米、至多3500磅/小时-米)。例如,工艺空气的体积可以为2500磅/小时-米到4000磅/小时-米(例如2750磅/小时-米到3750磅/小时-米、3000磅/小时-米到3500磅/小时-米)。
可以视情况选择由真空器218产生的真空。在一些实施方案中,真空度为至少10英寸的水(例如至少12英寸的水、至少14英寸的水),和/或至多26英寸的水(例如至多23英寸的水、至多20英寸的水)。例如,真空度可以是10英寸的水~26英寸的水(例如12英寸的水~23英寸的水、14英寸的水~20英寸的水)。
带214通常可以由允许在带214上形成层16并且当层16接触粘合剂层14时也允许层16离开带214的任意材料制成。可以由其制成带214的材料的实例包括聚合物(例如聚酯、聚酰胺)、金属和/或合金(例如不锈钢、铝)。
可以根据形成层16的需要来选择带214移动的速度。在一些实施方案中,带214以至少10ft/min(例如至少20ft/min、至少30ft/min),和/或至多300ft/min(例如至多200ft/min、至多100ft/min)的速度移动。例如,带214可以以10ft/min~300ft/min(例如20ft/min~200ft/min、30ft/min~100ft/min)的速度移动。
一般而言,当向基材12上施加时,粘合剂的温度可以选择为使得它与层16接触时具有适当水平的粘性。在粘合剂为热熔粘合剂的实施方案中,这可以包括在施加到基材12上之前加热该粘合剂。例如,在被施加到基材12上之前,可以将粘合剂加热到至少350°F(例如至少370°F、至少380°F),和/或至多450°F(例如430°F、至多420°F)的温度。例如,可以将材料加热到350°F~450°F(例如370°F~430°F、380°F~420°F)的温度。
基材12通常通过在辊212a和222b处形成的夹区所产生的拉力而通过粘合剂台。通过使靠近辊222b(例如橡胶辊,比如70 Shore A EPDM橡胶辊)的基材12与靠近辊212a(例如不锈钢辊,比如突出0.025英寸的不锈钢辊)的熔喷材料16接触,带214和基材12的速度同步(例如,使得基材12以与带214大致相同的速度移动)。通常根据制品10的预定用途的需要来选择辊212a和222b之间的压力。例如,在制品10为波形的实施方案中,辊212a和222b之间的压力通常选择为对于制品10来说获得良好的波纹深度和共形性。在一些实施方案中,辊212a和222b之间的压力为20磅/线性英寸到40磅/线性英寸(例如25磅/线性英寸到35磅/线性英寸、28磅/线性英寸到32磅/线性英寸、29磅/线性英寸到31磅/线性英寸、30磅/线性英寸)。
一般而言,可以使用多种技术中的任一种来使基材/粘合剂/熔喷层复合材料带电以形成驻极体网。实例包括AC和/或DC电晕放电和基于摩擦的带电技术。在一些实施方案中,复合材料经历至少1kV/cm(例如至少5kV/cm、至少10kV/cm),和/或至多30kV/cm(例如至多25kV/cm、至多20kV/cm)的放电。例如,在某些实施方案中,复合材料可以经历1kV/cm到30kV/cm(例如5kV/cm到25kV/cm、10kV/cm到20kV/cm)的放电。例如在美国专利No.5,401,446中公开了示例性的方法,在某种程度上其与本公开一致,在此通过引用并入本文。
一般而言,可以使用任意的带构造。例如在一些实施方案中,带具有开放结构,例如网状结构。不希望受缚于理论,据信这样的开放结构产生具有与带互补的结构的熔喷材料,这是因为熔喷材料处于吹气的力量之下。图6示出具有由带的互补形状导致的一系列峰64和谷62的熔喷材料60的截面图。不希望受缚于理论,据信该结构可以存在于过滤介质中的熔喷材料中,并且在收集粉尘或其他粒子的过程中,粉尘可以在谷中累积,允许脉冲发生过程中良好的除尘。在一些实施方案中,相邻谷62之间的距离d为至少400微米(例如至少500微米、至少700微米),和/或至多2000微米(例如至多1500微米、至多1200微米)。在一些实施方案中,相邻谷62之间的距离d为400微米到2000微米(例如500微米到1500微米、700微米到1200微米)。在一些实施方案中,峰64到谷62的距离h为至少50微米(例如至少100微米、至少300微米),和/或至多2000微米(例如至多1500微米、至多1000微米)。在一些实施方案中,峰64到谷62的距离h为50微米到2000微米(例如200微米到1500微米、300微米到1000微米)。
2.稀松布
一般而言,在使用稀松布层14的实施方案中,制造方法包括向稀松布14施加熔喷层16,随后向稀松布14施加基材12,然后使这三层接合在一起。
在一些实施方案中,制造具有稀松布层14的过滤介质10涉及连续(例如辊到辊)工艺。该工艺可以例如包括使用多个辊到辊系统。例如,一个辊到辊系统可以用于形成稀松布14上的熔喷层16,而另一个辊到辊系统可以用于传送基材12。在这样的系统中,辊到辊系统可以配置为使得以连续的方式,熔喷层/稀松布复合材料接触基材12以形成三层复合材料,随后使这三层接合在一起。
图7示出可以用于形成稀松布14上的熔喷层16的系统300的一种实施方案。系统300包括辊302a、302b、302c和302d,当这些辊旋转时它们使连续带304移动。向带304施加稀松布14。系统302还包括挤出机306。当辊302a-302d旋转时,加热挤出机306,并且将形成层16的材料(例如丸粒形式的聚合物)加入到加热过的挤出机306中。使材料软化(例如熔融)并使其以长丝的形式通过模具307。在带304相对于模具307的对面上的真空器308的影响下,长丝朝着稀松布14移动。真空的作用在于拉伸长丝并使它们贴靠稀松布14的表面以提供布置在稀松布14上的熔喷层16。
通常可以根据形成层16的需要来选择用于图7中所述工艺的工艺条件。一般而言,温度选择为适当软化(例如熔融)要形成为层16的材料。例如,在一些实施方案中,将材料加热到至少350°F(例如至少375°F、至少400°F),和/或至多600°F(例如550°F、至多500°F)的温度。例如,可以将材料加热到350°F~600°F(例如375°F~550°F、400°F~500°F)的温度。
一般而言,工艺空气是在形成纤维的模嘴的任一面上加热过的空气。该加热过的空气(通常与模嘴的温度相同)撞击纤维并且有助于将纤维细化至最终的纤维尺寸。据信,在一些实施方案中,提高空气体积可以导致纤维直径减小。可以视情况选择工艺空气的体积。在一些实施方案中,工艺空气的体积为至少2500磅/小时-米(例如至少2750磅/小时-米、至少3000磅/小时-米),和/或至多4000磅/小时-米(例如至多3750磅/小时-米、至多3500磅/小时-米)。例如,工艺空气的体积可以为2500磅/小时-米到4000磅/小时-米(例如2750磅/小时-米到3750磅/小时-米、3000磅/小时-米到3500磅/小时-米)。
可以视情况选择由真空器308产生的真空。在一些实施方案中,真空度为至少10英寸的水(例如至少12英寸的水、至少14英寸的水),和/或至多26英寸的水(例如至多23英寸的水、至多20英寸的水)。例如,真空度可以是10英寸的水~26英寸的水(例如12英寸的水~23英寸的水、14英寸的水~20英寸的水)。
可以根据形成层16的需要来选择带304移动的速度。在一些实施方案中,带304以至少10ft/min(例如至少20ft/min、至少30ft/min),和/或至多300ft/min(例如至多200ft/min、至多100ft/min)的速度移动。例如,带304可以以10ft/min~300ft/min(例如20ft/min~200ft/min、30ft/min~100ft/min)的速度移动。
从带304上取下稀松布/熔喷层复合材料,并且将基材12布置在稀松布14上。这通常包括将稀松布14放在带(例如带214)上,然后将熔喷纤维直接吹到稀松布14上。稀松布14可以在吹上熔喷材料之前就具有所施加的粘合剂,或者熔喷纤维的力和热可以用于使两层粘附在一起。有关的工艺条件通常与上述相同。然后使这三层接合在一起。在该工艺期间,所述三层可以任选层合在一起。在一些实施方案中,所述层被超声接合在一起(例如超声点接合在一起)。在一些实施方案中,熔喷层16、稀松布14和基材12可以通过在铝振动喇叭(vibrating horn)(1/2″接触宽度,来自Branson Ultrasonics,Danbury,CT)和压花接触辊之间施加超声波能量而接合。在某些实施方案中,所述方法包括使用在20kHz下脉冲的喇叭,以25到45ft/min的进料速度以20到35微米的幅度施加20到30psi的接触压力,将复合材料在包括通过接触辊上的压花所测量的小于10%(例如小于8%、小于5%、小于3%)的总面积的点处接合在一起。
以上实施例是示例性的,无意于进行限制。
IV.实施例
A.试验方案
1.NaCl粒子过滤效率试验
通过来自TSI公司配备有氯化钠发生器的TSI8130CertiTest(TM)自动过滤测试装置,使用质均直径为0.26微米且几何标准偏差小于1.83、浓度为15到20mg/cm3以及面速度为5.3cm/s的NaCl(氯化钠)测试表面积为100cm2的过滤介质。仪器测量了在小于或等于115升/分钟(lpm)的流速下在瞬间基础上横跨过滤介质的压降以及所得的渗透值。将瞬间读数定义为1压降/渗透测量值。该试验描述在ASTM D2986-91中。NaCl粒子过滤效率为[100-(C/C0)]×100%,其中C为通过过滤器后粒子的浓度,C0为通过过滤器前粒子的浓度。
2.初始捕尘效率、周期性捕尘效率和容尘量
用浓度为200mg/cm3且面速度为20cm/s的细粉尘(0.1-80μm)测试表面积为100cm2的过滤介质达1分钟。捕尘效率使用Palas MFP2000分级效率光电检测器来测量。捕尘效率为[(100-[C/C0])×100%],其中C为通过过滤器后粉尘粒子的浓度,C0为通过过滤器前粒子的浓度。1分钟后测量捕尘效率,并且在本文中称之为初始捕尘效率。1分钟后还周期性地测量捕尘效率,并且在本文中称之为周期性捕尘效率。容尘量是在压力达到1800Pa时测量的,并且为过滤介质暴露于细粉尘之前的重量和过滤介质暴露于细粉尘之后的重量之差。
3.初始可洗性试验和老化可洗性试验
AC细粉尘以16克/小时在5cm/s的面速度下通过过滤介质,然后在4巴下经历150毫秒的脉冲直到介质达到10毫巴的压力以从介质中除去粒子。该过程(在所述条件下暴露于AC细粉尘中,直至达到10毫巴的压力)总共重复30次,初始可洗性时间是完成30个循环所耗费的时间量。随后通过连续暴露于AC粉尘(12克/小时)10000个循环使介质老化并且每分钟受到14次脉冲。在该老化过程之后,在上述条件下再次使过滤介质暴露于AC细粉尘中达30次,老化可洗性时间为完成这30个循环所耗费的时间量。在Palas MMTC-2000可洗性试验台上通过VDI-3926型2程序进行该测试,测试面积为177cm2
4.NaCl粒子捕获试验
使100cm2的表面积暴露于0.4到0.5μm的NaCl粒子的气溶胶,NaCl粒子的气溶胶的浓度为2%,面速度为8.3cm/s,总流速为45升/分钟。NaCl粒子捕获测试时间为达到1800Pa的压力所耗费的时间量。
5.液体过滤效率试验和液体过滤保持效率
根据ISO 16889,使用FTI多沟道过滤器试验台(Fluid Technologies Inc.,Stillwater,OK),将A2细粉尘以0.3升/分钟的速度喂入Mobil MIL-H-5606燃料中,以1.7升/分钟的总流速与过滤介质接触,直至获得超过基线过滤器压降174KPa的终端压力。在整个试验时间等分的10个时间点取介质的上游和下游,在所选粒度(在该情况下,为4、5、7、10、15、20、25和30微米)下进行粒子计数(粒子/毫升)。在各个所选的粒度下取上游和下游粒子计数的平均值。从平均的粒子计数上游(注入-C0)和平均的粒子计数下游(通过-C),通过关系式[(100-[C/C0])×100%]确定对于所选的各个粒度的液体过滤效率测试值。也可以通过对比试验中在连续10个点处的上游和下游的粒子计数(并且测定效率[(100-[C/C0])×100%]))来测量作为时间和粒度函数的液体过滤保持效率。
B.实施例
1.样品A
样品A通过以下方式制备:利用每英寸35个孔的模具(其被加热至475°F的工艺空气以3900lbs/hr的流量吹扫),以36lbs聚合物/小时的速度,由被加热到475°F的聚合物在利用55°F的390lbs/hr的空气骤冷的下产生0.8微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成7g/m2(gsm)的熔喷网。通过7英寸宽狭缝利用约18英寸水的真空压力收集熔喷材料并且使其瞬间接合到在以55ft/min移动的收集器带上移动的10gsm纺粘聚丙烯非织造稀松布(Celestra,来自FiberwebCorporation,Nashville,TN)上。熔喷材料粘附到纺粘材料上,得到厚度为0.0055″、基重为18gsm、在0.5″水柱下透气率为91cfm的复合材料结构。如利用TSI 8130过滤测试仪所测定的,所得的过滤介质在10.5FPM面速度下具有1.5mm H2O的压降。NaCl粒子过滤效率为82.2%。
使熔喷纳米纤维/稀松布组合粘附到由含有17%乙酸乙烯酯树脂和83%纤维素纤维湿法非织造布的纤维素纤维形成的基重为139gsm且在0.5″水下透气率为80cfm的支撑体层上。将熔喷纳米纤维/纺粘材料超声点接合(3%的接合面积)到纤维素支撑体上,所述纤维素支撑体位于熔喷纳米纤维稀松布的下游侧上,并且稀松布位于熔喷纳米纤维的上游。
过滤介质的基重为156gsm、厚度为0.030″且在0.5″水柱下的透气率为38cfm。NaCl粒子过滤效率为87.5%。这比未涂布的纤维素基材有改进(约11%)。纺粘稀松布基本上不具有捕获细粒的能力。
2.样品B
样品B通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至450°F的工艺空气以3250lbs/hr的流量吹扫),以2lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的350lbs/hr的空气骤冷下产生0.25微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成1gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力收集熔喷材料并且使其瞬间接合到在以30ft/min移动的收集器带上移动的10gsm纺粘聚丙烯稀松布(Celestra,来自Fiberweb Corporation,Nashville,TN)上。熔喷材料粘附到纺粘材料上,得到厚度为0.0034″、基重为11gsm、在0.5″水柱下透气率为328cfm的复合材料结构。如利用TSI 8130过滤测试仪所测定的,所得的过滤介质在10.5FPM面速度下具有0.4mm H2O的压降。NaCl粒子过滤效率为47%。
使熔喷纳米纤维/稀松布组合粘附到由含有17%乙酸乙烯酯树脂和83%纤维素纤维湿法非织造布的纤维素纤维形成的基重为139gsm且在0.5″水下透气率为80cfm的支撑体层上。将熔喷纳米纤维/纺粘材料超声接合到纤维素支撑体上,所述纤维素支撑体位于熔喷纳米纤维稀松布的下游侧上,并且稀松布位于熔喷纳米纤维的上游。
过滤介质的基重为156gsm、厚度为0.032″且在0.5″水柱下透气率为53cfm。NaCl粒子过滤效率为53%。这比未涂布的纤维素基材有改进(约11%)。纺粘稀松布基本上不具有捕获细粒的能力。
3.样品C
样品C通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至450°F的工艺空气以3250lbs/hr的流量吹扫),以12lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的350lbs/hr的空气骤冷下产生0.32微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成2gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力收集熔喷材料并且使其瞬间接合到在以75ft/min移动的收集器带上移动的10gsm纺粘聚丙烯稀松布(Celestra,来自Fiberweb Corporation,Nashville,TN)上。使熔喷材料粘附到纺粘材料上,得到厚度为0.0052″、基重为12gsm、在0.5″水柱下透气率为335cfm的复合材料结构。如利用TSI 8130过滤测试仪所测定的,所得的过滤介质在10.5FPM面速度下具有0.3mm H2O的压降。NaCl粒子过滤效率为36%。
使熔喷纳米纤维/稀松布组合粘附到由含有17%乙酸乙烯酯树脂和83%纤维素纤维湿法非织造布的纤维素纤维形成的基重为139gsm且在0.5″水下透气率为80cfm的支撑体层上。
将熔喷纳米纤维/纺粘材料超声接合到纤维素支撑体上,所述纤维素支撑体位于熔喷纳米纤维稀松布的下游侧上,并且稀松布位于熔喷纳米纤维的上游。
过滤介质的基重为156gsm、厚度为0.031″且在0.5″水柱下的透气率为56cfm。NaCl粒子过滤效率为49%。这比未涂布的纤维素基材有改进(约11%)。
4.样品D
样品D通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至450°F的工艺空气以3250lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的490lbs/hr的空气骤冷下产生0.7微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成5gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力收集熔喷材料并且使其瞬间接合到在以50ft/min移动的收集器带上移动的10gsm纺粘聚丙烯非织造稀松布(Celestra,来自Fiberweb Corporation,Nashville,TN)上。使熔喷材料粘附到纺粘材料上,得到厚度为0.004″、基重为15gsm、在0.5″水柱下透气率为111cfm的复合材料结构。
使熔喷纳米纤维/稀松布组合粘附到由含有17%乙酸乙烯酯树脂、15%聚酯纤维和68%纤维素纤维湿法非织造布的纤维素纤维形成的基重为122gsm且在0.5”水下透气率为94cfm的支撑体层上。
通过以4g/m2的单位面积重量向纤维素支撑体施加热熔胶(Bostik HM 4379非晶聚烯烃(APO))喷雾,然后通过两个橡胶辊之间的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维/纺粘材料粘附到纤维素支撑体上。制品被制成稀松布面对入口、熔喷纳米纤维在中间且纤维素支撑体面对下游侧的过滤元件。
过滤介质的基重为136gsm、厚度为0.031″且在0.5”水柱下透气率为51cfm。NaCl粒子过滤效率为68%。这比未涂布的纤维素基材有改进(约11%)。
5.样品E
样品E通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至450°F的工艺空气以3250lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的490lbs/hr的空气骤冷下产生0.5微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成5gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以45ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001″、基重为5gsm、在0.5″水柱下透气率为100cfm。
使熔喷纳米纤维粘附到由含有17%乙酸乙烯酯树脂、15%聚酯纤维和68%纤维素纤维湿法非织造布的纤维素纤维形成的基重为122gsm且在0.5”水下透气率为94cfm的支撑体层上。
通过以4g/m2的单位面积重量向纤维素支撑体施加热熔胶(Bostik HM 4379 APO)喷雾,然后通过用于收集熔喷纤维的带和橡胶辊之间的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维/纺粘材料粘附到纤维素支撑体上。制品被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤元件。
过滤介质的基重为133gsm、厚度为0.029″且在0.5”水柱下透气率为50cfm。NaCl粒子过滤效率为63%。这比未涂布的纤维素基材有改进(约11%)。纳米纤维层从底部基材的平均剥离强度为0.5盎司/英寸宽度。
6.样品F
样品F通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至435°F的工艺空气以3900lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的520lbs/hr的空气骤冷下产生0.7微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成5gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以60ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001″、基重为5gsm、在0.5″水柱下透气率为172cfm。
使熔喷纳米纤维粘附到由含有17%乙酸乙烯酯树脂和83%纤维素纤维湿法非织造布的纤维素纤维形成的基重为125gsm且在0.5”水下透气率为32cfm的支撑体层上。
通过以4g/m2的单位面积重量向纤维素支撑体施加热熔胶(Bostik HM 4379 APO)喷雾,然后通过用于收集熔喷纤维的带和橡胶辊之间的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维粘附到纤维素支撑体上。制品被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤元件。
过滤介质的基重为134gsm、厚度为0.027″且在0.5”水柱下透气率为27cfm。NaCl粒子过滤效率为50%。这比未涂布的纤维素基材有改进(约20%)。
7.样品G
样品G通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至435°F的工艺空气以4250lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的520lbs/hr的空气骤冷下产生0.7微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成3gsm的熔喷网。通过7英寸宽狭缝利用约17英寸水的真空压力在以100ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001”、基重为3gsm、在0.5″水柱下透气率为300cfm。
使熔喷纳米纤维粘附到由含有17%乙酸乙烯酯树脂和83%纤维素纤维湿法非织造布的纤维素纤维形成的基重为125gsm且在0.5”水下透气率为32cfm的支撑体层上。
通过以4g/m2的单位面积重量向纤维素支撑体施加热熔胶(Bostik HM 4379 APO)喷雾,然后通过用于收集熔喷纤维的带和橡胶辊之间的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维/纺粘材料粘附到纤维素支撑体上。所得的制品被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤器。
过滤介质的基重为129gsm、厚度为0.025″且在0.5”水柱下透气率为29cfm。NaCl粒子过滤效率为37%。这比未涂布的纤维素基材有改进(约20%)。
8.样品H
样品H通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至440°F的工艺空气以4360lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的490lbs/hr的空气骤冷下产生0.7微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成3gsm的熔喷网。通过7英寸宽狭缝利用约17英寸水的真空压力在以100ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001”、基重为3gsm、在0.5″水柱下透气率为307cfm。
使熔喷纳米纤维粘附到由含有17%乙酸乙烯酯树脂和83%纤维素纤维湿法非织造布的纤维素纤维形成的基重为139gsm且在0.5”水下透气率为89cfm的支撑体层上。
通过以2g/m2的单位面积重量向纤维素支撑体施加热熔胶(Bostik HM 4379 APO)喷雾,然后通过用于收集熔喷纤维的带和橡胶辊之间的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维粘附到纤维素支撑体上。所得的制品被制成纤维素支撑体面对入口而熔喷纳米纤维层面对下游侧的过滤器。
过滤介质的基重为143gsm、厚度为0.029″且在0.5”水柱下透气率为69cfm。NaCl粒子过滤效率为30%。这比未涂布的纤维素基材有改进(约9%)。
9.样品I
样品I通过以下方式制备:利用每英寸70个孔的模具(该模具被加热至440°F的工艺空气以4360lbs/hr的流量吹扫),以30lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的490lbs/hr的空气骤冷下产生0.7微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成11gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以37ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.003”、基重为11gsm、在0.5″水柱下透气率为66cfm。
使熔喷纳米纤维粘附到由聚合物纤维形成的基重为107gsm且在0.5″水下透气率为435cfm的硬的背粗梳(backer carded)非织造支撑体层上。
通过以4g/m2的单位面积重量向纤维素支撑体施加热熔胶(Bostik HM 4379 APO)喷雾,然后通过用于收集熔喷纤维的带和橡胶辊之间的接触压力使施胶层与熔喷/纳米纤维立即接合,将熔喷纳米纤维粘附到硬的背粗梳非织造支撑体上。所得的制品被制成硬的背粗梳非织造支撑体面对入口而熔喷纳米纤维层面对下游侧的过滤器。
过滤介质的基重为113gsm、厚度为0.024″且在0.5”水柱下透气率为57cfm。NaCl粒子过滤效率为88%。这比未涂布的纤维素基材有改进(约20%)。
10.样品J
样品J通过以下方式制备:利用每英寸35个孔的模具(该模具被加热至550°F的工艺空气以2600lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至530°F的聚合物产生0.5微米PBT纤维(Ticona Celanex 2008),并进而形成24gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以30ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度为0.008″、基重为24gsm、在0.5″水柱下透气率为79cfm。
使熔喷纳米纤维粘附到由含有17%的乙酸乙烯酯树脂和85%的纤维素纤维湿法非织造布的纤维素纤维形成的基重为165gsm且在0.5″水下透气率为12cfm的支撑体层上。
使4层的熔喷纳米纤维/纺粘材料超声接合到纤维素支撑体上,其中纤维素支撑体布置在上游侧上,熔喷纳米纤维稀松布布置在下游侧上。
过滤介质的基重为287gsm、厚度为0.045″且在0.5”水柱下透气率为7cfm。
11.样品K
样品K通过以下方式制备:利用每英寸35个孔的模具(该模具被加热至500°F的工艺空气以3250lbs/hr的流量吹扫),以240lbs聚合物/小时的速度,由被加热至500°F的聚合物在利用55°F的350lbs/hr的空气骤冷下产生2微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成10gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力收集熔喷材料并使其瞬间接合到在以250ft/min移动的收集器带上移动的10gsm的纺粘聚丙烯稀松布上。通过以下方式向该熔喷/稀松布复合材料添加纳米纤维层:利用每英寸35个孔的模具(该模具被加热至450°F的工艺空气以3250lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的350lbs/hr的空气骤冷下产生0.5微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil ChemicalCompany,Houston,TX),并进而形成4gsm熔喷网。
所得的三层复合材料具有在上表面的熔喷纳米纤维、其下的常规熔喷结构和在下表面上的稀松布。
所得复合材料的基重为25gsm、厚度为0.012″且在0.5”水柱下透气率为84cfm。NaCl粒子过滤效率为88%。
12.样品L
样品L通过以下方式制备:利用每英寸35个孔的模具(该模具被加热至450°F的工艺空气以4360lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至450°F的聚合物在利用55°F的490lbs/hr的空气骤冷下产生0.4微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成5gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以45ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001″、基重为5gsm、在0.5″水柱下透气率为150cfm。
使熔喷纳米纤维粘附到由含有20%乙酸乙烯酯树脂和80%纤维素纤维湿法非织造布的纤维素纤维形成的基重为114gsm且在0.5″水下透气率为16cfm的波形支撑体层上。该波形支撑体层的波纹沟道宽度为0.170″。如采用IAS激光波纹测量仪所测量的,该支撑体层的波纹深度在待涂布的正面上为0.022″,相反(反)面具有0.022″的波纹深度。
通过以6g/m2的单位面积重量向纤维素支撑体施加加热至400°F并在410°F喷射的热熔胶(Bostik M2751粘合剂),然后通过用于收集熔喷纤维的不锈钢带和橡胶辊之间在30磅/线性英寸(PLl)的夹区压力下的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维粘附到纤维素支撑体上。所得的制品被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤器。
过滤介质的基重为125gsm、厚度为0.026″且在0.5”水柱下透气率为14cfm。NaCl粒子过滤效率为62%。这比未涂布的纤维素基材有改进(约26%)。该复合材料在熔喷纳米纤维涂布面上具有0.012″的波纹深度,而在相反的未涂布(反)面上为0.016″。纳米纤维层相对于底部基材的平均剥离强度为2.4盎司/英寸宽度。
13.样品M
样品M通过以下方式制备:利用每英寸35个孔的模具(该模具被加热至450°F的工艺空气以4360lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至450°F的聚合物在利用55°F的490lbs/hr的空气骤冷下产生0.4微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成5gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以45ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001″、基重为5gsm、在0.5″水柱下透气率为150cfm。
使熔喷纳米纤维粘附到由含有20%乙酸乙烯酯树脂和80%纤维素纤维湿法非织造布的纤维素纤维形成的基重为114gsm且在0.5″水下透气率为16cfm的波形支撑体层上。该波形支撑体层的波纹沟道宽度为0.22″。如采用IAS激光波纹测量仪所测量的,该支撑体层的波纹深度在待涂布的正面上为0.022″,相反(反)面具有0.022″的波纹深度。
通过以6g/m2的单位面积重量向纤维素支撑体施加加热至400°F并在410°F喷射的热熔胶(Bostik M2751粘合剂),然后通过用于收集熔喷纤维的不锈钢带和橡胶辊之间在30磅/线性英寸(PLI)的夹区压力下的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维粘附到纤维素支撑体上。所得的制品被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤元件。
过滤介质的基重为125gsm、厚度为0.029″且在0.5”水柱下透气率为14cfm。NaCl粒子过滤效率为63%。这比未涂布的纤维素基材有改进(约26%)。该复合材料在熔喷纳米纤维涂布面上具有0.016″的波纹深度,而在相反的未涂布(反)面上为0.018″。纳米纤维层对底部基材的平均剥离强度为2.0盎司/英寸宽度。
14.样品N
样品N通过以下方式制备:利用每英寸35个孔的模具(该模具被加热至450°F的工艺空气以4360lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至450°F的聚合物在利用55°F的490lbs/hr的空气骤冷下产生0.4微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成5gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以45ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001″、基重为5gsm、在0.5″水柱下透气率为150cfm。
使熔喷纳米纤维粘附到由含有20%乙酸乙烯酯树脂和80%纤维素纤维湿法非织造布的纤维素纤维形成的基重为122gsm且在0.5″水下透气率为28cfm的波形支撑体层上。该波形支撑体层的波纹沟道宽度为0.170″。如利用IAS激光波纹测量仪所测量的,该支撑体层的波纹深度在待涂布的正面上为0.013″,相反(反)面具有0.013″的波纹深度。
通过以6g/m2的单位面积重量向纤维素支撑体施加加热至400°F并在410°F下喷射的热熔胶(Bostik M2751粘合剂),然后通过用于收集熔喷纤维的不锈钢带和橡胶辊之间在30磅/线性英寸(PLI)的夹区压力下的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维粘附到纤维素支撑体上。所得的制品被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤器。
过滤介质的基重为134gsm、厚度为0.021″且在0.5”水柱下透气率为24cfm。NaCl粒子过滤效率为62%。这比未涂布的纤维素基材有改进(约20%)。该复合材料在熔喷纳米纤维涂布面上具有0.08″的波纹深度,而在相反的未涂布(反)面上为0.011″。纳米纤维层对底部基材的平均剥离强度为2盎司/英寸宽度。
15.样品O
样品O通过以下方式制备:利用每英寸35个孔的模具(该模具被加热至575°F的工艺空气以2500lbs/hr的流量吹扫),以80lbs聚合物/小时的速度,由被加热至550°F的聚合物产生0.6微米PBT纤维(Ticona JKX),并进而形成25gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以40ft/min移动的空收集器带上收集熔喷材料。
使熔喷纳米纤维粘附到由含有20%酚醛树脂和80%纤维素纤维湿法非织造布的纤维素纤维形成的基重为200gsm且在0.5″水下透气率为2cfm的支撑体层上。总厚度为0.029″,波纹深度为0.013″。
通过以8g/m2的单位面积重量向纤维素支撑体施加加热至450°F并在450°F喷射的热熔胶(Bostik Vitel 4361 B粘合剂),然后通过用于收集熔喷纤维的不锈钢带和橡胶辊之间在35磅/线性英寸(PLI)的夹区压力下的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维粘附到纤维素支撑体上。所得的结构被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤介质。
过滤介质的基重为233gsm、总厚度为0.024″且在0.5”水柱下透气率为1.9cfm。该复合材料在熔喷纳米纤维涂布面上具有0.06″的波纹深度,而在相反的未涂布(反)面上为0.010″。纳米纤维层对底部基材的平均剥离强度为3.5盎司/英寸宽度。
16.对比例
对比例1通过以下方式制备:利用每英寸35个孔的模具(该模具被加热至435°F的工艺空气以3900lbs/hr的流量吹扫),以20lbs聚合物/小时的速度,由被加热至425°F的聚合物在利用55°F的520lbs/hr的空气骤冷下产生0.7微米聚丙烯纤维(Exxon PP3546 G,ExxonMobil Chemical Company,Houston,TX),并进而形成5gsm的熔喷网。通过7英寸宽狭缝利用约20英寸水的真空压力在以60ft/min移动的空收集器带上收集熔喷材料。自立的熔喷纳米纤维的厚度小于0.001″、基重为5gsm、在0.5″水柱下透气率为172cfm。
使熔喷纳米纤维粘附到由含有17%乙酸乙烯酯树脂和83%纤维素纤维湿法非织造布的纤维素纤维形成的基重为125gsm且在0.5″水下透气率为32cfm的波形支撑体层上。该波形支撑体层的波纹沟道宽度为0.170″。如利用IAS激光波纹测量仪所测量的,该波纹支撑体层的波纹深度在待涂布的正面上为0.015″,相反(反)面具有0.015″的波纹深度。
通过以3g/m2的单位面积重量向纤维素支撑体施加热熔胶(Bostik HM 4379 PVA共聚物粘合剂)喷雾,然后通过用于收集熔喷纤维的带和橡胶辊之间的接触压力使施胶层与熔喷/纳米纤维纤维素立即接合,将熔喷纳米纤维粘附到纤维素支撑体上。所得的制品被制成熔喷纳米纤维面对入口而纤维素支撑体面对下游侧的过滤器。
过滤介质的基重为134gsm、厚度为0.027″且在0.5”水柱下透气率为27cfm。NaCl粒子过滤效率为50%。这比未涂布的纤维素基材有改进(约20%)。该复合材料在熔喷纳米纤维涂布面上具有小于.001″的波纹深度,而在相反的未涂布(反)面上为0.015″。该介质用于构建褶裥高度为1.13″、元件高度为14.375″和在3″中心管上褶裥数为155(16.5个褶裥/英寸中心管ID)的元件。与常规介质相比,根据SAE J726规程,容尘量在300cfm的面速度下下降25%。检查过滤器和褶裥堆积,发现未接合的熔喷纳米纤维堵塞由折叠接头(knuckle)形成的过滤器入口,增加了空气阻力。
该介质也用于褶裥高度为0.88″、元件高度为3.125″且在10″管周围褶裥数为200(6.4个褶裥/英寸中心管ID)的元件中。依照SAE J726规程,采用65cfm的面速度对该元件进行测试。采用该较不致密的打褶构造(~6个褶裥/英寸对17个褶裥/英寸),容尘量比常规介质高11%。
实施例L到实施例O表明采用本文公开的方法产生了具有出众的波纹性能,例如波纹深度的波形过滤介质。
C.讨论
基于相关数据,以下讨论给出一些综合观测结果。
使用扫描电子显微镜(SEM)放大1000倍测量100根纤维的纤维直径。计算纤维直径(D、Log D、RMS D、D2/D)和几何标准偏差以确定纤维直径分布。平均(log D)纤维直径用作参考以表征不同的样品。与一般的熔喷纤维相比,熔喷纳米纤维明显更细,接近于电纺纳米纤维,但是具有明显更宽的分布(~2 GSTD的熔喷纳米纤维与对于电纺纳米纤维的来说<1.3)。
虽然熔喷纳米纤维相当细,但不像电纺纳米纤维那么细。
参见截面区域,显示熔喷纳米纤维完全不同于电纺纳米纤维。电纺纳米纤维具有1微米至4微米的纳米纤维层厚度,而熔喷纳米纤维具有17微米至30微米的纳米纤维层厚度。
对于工业清洁应用,熔喷纳米纤维的应用可以允许使用更开放的基础材料(样品B和E),这将减少限制并延长可用的过滤寿命,同时维持并稍稍提高捕尘效率。当与标准纤维素应用等级(H&V FA6176)相比时,涂布有熔喷纳米纤维的介质的过滤寿命使得工作时间大幅增加。
样品E、F和G具有比标准应用基础材料更大的容尘量(比标准应用等级的材料提高约16%到40%)。值得注意的是,比较样品F和G,样品G中熔喷纳米纤维的施加重量较低,容尘量也较小,表明熔喷纳米纤维的量对于复合材料的总容尘量起一定作用。
熔喷纤维似乎产生更好、更均匀的尘饼(dust cake),而尘饼本身更容易随脉冲移动,从而提供独特的表面形式和深层过滤。采用具有一定深度的开放的低密度熔喷结构(样品B、D和E),粉尘形成于易于去除的开放的漏斗形物(funnel)中。与仅具有表面过滤特性的电纺纳米纤维相比,可清除的粉尘容量可能更为有限。对于标准应用等级的纤维素介质,老化引起的压力上升惊人地高,因此可以被解释为老化后实际上不具有可洗性行为。样品B、D和E的熔喷纳米纤维涂层已经显示出非常好的老化后可洗性行为的保持性(初始70%以上)。
非常清楚,由于熔喷纳米纤维的存在,细粒捕获效率大大提高,电纺纳米纤维与标准应用等级纤维素相比亦是如此。熔喷纳米纤维具有增加粒子容量的独特性质,这减小了随着细粒的积累横跨过滤器的压力增加,并且使得与标准应用等级纤维素相比过滤寿命几乎翻倍。据信电纺纳米纤维实际上将降低过滤寿命,这是由于当纳米纤维应用于上游时在最外层表面处收集细粒以及当纳米纤维布置在下游时在纤维素/纳米纤维的界面处收集细粒,压降大大增加的缘故。在熔喷纳米纤维复合材料的情形中,也是在熔喷层中收集粒子,提高了细粒捕获能力。
可以像机动车空气级那样,对重载空气级进行相同的观察。因其细孔结构和较低的渗透性,纳米纤维涂布级与标准应用纤维素之间对于重载空气级的粒子捕获效率之差较为不显著。然而,该微细的底部孔结构变得被细粒堵塞,迅速导致快速压力上升,大大限制了可用的工作寿命。应用熔喷纳米纤维通过改进粒子收集,使工作寿命大大延长了300%以上。
熔喷纳米纤维级的容量大大超过标准应用纤维素和所涂布的电纺纳米纤维的容量。
应当注意第二标准应用纤维素与样品B相当,这是因为纤维素底板的涂层取向位于更开放的面(正面(felt))上,然而对于机动车空气涂层通常会在反面上。由于细孔的存在,任意具有粉尘流的纤维素介质的反面(其具有更细的孔结构)将降低容量。在这些条件下,熔喷纳米纤维对复合材料介质的细粒容量具有减小的作用。
根据液体过滤效率试验,纳米纤维涂布的纤维素大大改善了纤维素介质的过滤性能,而电纺纳米纤维仅仅表现出暂时性的性能改善,并且由于微细纤维结构的劣化而较快失去其优势。与常规纤维素介质相比,通过添加熔喷纳米纤维改善了在4微米和10微米粒度的粒子捕获效率。在25微米的粒度下,粒子捕获效率并没有通过添加熔喷纳米纤维而得到改善。分别可以以90%的效率和99%的效率被捕获的一定尺寸的粒子,对于样品J而言(分别为5.5微米和8.1微米)要比纤维素(分别为11.1微米和17.9微米)细得多。分别可以以90%的效率和99%的效率被捕获的一定尺寸的粒子,对于样品J而言(分别为5.5微米和8.1微米)也要比电纺纤维(分别为9.8微米和14.6微米)细得多。
尽管已经描述了某些实施方案,但其他实施方案也是可能的。
例如,尽管已经描述了在基材和熔喷层之间布置稀松布的实施方案,但在某些实施方案中,熔喷层可以在基材和稀松布之间。
又如,尽管已经描述了过滤介质包括三个层的实施方案,但是过滤介质可以任选地包括更多层。在一些实施方案中,过滤介质可以具有多于一种基材,多于一种中间层(例如多于一种粘合剂、多于一种稀松布),和/或多于一种熔喷层。例如,在一些实施方案中,过滤介质可以包括具有一种平均纤维直径的纤维的熔喷层和具有另一种平均纤维直径的纤维的第二熔喷层。过滤介质也可以包括另外的层。
再如,尽管已经描述了过滤介质具有一个熔喷层的实施方案,但过滤介质可以任选包括多于一个熔喷层。在某些实施方案中,过滤介质可以包括布置在熔喷层上的熔喷层。
作为另外的实例,尽管已经描述了制备过滤介质的某些方法,但也可以使用其他方法。例如,在一些实施方案中,基材可以由双组分膜(例如熔点较低的材料和熔点较高的材料)形成,其上形成熔喷材料。接着,将熔点较低的材料加热至使该材料熔化(例如,通过来自熔喷材料的热量和/或通过在烤箱中加热),然后冷却(例如至室温)以提供包括直接与基材接合的熔喷材料的过滤介质。又如,在一些实施方案中,基材可以由两个层形成,其中一个层由熔点较低的材料形成,而另一个层由熔点较高的材料形成。在这样的实施方案中,可以将熔喷材料沉积在熔点较低的材料上。接着,将熔点较低的材料加热至使该材料熔化(例如,通过来自熔喷材料的热量和/或通过在烤箱中加热),并且冷却(例如至室温)以提供包括直接与基材接合的熔喷材料的过滤介质。形成基材的材料(熔点较低的材料、熔点较高的材料)可以是任何期望的具有适当的熔融特性的材料。这样的材料通常是聚合物。在一些实施方案中,熔点较低的材料可以是上述粘合剂之一(例如基材可以是由包括粘合剂的复合材料形成的膜)。任选地,稀松布和/或另外的其他材料层可以结合进过滤介质。在某些实施方案中,基材可以包括一种或多种另外的材料。
再如,尽管已经描述了这样的实施方案,其中通过使用粘合剂的化学接合或者使用超声波接合的机械接合或者熔化/冷却使熔喷材料与基材接合,但在一些实施方案中,可以采用其他类型的机械接合。实例包括缝合、缝纫、水刺和针刺。在一些方法中,比如针刺和水刺,熔喷材料可能变为与其他层(例如基材)混合。
还如,尽管已经描述了使用熔喷材料的实施方案,另外或作为替代方案,可以使用其他材料。更具体而言,不限于所用的材料或者形成纤维的工艺,在上文中可以采用含纤维的材料作为熔喷层,所述纤维的平均直径当用扫描电子显微镜测量时为至多1.5微米(例如至多1.4微米、至多1.3微米、至多1.2微米、至多1.1微米、至多1微米),和/或为至少0.2微米(例如至少0.3微米、至少0.4微米、至少0.5微米)。在一些实施方案中,材料是采用熔体加工法(例如熔喷工艺、纺粘、挤出和吹膜挤出)形成的。在一些实施方案中,可以通过其他方法形成平均直径小的材料。例如,平均直径小的材料可以通过取直径较大的纤维并且将其拉伸形成平均直径小的材料而制备。其他方法包括形成纤维的“海岛”和“橘瓣(segmentedpie)”方法,比如美国专利No.5,783,503、5,935,883和6,858,057中所述的,其再次通过引用仅仅将与本文公开内容的其余部分一致的内容并入本文。在一些实施方案中,所述材料是非聚合物(例如玻璃、陶瓷)。例如,所述材料可以是湿法玻璃。在一些实施方案中,基材可以由较大平均直径(例如至多2微米、至多3微米、3微米到4微米)的湿法玻璃而非熔喷层形成,过滤器可以包括平均直径较小(例如至多1.5微米)的湿法玻璃纤维层,其中过滤介质可包括或可不包括粘合剂材料。
再如,虽然已经描述了过滤介质为波形和/或褶状的实施方案,更具体而言,可以以多种期望方式中的任一种使过滤介质成形。这样的形状通常在本领域中是已知的。形状的实例包括凹形的、带槽的、压纹的和胶珠分开的袋式结构或管状结构。
在权利要求书中有其他实施方案。
以下内容对应于母案申请的原始权利要求书:
1.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
在所述第一层和第二层之间的粘合剂材料。
2.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
稀松布,
其中所述稀松布在所述第一层和第二层之间,或者所述第二层在所述第一层和所述稀松布之间。
3.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
在所述第一层和第二层之间的第三层,
其中所述制品是过滤介质。
4.项1或2的制品,其中所述制品是过滤介质。
5.项1~3中任一项的制品,其中所述熔喷材料包含平均直径为至多1.5微米的多根纤维。
6.项5的制品,其中所述多根纤维的平均直径为至少0.2。
7.项1~3中任一项的制品,其中所述熔喷材料包含平均直径至少0.2微米的多根纤维。
8.项1~3中任一项的制品,其中所述熔喷材料包含多根离散纤维,所述离散纤维的至少5%在基本垂直于所述第二层的表面的方向上延伸至少0.3微米的距离。
9.项1~3中任一项的制品,其中所述第一层包含选自短直纹纤维(short laidfiber)、水刺纤维、粗梳非织造材料、机织布和开孔泡沫结构的材料。
10.项1~3中任一项的制品,其中所述第一层包含聚合物。
11.项1~3中任一项的制品,其中所述第一层包含选自熔喷纤维、纤维素、玻璃和合成纤维的材料。
12.项1~3中任一项的制品,其中所述第一层包含纤维素。
13.项1~3中任一项的制品,其中所述第一层的厚度为至少200微米。
14.项13的制品,其中所述第一层的厚度为至多1500微米。
15.项1~3中任一项的制品,其中所述第一层的厚度为至多1500微米。
16.项1~3中任一项的制品,其中所述第一层具有至少25g/m2的基重。
17.项16的制品,其中所述第一层具有至多400CFM的透气率。
18.项1~3中任一项的制品,其中所述第一层具有至多400CFM的透气率。
19.项1~3中任一项的制品,其中所述熔喷材料包含聚合物。
20.项19的制品,其中所述聚合物包含氟原子。
21.项1~3中任一项的制品,其中所述熔喷材料包含选自聚烯烃、聚酯、聚酰胺、聚碳酸酯、聚苯硫醚、聚苯乙烯、聚氨酯的材料。
22.项1~3中任一项的制品,其中所述熔喷材料包含聚对苯二甲酸丁二醇酯或者聚萘二甲酸丁二醇酯。
23.项1~3中任一项的制品,其中所述熔喷材料包含聚丙烯。
24.项1~3中任一项的制品,其中所述第二层的厚度为至少5微米。
25.项24的制品,其中所述第二层的厚度为至多200微米。
26.项1~3中任一项的制品,其中所述第二层的厚度为至多200微米。
27.项1~3中任一项的制品,其中所述第二层具有至少0.5g/m2的基重。
28.项27的制品,其中所述第二层具有至多500CFM的透气率。
29.项1~3中任一项的制品,其中所述第二层具有至多500CFM的透气率。
30.项3的制品,其中所述第三层包含聚合物。
31.项3的制品,其中所述第三层包含热熔粘合剂。
32.项3的制品,其中所述第三层包含选自乙烯-乙酸乙烯酯共聚物、聚烯烃、聚酰胺和聚酯的材料。
33.项3的制品,其中所述第三层包含非晶聚烯烃。
34.项3的制品,其中所述第三层具有至少5微米的厚度。
35.项34的制品,其中所述第三层的厚度为至多100微米。
36.项3的制品,其中所述第三层的厚度为至多100微米。
37.项3的制品,其中所述第三层粘附于所述第一层和第二层。
38.项3的制品,其中所述第三层具有至多10g/m2的基重。
39.项3的制品,其中所述第三层包含聚合物。
40.项3的制品,其中所述第三层包含选自聚酯、聚烯烃、聚酰胺、纺粘非织造材料和粗梳非织造材料的材料。
41.项3的制品,其中所述第三层包含纺粘聚酯、纺粘聚酰胺或者纺粘聚烯烃。
42.项3的制品,其中所述第三层具有至少50微米的厚度。
43.项42的制品,其中所述第三层的厚度为至多1000微米。
44.项3的制品,其中所述第三层具有至多1000微米的厚度。
45.项3的制品,其中所述第三层具有至多100g/m2的基重。
46.项3的制品,其中所述第三层与所述第一层和第二层接合。
47.项3的制品,其中所述第一层、第二层和第三层层合在一起。
48.项1或3的制品,其中所述制品的厚度为至少200微米。
49.项48的制品,其中所述制品的厚度为至多1500微米。
50.项1或3的制品,其中所述制品的厚度为至多1500微米。
51.项2或3的制品,其中所述制品的厚度为至少200微米。
52.项51的制品,其中所述制品的厚度为至多2500微米。
53.项2或3的制品,其中所述制品的厚度为至多2500微米。
54.项1或3的制品,其中所述制品具有至多500g/m2的基重。
55.项54的制品,其中所述制品具有至多100CFM的透气率。
56.项1或3的制品,其中所述制品具有至多100CFM的透气率。
57.项2或3的制品,其中所述制品具有至多600g/m2的基重。
58.项57的制品,其中所述制品具有至多100CFM的透气率。
59.项2或3的制品,其中所述制品具有至多100CFM的透气率。
60.项1~3中任一项的制品,其中所述制品具有至少80%的初始捕尘效率和至少50g/m2的容尘量。
61.项1~3中任一项的制品,其中所述制品具有至少30%的NaCl粒子过滤效率。
62.项1~3中任一项的制品,其中所述制品具有至少80%的周期性捕尘效率和至少50g/m2的容尘量。
63.项1~3中任一项的制品,其中所述制品具有至少4小时的初始可洗性测试时间。
64.项1~3中任一项的制品,其中所述制品具有至少80%的煤烟粒子捕获效率。
65.项1~3中任一项的制品,其中所述制品具有至少30%的NaCl粒子过滤效率和至少40分钟的NaCl粒子捕获测试时间。
66.项1~3中任一项的制品,其中所述制品具有至少45%的液体过滤效率。
67.一种组件,其包括:
外壳;和
由所述外壳支撑的过滤介质,所述过滤介质包含项1、2、3、118、121、150和161中任一项的制品。
68.项67的组件,其中所述组件选自燃气轮机过滤组件、重载空气过滤组件、机动车空气过滤组件、HVAC空气过滤组件、HEPA过滤组件、真空袋式过滤组件、燃料过滤组件和油过滤组件。
69.一种系统,其包括项67的组件,其中所述组件选自燃气轮机过滤系统、重载空气过滤系统、机动车空气过滤系统、HVAC空气过滤系统、HEPA过滤系统、真空袋式过滤系统、燃料过滤系统和油过滤系统。
70.一种过滤介质,其具有至少90%的初始捕尘效率和至少50g/m2的容尘量。
71.一种过滤介质,其具有至少90%的周期性捕尘效率和至少50g/m2的容尘量。
72.项71的过滤介质,其中所述过滤介质具有至少40分钟的NaCl粒子捕获测试时间。
73.一种过滤介质,其具有至少4小时的初始可洗性测试时间。
74.一种过滤介质,其具有至少80%的煤烟粒子捕获效率。
75.一种过滤介质,其具有至少30%的NaCl粒子过滤效率和至少40分钟的NaCl粒子捕获测试时间。
76.一种过滤介质,其具有至少45%的液体过滤效率。
77.一种方法,其包括:
形成项1~3中任一项的制品。
78.一种方法,其包括:
将熔喷材料粘附到包括基材的制品上以提供过滤介质。
79.项79的方法,其中所述方法为连续方法。
80.项79的方法,其中所述方法是辊到辊方法。
81.项79的方法,还包括在粘附之前将所述熔喷材料布置在带上。
82.项81的方法,还包括在粘附之前将粘合剂布置在所述基材上。
83.项82的方法,还包括使所述熔喷材料与布置在所述基材上的所述粘合剂接触。
84.项83的方法,其中在粘附之前,所述带移动同时所述熔喷材料在所述带上。
85.项84的方法,其中在粘附之前,所述基材和布置在所述基材上的所述粘合剂在辊到辊系统中移动。
86.项85的方法,其中于所述熔喷材料在带上的同时所述熔喷材料与所述粘合剂接触,并且所述方法包括从所述带上移除所述熔喷材料。
87.项79的方法,其中所述熔喷材料是通过包括将所述材料加热到至少350°F的温度的工艺形成的。
88.项87的方法,其中所述熔喷材料是通过包括将所述材料加热到至多600°F的温度的工艺形成的。
89.项79的方法,其中所述熔喷材料是通过包括将所述材料加热到至多600°F的温度的工艺形成的。
90.项79的方法,其中所述熔喷材料是通过包括向所述熔喷材料布置在其上的介质的背面施加真空的工艺形成的。
91.项90的方法,其中所述方法包括使用至少2500磅/小时-米的工艺空气体积。
92.项91的方法,其中所述工艺空气体积为至多4000磅/小时-米。
93.项79的方法,其中所述方法包括使用至多4000磅/小时-米的工艺空气体积。
94.项90的方法,其中所述介质为移动带。
95.项79的方法,还包括使所述过滤介质暴露于带电工艺。
96.项95的方法,其中所述带电工艺使电荷嵌入所述熔喷材料中。
97.项95的方法,其中所述带电工艺提高所述过滤介质的细粒捕获效率。
98.一种方法,其包括:
用稀松布支撑熔喷材料以提供第一制品;和
使所述第一制品与基材接合在一起以提供过滤介质。
99.项98的方法,其中所述方法是连续方法。
100.项98的方法,其中所述方法是辊到辊方法。
101.项98的方法,还包括在接合之前将所述第一制品布置在带上。
102.项101的方法,其中在接合之前所述基材在第二带上。
103.项101的方法,其中所述带移动使得所述稀松布和所述基材相互接触。
104.项98的方法,其中所述熔喷材料是通过包括将所述材料加热到至少350°F的温度的工艺形成的。
105.项104的方法,其中所述熔喷材料是通过包括将所述材料加热到至多600°F的温度的工艺形成的。
106.项98的方法,其中所述熔喷材料是通过包括将所述材料加热到至多600°F的温度的工艺形成的。
107.项98的方法,其中所述熔喷材料是通过包括向所述熔喷材料布置在其上的介质的背面施加真空的工艺形成的。
108.项107的方法,其中所述方法包括使用至少2500磅/小时-米的工艺空气体积。
109.项108的方法,其中所述工艺空气体积为至多4000磅/小时-米。
110.项98的方法,其中所述方法包括使用至多4000磅/小时-米的工艺空气体积。
111.项110的方法,其中所述介质为移动带。
112.项98的方法,还包括使所述过滤介质暴露于带电工艺。
113.项112的方法,其中所述带电工艺使电荷嵌入所述熔喷材料中。
114.项112的方法,其中所述带电工艺提高所述过滤介质的细粒捕获效率。
115.项98的方法,其中将所述基材和所述第一制品接合包括将所述基材和所述第一制品层合在一起。
116.项115的方法,其中所述方法包括利用超声波能量将所述第一制品和所述基材层合在一起。
117.项98的方法,其中将所述基材和所述第一制品接合包括将所述第一制品和所述基材点接合在一起。
118.一种制品,其包括:
含有第一熔喷材料的第一层;
含有第二熔喷材料的第二层,所述第二层由所述第一层支撑,并且所述制品为过滤介质。
119.项118的制品,其中所述第一熔喷材料与所述第二熔喷材料相同。
120.项118的制品,其中所述第一熔喷材料与所述第二熔喷材料不同。
121.一种制品,其包括:
第一层;
含有多根纤维的第二层,所述第二层具有至少5微米的厚度;和
含有稀松布或粘合剂材料的第三层,
其中所述制品为过滤介质。
122.项1~3中任一项的制品,其中所述制品具有初始可洗性测试时间和老化可洗性测试时间,所述老化可洗性测试时间为所述初始可洗性测试时间的至少70%。
123.一种过滤介质,其具有初始可洗性测试时间和老化可洗性测试时间,所述老化可洗性测试时间为所述初始可洗性测试时间的至少70%。
124.项1~3中任一项的制品,其中所述制品具有至少60%的液体过滤保持效率。
125.一种过滤介质,其具有至少60%的液体过滤保持效率。
126.项1的制品,其中所述粘合剂包含聚合物。
127.项1的制品,其中所述粘合剂包含热熔粘合剂。
128.项1的制品,其中所述粘合剂包含选自乙烯-乙酸乙烯酯共聚物、聚烯烃、聚酰胺和聚酯的材料。
129.项1的制品,其中所述粘合剂包含乙烯-乙酸乙烯酯共聚物。
130.项1的制品,其中所述粘合剂具有至少5微米的厚度。
131.项130的制品,其中所述粘合剂的厚度为至多100微米。
132.项1的制品,其中所述粘合剂的厚度为至多100微米。
133.项1的制品,其中所述粘合剂粘附于所述第一层和第二层。
134.项1的制品,其中所述粘合剂具有至多10g/m2的基重。
135.项2的制品,其中所述稀松布包含聚合物。
136.项2的制品,其中所述稀松布包含选自聚酯、聚烯烃、聚酰胺、纺粘非织造材料和粗梳非织造材料的材料。
137.项2的制品,其中所述稀松布包含纺粘聚酯、纺粘聚酰胺或纺粘聚烯烃。
138.项2的制品,其中所述稀松布具有至少50微米的厚度。
139.项138的制品,其中所述稀松布的厚度为至多1000微米。
140.项2的制品,其中所述稀松布具有至多1000微米的厚度。
141.项2的制品,其中所述稀松布具有至多100g/m2的基重。
142.项2的制品,其中所述稀松布接合到所述第一层和第二层。
143.项2的制品,其中所述第一层、所述第二层和所述稀松布层合在一起。
144.项1、2或3的制品,其中所述第一层是连续的。
145.项1、2或3的制品,其中所述第一层是不连续的。
146.项1、2或3的制品,其中所述第一层呈纱线形式。
147.项1、2或3的制品,其中所述第一层呈丝网形式。
148.项1、2或3的制品,其中所述第一层呈材料点形式。
149.项1、2或3的制品,其中所述熔喷材料与所述第一层仅在部分位置接合。
150.一种制品,其包括:
基材;和
与所述基材接合的熔喷材料。
151.项150的制品,其中所述制品是过滤介质。
152.项151的制品,其中所述熔喷材料与所述基材直接接合。
153.项150的制品,其中所述熔喷材料与所述基材化学接合。
154.项153的制品,其中所述熔喷材料与所述基材利用粘合剂化学接合。
155.项150的制品,其中所述熔喷材料与所述基材机械接合。
156.项155的制品,其中所述熔喷材料与所述基材利用选自超声波接合、缝合、缝纫、水刺和针刺的工艺机械接合。
157.项150的制品,其中所述基材包含具有第一熔点的第一材料和具有比所述第一熔点低的第二熔点的第二材料。
158.项155的制品,其中所述熔喷材料与所述第二材料直接接合。
159.项150的制品,其中所述制品在所述熔喷材料和所述基材之间基本不含粘合剂。
160.一种熔喷层,具有多个峰和谷,相邻谷的间距为至少400微米。
161.项160的熔喷制品,其中所述相邻谷的间距为至多2000微米。
162.项160的熔喷制品,其中峰到谷的距离为至少100微米。
163.项160的熔喷制品,其中峰到谷的距离为至多2000微米。
164.项1、2或3的制品,其中所述第二层具有多个峰和谷,相邻谷的间距为至少400微米。
165.一种制品,其包括:
第一层;和
与所述第一层接合的第二层,所述第二层包含平均直径为至多1.5微米的纤维。
166.项165的制品,其中所述第二层含有熔融处理过的材料。
167.项165的制品,其中所述第二层与所述第一层化学接合。
168.项167的制品,其中所述第二层与所述第一层利用粘合剂化学接合。
169.项165的制品,其中所述第二层与所述第一层机械接合。
170.项169的制品,其中所述第二层与所述基材利用选自超声波接合、缝合、缝纫、水刺和针刺的工艺机械接合。
171.项169的制品,其中所述第一层呈基材形式。
172.项169的制品,其中所述第一层呈稀松布形式。
173.项169的制品,其中所述制品为过滤介质。
174.一种制品,其包括:
含有熔喷材料的层,所述熔喷材料包含平均直径为0.2微米到0.5微米的纤维,
其中所述制品为过滤介质。
175.项174的制品,其中所述平均直径为0.3微米到0.5微米。
176.项174的制品,其中所述平均直径为0.4微米到0.5微米。
177.项174的制品,其中所述平均直径为0.3微米到0.4微米。
178.项174的制品,其中所述平均直径为0.2微米到0.4微米。
179.项174的制品,其中所述平均直径为0.3微米到0.4微米。
180.项174的制品,其中所述平均直径为0.2微米到0.3微米。
181.一种制品,其包括:
第一层;和
由所述第一层支撑的第二层,所述第二层包含含有多根离散纤维的材料,所述离散纤维的至少5%在基本垂直于所述第一层的表面的方向上延伸至少0.3微米的距离,所述离散纤维具有0.2微米到0.5微米的平均直径,
其中所述制品为过滤介质。
182.项181的制品,其中所述平均直径为0.3微米到0.5微米。
183.项181的制品,其中所述平均直径为0.4微米到0.5微米。
184.项181的制品,其中所述平均直径为0.3微米到0.4微米。
185.项181的制品,其中所述平均直径为0.2微米到0.4微米。
186.项181的制品,其中所述平均直径为0.3微米到0.4微米。
187.项118的制品,其中所述平均直径为0.2微米到0.3微米。
188.一种制品,其包括:
具有第一面和第二面的第一层;
含有熔喷材料的第二层;和
在所述第一层的第一面和所述第二层之间的材料,
其中:
所述制品具有至少150密耳的波纹沟道宽度;
所述制品在所述第一层的第一面上具有至少8密耳的波纹深度;以及
所述制品在所述第一层的第二面上具有至少8密耳的波纹深度。
189.一种制品,其包括:
具有第一面和第二面的第一层;
含有纤维的第二层;和
在所述第一层的第一面和所述第二层之间的材料,
其中:
所述第二层中至少5%的所述纤维在基本垂直于所述第二层的表面的方向上延伸至少0.3微米的距离;
所述制品具有至少150密耳的波纹沟道宽度;
所述制品在所述第一层的第一面上具有至少8密耳的波纹深度;以及
所述制品在所述第一层的第二面上具有至少8密耳的波纹深度。
190.一种制品,其包括:
具有第一面和第二面的第一层;
包含纤维直径几何标准偏差大于1.3的纤维的第二层;和
在所述第一层的第一面和所述第二层之间的材料,
其中:
所述制品具有至少150密耳的波纹沟道宽度;
所述制品在所述第一层的第一面上具有至少8密耳的波纹深度;以及
所述制品在所述第一层的第二面上具有至少8密耳的波纹深度。
191.一种制品,其包括:
具有第一面和第二面的第一层;
含有熔喷材料的第二层;和
在所述第一层的第一面和所述第二层之间的材料,
其中所述制品为具有至少25%的保持波纹的波形制品。
192.一种制品,其包括:
具有第一面和第二面的第一层;
含有纤维的第二层,所述第二层中至少5%的所述纤维在基本垂直于所述第二层的表面的方向上延伸至少0.3微米的距离;以及
在所述第一层的第一面和所述第二层之间的材料,
其中所述制品为具有至少25%的保持波纹的波形制品。
193.一种制品,其包括:
具有第一面和第二面的第一层;
包含纤维直径几何标准偏差大于1.3的纤维的第二层;以及
在所述第一层的第一面和所述第二层之间的材料,
其中所述制品为具有至少25%的保持波纹的波形制品。
194.项188~193中任一项的制品,其中所述制品具有至少160密耳的波纹沟道宽度。
195.项188~193中任一项的制品,其中所述制品具有167密耳到173密耳的波纹沟道宽度。
196.项188~193中任一项的制品,其中所述制品具有至少225密耳的波纹沟道宽度。
197.项188~193中任一项的制品,其中所述制品具有至少250密耳的波纹沟道宽度。
198.项188~193中任一项的制品,其中所述制品具有247密耳到253密耳的波纹沟道宽度。
199.项188~193中任一项的制品,其中所述制品具有150密耳到335密耳的波纹沟道宽度。
200.项188~193中任一项的制品,其中所述制品在所述第一层的第一面上具有至少12密耳的波纹深度。
201.项188~193中任一项的制品,其中所述制品在所述第一层的第一面上具有至少14密耳的波纹深度。
202.项188~193中任一项的制品,其中所述制品在所述第一层的第一面上具有至少16密耳的波纹深度。
203.项188~193中任一项的制品,其中所述制品在所述第一层的第一面上具有至多25密耳的波纹深度。
204.项188~193中任一项的制品,其中所述制品在所述第一层的第一面上具有至多20密耳的波纹深度。
205.项188~193中任一项的制品,其中所述制品在所述第一层的第二面上具有至少12密耳的波纹深度。
206.项188~193中任一项的制品,其中所述制品在所述第一层的第二面上具有至少14密耳的波纹深度。
207.项188~193中任一项的制品,其中所述制品在所述第一层的第二面上具有至少16密耳的波纹深度。
208.项188~193中任一项的制品,其中所述制品在所述第一层的第二面上具有至多25密耳的波纹深度。
209.项188~193中任一项的制品,其中所述制品在所述第一层的第二面上具有至多20密耳的波纹深度。
210.项188~191中任一项的制品,其中所述制品具有至少25%的保持波纹。
211.项188~194中任一项的制品,其中所述制品具有至少30%的保持波纹。
212.项188~194中任一项的制品,其中所述制品具有至少40%的保持波纹。
213.项188~194中任一项的制品,其中所述制品具有至少50%的保持波纹。
214.项188~194中任一项的制品,其中所述制品具有至少60%的保持波纹。
215.项188~194中任一项的制品,其中所述制品具有至少70%的保持波纹。
216.项188~194中任一项的制品,其中所述材料包括粘合剂材料。
217.项188~194中任一项的制品,其中所述制品为过滤介质。
218.项188~191中任一项的制品,其中所述第一层在所述第一面和第二面上具有至少20密耳的波纹深度。
219.项188~191中任一项的制品,其中所述第一层在所述第一面和第二面上具有至少22密耳的波纹深度。
220.项188~191中任一项的制品,其中所述第一层在所述第一面和第二面上具有至多30密耳的波纹深度。
221.项188~191中任一项的制品,其中所述制品为至少15密耳厚。
222.项188~191中任一项的制品,其中所述制品为至多50密耳厚。
223.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
在所述第一层和第二层之间的粘合剂材料,
其中所述粘合剂材料存在于所述第一层和第二层之间的至少70%的面积中。
224.一种制品,其包括:
第一层;
含有纤维的第二层;和
在所述第一层和第二层之间的粘合剂材料,
其中:
所述粘合剂材料存在于所述第一层和第二层之间的至少70%的面积中;以及
所述第二层中至少5%的所述纤维在基本垂直于所述第二层的表面的方向上延伸至少0.3微米的距离;
225.一种制品,其包括:
第一层;
含有纤维的第二层;和
在所述第一层和第二层之间的粘合剂材料,
其中:
所述粘合剂材料存在于所述第一层和第二层之间的至少70%的面积中;以及
所述第二层中的所述纤维具有大于1.3的纤维直径几何标准偏差。
226.一种制品,其包括:
第一层;
含有熔喷材料的第二层;以及
在所述第一层和第二层之间的粘合剂材料,
其中所述第一层和第二层之间的平均剥离强度为至少0.5盎司/英寸。
227.一种制品,其包括:
第一层;
含有纤维的第二层,所述第二层中至少5%的所述纤维在基本垂直于所述第二层的表面上延伸至少0.3微米的距离;以及
在所述第一层和第二层之间的粘合剂材料,
其中所述第一层和第二层之间的平均剥离强度为至少0.5盎司/英寸。
228.一种制品,其包括:
第一层;
包含纤维直径几何标准偏差大于1.3的纤维的第二层;以及
在所述第一层和第二层之间的粘合剂材料,
其中所述第一层和第二层之间的平均剥离强度为至少0.5盎司/英寸。
229.项223~228中任一项的制品,其中所述粘合剂材料存在于所述第一层和第二层之间至少85%的面积中。
230.项223~228中任一项的制品,其中所述粘合剂材料存在于所述第一层和第二层之间至少90%的面积中。
231.项223~228中任一项的制品,其中所述粘合剂材料存在于所述第一层和第二层之间至少95%的面积中。
232.项223~225中任一项的制品,其中所述第一层和第二层之间的平均剥离强度为至少0.5盎司/英寸。
233.项223~228中任一项的制品,其中所述第一层和第二层之间的平均剥离强度为至少1盎司/英寸。
234.项223~228中任一项的制品,其中所述第一层和第二层之间的平均剥离强度为至少4盎司/英寸。
235.项223~228中任一项的制品,其中所述第一层和第二层之间的平均剥离强度为至少3盎司/英寸。
236.项223~228中任一项的制品,其中所述第一层和第二层之间的平均剥离强度为至多4盎司/英寸。
237.项223~228中任一项的制品,其中所述粘合剂材料具有至少5秒的开放时间。
238.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
在所述第一层和第二层之间的粘合剂材料,
其中所述粘合剂材料具有至少15秒的开放时间。
239.一种制品,其包括:
第一层;
含有纤维的第二层;和
在所述第一层和第二层之间的粘合剂材料,
其中:
所述粘合剂材料具有至少15秒的开放时间;以及
所述第二层中至少5%的所述纤维在基本垂直于所述第二层的表面的方向上延伸至少0.3微米的距离。
240.一种制品,其包括:
第一层;
含有纤维的第二层;和
在所述第一层和第二层之间的粘合剂材料,
其中:
所述粘合剂材料具有至少15秒的开放时间;以及
所述第二层中的所述纤维具有大于1.3的几何标准偏差。
241.项238~240中任一项的制品,其中所述粘合剂材料具有至少20秒的开放时间。
242.项238~240中任一项的制品,其中所述粘合剂材料具有至少30秒的开放时间。
243.项238~240中任一项的制品,其中所述粘合剂材料具有至少40秒的开放时间。
244.项238~240中任一项的制品,其中所述粘合剂材料具有至多60秒的开放时间。
245.一种制品,其包括:
第一层;
含有熔喷材料的第二层,
其中所述制品在4微米粒度下具有至多20%的β衰变。
246.项245的制品,其中所述制品在4微米粒度下具有至多15%的β衰变。
247.项245的制品,其中所述制品在4微米粒度下具有至多10%的β衰变。
248.项245的制品,其中所述制品在4微米粒度下具有至多5%的β衰变。
249.项245的制品,其中所述制品在4微米粒度下具有至少1%的β衰变。
250.项245的制品,还包括在所述第一层和第二层之间的粘合剂材料。
251.项245的制品,其中所述制品为过滤介质。
252.一种方法,其包括:
使用20磅/线性英寸到40磅/线性英寸的压力将熔喷材料粘附到包括基材的制品上以提供过滤介质。
253.项252的方法,其中所述压力为25磅/线性英寸到35磅/线性英寸。
254.项252的方法,其中所述压力为28磅/线性英寸到32磅/线性英寸。
255.项252的方法,其中所述压力为30磅/线性英寸。

Claims (10)

1.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
在所述第一层和第二层之间的粘合剂材料。
2.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
稀松布,
其中所述稀松布在所述第一层和第二层之间,或者所述第二层在所述第一层和所述稀松布之间。
3.一种制品,其包括:
第一层;
含有熔喷材料的第二层;和
在所述第一层和第二层之间的第三层,
其中所述制品是过滤介质。
4.一种组件,其包括:
外壳;和
由所述外壳支撑的过滤介质,所述过滤介质包含权利要求1、2、3中任一项的制品。
5.一种系统,其包括权利要求4的组件,其中所述组件选自燃气轮机过滤系统、重载空气过滤系统、机动车空气过滤系统、HVAC空气过滤系统、HEPA过滤系统、真空袋式过滤系统、燃料过滤系统和油过滤系统。
6.一种过滤介质,其具有至少90%的初始捕尘效率和至少50g/m2的容尘量。
7.一种方法,其包括:
形成权利要求1~3中任一项的制品。
8.一种方法,其包括:
将熔喷材料粘附到包括基材的制品上以提供过滤介质。
9.一种方法,其包括:
用稀松布支撑熔喷材料以提供第一制品;和
使所述第一制品与基材接合在一起以提供过滤介质。
10.一种制品,其包括:
含有第一熔喷材料的第一层;
含有第二熔喷材料的第二层,所述第二层由所述第一层支撑,并且所述制品为过滤介质。
CN201710133180.4A 2007-11-09 2008-11-07 熔喷过滤介质 Pending CN107126764A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US98664207P 2007-11-09 2007-11-09
US60/986,642 2007-11-09
CN200880124466.5A CN101939072B (zh) 2007-11-09 2008-11-07 熔喷过滤介质

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200880124466.5A Division CN101939072B (zh) 2007-11-09 2008-11-07 熔喷过滤介质

Publications (1)

Publication Number Publication Date
CN107126764A true CN107126764A (zh) 2017-09-05

Family

ID=40622411

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200880124466.5A Expired - Fee Related CN101939072B (zh) 2007-11-09 2008-11-07 熔喷过滤介质
CN201710133180.4A Pending CN107126764A (zh) 2007-11-09 2008-11-07 熔喷过滤介质

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200880124466.5A Expired - Fee Related CN101939072B (zh) 2007-11-09 2008-11-07 熔喷过滤介质

Country Status (4)

Country Link
US (2) US8608817B2 (zh)
EP (1) EP2227308A2 (zh)
CN (2) CN101939072B (zh)
WO (1) WO2009062009A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893864A (zh) * 2018-08-15 2018-11-27 安徽依采妮纤维材料科技有限公司 一种双组份熔喷无纺布及其制备工艺
CN109209686A (zh) * 2018-09-27 2019-01-15 上海恩阔弗环保科技有限公司 带熔喷滤芯的碳罐滤清器
CN109224634A (zh) * 2018-09-28 2019-01-18 九江七所精密机电科技有限公司 一种高强度抗应力复合过滤材料及其制备方法

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1671693A3 (en) * 2004-12-07 2009-02-18 National Starch and Chemical Investment Holding Corporation Filter and method of making said filter
US7754041B2 (en) * 2006-07-31 2010-07-13 3M Innovative Properties Company Pleated filter with bimodal monolayer monocomponent media
JP4783248B2 (ja) * 2006-09-12 2011-09-28 東芝ストレージデバイス株式会社 外乱抑圧機能を持つ位置制御方法、位置制御装置および媒体記憶装置
DE102007020818B3 (de) * 2007-05-02 2009-01-02 Carl Freudenberg Kg Verfahren zur Herstellung eines verformbaren Tuftprodukts
CN101939072B (zh) * 2007-11-09 2017-04-05 霍林斯沃思和沃斯有限公司 熔喷过滤介质
US8986432B2 (en) * 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
US7648542B1 (en) * 2008-10-13 2010-01-19 Bgf Industries, Inc. Static dissipative glass filtration fabric
KR20170015552A (ko) * 2008-12-05 2017-02-08 이 아이 듀폰 디 네모아 앤드 캄파니 나노웨브 층을 가진 필터 매체
US8206481B2 (en) * 2009-02-27 2012-06-26 Bha Group, Inc. HEPA (H-10) performance synthetic nonwoven and nanofiber composite filter media
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US20100314333A1 (en) * 2009-06-10 2010-12-16 Hollingsworth & Vose Company Flutable fiber webs with low surface electrical resistivity for filtration
US8236082B2 (en) * 2009-06-19 2012-08-07 Hollingsworth & Vose Company Flutable fiber webs with high dust holding capacity
DE102009040202B4 (de) * 2009-09-07 2015-10-01 Mann + Hummel Gmbh Filter
DE102009058067A1 (de) * 2009-12-14 2011-06-16 Mann + Hummel Gmbh Kompaktfilter, Verfahren zur Herstellung eines Kompaktfilters und Filtermedium
US20110168622A1 (en) * 2010-01-12 2011-07-14 Purolator Filters Na Llc High Efficiency, High Capacity Filter Media
CN102753246B (zh) 2010-02-12 2016-03-16 唐纳森公司 液体过滤介质
US20110210081A1 (en) * 2010-02-26 2011-09-01 Clarcor Inc. Fine fiber liquid particulate filter media
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
US8956432B2 (en) * 2010-06-18 2015-02-17 Retro Filters LLC Reusable aftermarket particulate collection member for otherwise conventional consumer floor vacuum cleaners
US20120152821A1 (en) * 2010-12-17 2012-06-21 Hollingsworth & Vose Company Fine fiber filter media and processes
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
CN103339307B (zh) * 2010-12-17 2017-02-22 霍林斯沃思和沃斯有限公司 细纤维过滤介质和方法
US20120174787A1 (en) * 2011-01-12 2012-07-12 General Electric Company Filter having flow control features
DE102011007309A1 (de) * 2011-04-13 2012-10-18 Krones Aktiengesellschaft Verfahren und Vorrichtung zur Verschmutzungs- und Reinigungsvalidierung einer Anlage
CN103732313B (zh) * 2011-06-16 2016-10-26 三菱丽阳株式会社 中空纤维膜组件的修补方法以及中空纤维膜组件
IN2014CN01884A (zh) * 2011-08-12 2015-05-29 Donaldson Co Inc
US9352267B2 (en) 2012-06-20 2016-05-31 Hollingsworth & Vose Company Absorbent and/or adsorptive filter media
US20130341290A1 (en) 2012-06-20 2013-12-26 Hollingsworth & Vose Company Fibrillated fibers for liquid filtration media
CN104582810B (zh) 2012-06-20 2017-04-19 霍林斯沃思和沃斯有限公司 细纤维过滤介质和方法
DE102012219344A1 (de) * 2012-10-23 2014-04-24 BSH Bosch und Siemens Hausgeräte GmbH Filtersystem für ein Raumpflegegerät
US11090590B2 (en) 2012-11-13 2021-08-17 Hollingsworth & Vose Company Pre-coalescing multi-layered filter media
US9149749B2 (en) 2012-11-13 2015-10-06 Hollingsworth & Vose Company Pre-coalescing multi-layered filter media
US9149748B2 (en) 2012-11-13 2015-10-06 Hollingsworth & Vose Company Multi-layered filter media
CN105102097B (zh) * 2013-02-25 2017-10-31 霍林斯沃思和沃斯有限公司 多层的过滤介质
AU2014237819B2 (en) 2013-03-15 2018-12-06 Donaldson Company, Inc. Filter media and elements
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US9474994B2 (en) 2013-06-17 2016-10-25 Donaldson Company, Inc. Filter media and elements
CN103405194B (zh) * 2013-07-17 2016-07-06 桐乡曾韩净化技术有限公司 一种高容尘吸尘器过滤袋
US20150157969A1 (en) * 2013-12-05 2015-06-11 Hollingsworth & Vose Company Fine glass filter media
WO2015095732A1 (en) 2013-12-19 2015-06-25 Hollingsworth & Vose Company Fibrillated fibers for liquid filtration media
CN103752088B (zh) * 2014-01-26 2015-08-12 东华大学 一种燃油滤清器的pbt复合滤材及制备方法
CN105934266B (zh) * 2014-01-28 2017-11-28 帝人株式会社 过滤器用多层过滤材料及其制造方法及空气过滤器
US9777934B2 (en) * 2014-02-19 2017-10-03 Fiber Bond Corporation Panel filter and method for manufacturing the same
US10399024B2 (en) 2014-05-15 2019-09-03 Hollingsworth & Vose Company Surface modified filter media
EP3155147A2 (en) 2014-06-16 2017-04-19 Groz-Beckert KG Multi-die melt blowing system for forming co-mingled structures and method thereof
CN105274861B (zh) * 2014-08-25 2017-09-29 慈溪市长河镇万兴橡塑厂 聚氨酯超细纤维合成革复合过滤材料的生产方法
US20160136553A1 (en) * 2014-11-19 2016-05-19 Hollingsworth & Vose Company Resin impregnated fiber webs
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US9809893B2 (en) 2015-02-26 2017-11-07 City University Of Hong Kong Surface mechanical attrition treatment (SMAT) methods and systems for modifying nanostructures
US10828587B2 (en) 2015-04-17 2020-11-10 Hollingsworth & Vose Company Stable filter media including nanofibers
CN104801111A (zh) * 2015-05-07 2015-07-29 福建龙净环保股份有限公司 电袋复合除尘器及其滤袋
US10108033B2 (en) 2015-08-04 2018-10-23 Rogers Corporation Subassemblies comprising a compressible pressure pad, methods for reducing ripple effect in a display device, and methods for improving impact absorption in a display device
US20190009194A1 (en) * 2015-08-22 2019-01-10 Ahlstrom-Munksjö Oyj Fuel water separation filter medium for removing water from water-hydrocarbon emulsions having improved efficiency
US10449474B2 (en) 2015-09-18 2019-10-22 Hollingsworth & Vose Company Filter media including a waved filtration layer
US10561972B2 (en) 2015-09-18 2020-02-18 Hollingsworth & Vose Company Filter media including a waved filtration layer
EP3365090B1 (en) 2015-10-21 2022-05-04 SWM Luxembourg s.a.r.l. Fuel filter employing one or more layers of wetlaid synthetic fibers
US11014030B2 (en) 2016-02-17 2021-05-25 Hollingsworth & Vose Company Filter media including flame retardant fibers
US10252200B2 (en) 2016-02-17 2019-04-09 Hollingsworth & Vose Company Filter media including a filtration layer comprising synthetic fibers
WO2017184615A1 (en) * 2016-04-18 2017-10-26 Cummins Filtration Ip, Inc. Nanofiber filter media for high performance applications
CN109562311B (zh) * 2016-05-13 2021-07-16 唐纳森公司 过滤介质、过滤元件和过滤方法
US10625196B2 (en) 2016-05-31 2020-04-21 Hollingsworth & Vose Company Coalescing filter media
US20180001244A1 (en) 2016-07-01 2018-01-04 Hollingsworth & Vose Company Multi-layered electret-containing filtration media
CN108001008A (zh) * 2016-10-28 2018-05-08 艾欧史密斯(中国)热水器有限公司 一种hepa的生产工艺
US20180133632A1 (en) 2016-11-11 2018-05-17 Hollingsworth & Vose Company Filter media having a density variation
US10543441B2 (en) 2016-12-15 2020-01-28 Hollingsworth & Vose Company Filter media including adhesives and/or oleophobic properties
DE102016014894A1 (de) * 2016-12-15 2018-06-21 Mann + Hummel Gmbh Filtermedium, Verfahren zu dessen Herstellung und Verwendung des Filtermediums in einem Filterelement
US10898838B2 (en) 2016-12-15 2021-01-26 Hollingsworth & Vose Company Filter media including adhesives
US10814261B2 (en) * 2017-02-21 2020-10-27 Hollingsworth & Vose Company Electret-containing filter media
US11077394B2 (en) * 2017-02-21 2021-08-03 Hollingsworth & Vose Company Electret-containing filter media
WO2018156561A1 (en) 2017-02-21 2018-08-30 Hollingsworth & Vose Company Electret-containing filter media
US11364470B2 (en) * 2017-07-21 2022-06-21 Amogreentech Co., Ltd. Filter medium, manufacturing method therefor, and filter unit comprising same
US10322562B2 (en) 2017-07-27 2019-06-18 Hollingsworth & Vose Company Medical protective clothing materials
CN111556909B (zh) 2017-11-22 2024-04-09 挤压集团公司 熔喷模头尖端组件和方法
US20190181506A1 (en) * 2017-12-12 2019-06-13 Hollingsworth & Vose Company Pasting paper for batteries comprising multiple fiber types
KR20210029191A (ko) 2018-06-08 2021-03-15 어센드 퍼포먼스 머티리얼즈 오퍼레이션즈 엘엘씨 조정 가능한 나노섬유 부직포 제품
US11452959B2 (en) * 2018-11-30 2022-09-27 Hollingsworth & Vose Company Filter media having a fine pore size distribution
JP2022527261A (ja) * 2019-03-25 2022-06-01 スリーエム イノベイティブ プロパティズ カンパニー フィルタアセンブリ
AU2019100910A4 (en) * 2019-08-15 2019-09-26 Avgol Ltd. High barrier nonwoven substrate and fluid management materials therefrom
CN115487586A (zh) * 2022-09-19 2022-12-20 上海聚蓝水处理科技有限公司 电晶膜复合滤芯
CN115487587A (zh) * 2022-09-20 2022-12-20 上海聚蓝水处理科技有限公司 活性炭颗粒夹层滤芯

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955174A (en) * 1995-03-28 1999-09-21 The University Of Tennessee Research Corporation Composite of pleated and nonwoven webs
EP1236494B1 (en) * 2001-03-02 2003-10-15 Airflo Europe N.V. Composite filter and method of making the same
CN1688376A (zh) * 2002-09-26 2005-10-26 霍林斯沃斯及福斯公司 高效ashrae过滤介质

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849241A (en) * 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US4018646A (en) * 1973-05-09 1977-04-19 Johnson & Johnson Nonwoven fabric
US4048364A (en) * 1974-12-20 1977-09-13 Exxon Research And Engineering Company Post-drawn, melt-blown webs
US4455195A (en) * 1982-01-05 1984-06-19 James River Corporation Fibrous filter media and process for producing same
US4622259A (en) 1985-08-08 1986-11-11 Surgikos, Inc. Nonwoven medical fabric
US4925601A (en) * 1988-01-19 1990-05-15 Kimberly-Clark Corporation Method for making melt-blown liquid filter medium
US4892667A (en) * 1988-09-16 1990-01-09 Kaydon Corporation Method and means for dewatering lubricating oils
US5108827A (en) * 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
AU636487B2 (en) 1990-06-18 1993-04-29 Kimberly-Clark Worldwide, Inc. A nonwoven web with improved barrier properties
US5238474A (en) * 1990-10-19 1993-08-24 Donaldson Company, Inc. Filtration arrangement
US5149576A (en) * 1990-11-26 1992-09-22 Kimberly-Clark Corporation Multilayer nonwoven laminiferous structure
JPH04313313A (ja) * 1991-04-12 1992-11-05 Mitsubishi Paper Mills Ltd 液体濾過用フィルター濾材
US5306321A (en) * 1992-07-07 1994-04-26 Donaldson Company, Inc. Layered air filter medium having improved efficiency and pleatability
US5401446A (en) * 1992-10-09 1995-03-28 The University Of Tennessee Research Corporation Method and apparatus for the electrostatic charging of a web or film
US5543047A (en) * 1992-11-06 1996-08-06 Pall Corporation Filter with over-laid pleats in intimate contact
US5580459A (en) 1992-12-31 1996-12-03 Hoechst Celanese Corporation Filtration structures of wet laid, bicomponent fiber
DE69417041T2 (de) * 1993-08-17 1999-07-15 Minnesota Mining & Mfg Verfahren zur aufladung von elektretfiltermedien
US5647881A (en) * 1995-04-20 1997-07-15 Minnesota Mining And Manufacturing Company Shock resistant high efficiency vacuum cleaner filter bag
US5804512A (en) * 1995-06-07 1998-09-08 Bba Nonwovens Simpsonville, Inc. Nonwoven laminate fabrics and processes of making same
US5620785A (en) * 1995-06-07 1997-04-15 Fiberweb North America, Inc. Meltblown barrier webs and processes of making same
US6171684B1 (en) 1995-11-17 2001-01-09 Donaldson Company, Inc. Filter material construction and method
US5672399A (en) * 1995-11-17 1997-09-30 Donaldson Company, Inc. Filter material construction and method
KR100445769B1 (ko) * 1995-11-30 2004-10-15 킴벌리-클라크 월드와이드, 인크. 극세섬유 부직웹
WO1997021865A1 (en) * 1995-12-15 1997-06-19 The Dexter Corporation Abrasive nonwoven web and method of manufacture
US5672188A (en) * 1996-05-28 1997-09-30 Aaf International High capacity filter media
US5783503A (en) * 1996-07-22 1998-07-21 Fiberweb North America, Inc. Meltspun multicomponent thermoplastic continuous filaments, products made therefrom, and methods therefor
US5800586A (en) 1996-11-08 1998-09-01 Johns Manville International, Inc. Composite filter media
TW371284B (en) * 1996-12-04 1999-10-01 Daikin Ind Ltd Filtration material of filter and air cleaning device using the filtration material
US5785725A (en) * 1997-04-14 1998-07-28 Johns Manville International, Inc. Polymeric fiber and glass fiber composite filter media
US6315806B1 (en) 1997-09-23 2001-11-13 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
DE19752143A1 (de) 1997-11-25 1999-05-27 Mann & Hummel Filter Filterelement
US6576323B2 (en) * 1998-03-11 2003-06-10 Procter & Gamble Fabric cleaning article with texturing and/or a tackiness agent
US6171369B1 (en) * 1998-05-11 2001-01-09 Airflo Europe, N.V. Vacuum cleaner bag construction and method of operation
US6261679B1 (en) * 1998-05-22 2001-07-17 Kimberly-Clark Worldwide, Inc. Fibrous absorbent material and methods of making the same
DE19832611C2 (de) * 1998-07-21 2002-03-21 Freudenberg Carl Kg Staubfilterbeutel
US6123752A (en) * 1998-09-03 2000-09-26 3M Innovative Properties Company High efficiency synthetic filter medium
US6723669B1 (en) * 1999-12-17 2004-04-20 Kimberly-Clark Worldwide, Inc. Fine multicomponent fiber webs and laminates thereof
DE19919809C2 (de) 1999-04-30 2003-02-06 Fibermark Gessner Gmbh & Co Staubfilterbeutel, enthaltend Nanofaservlies
US6372004B1 (en) * 1999-07-08 2002-04-16 Airflo Europe N.V. High efficiency depth filter and methods of forming the same
EP1276548B1 (en) * 1999-10-29 2008-12-17 HOLLINGSWORTH & VOSE COMPANY Filter media
US6267252B1 (en) * 1999-12-08 2001-07-31 Kimberly-Clark Worldwide, Inc. Fine particle filtration medium including an airlaid composite
US6428610B1 (en) * 2000-01-18 2002-08-06 The University Of Tennessee Research Corporation Hepa filter
JP2002011311A (ja) * 2000-04-28 2002-01-15 Toyoda Spinning & Weaving Co Ltd 濾過材の製造方法及び濾過材
US6717684B1 (en) * 2000-06-09 2004-04-06 Dynetics, Inc. Target scoring system
US20020013112A1 (en) * 2000-06-20 2002-01-31 Bontaites George J. Multi-drum manufacturing system for nonwoven materials
US6620503B2 (en) 2000-07-26 2003-09-16 Kimberly-Clark Worldwide, Inc. Synthetic fiber nonwoven web and method
US6743273B2 (en) * 2000-09-05 2004-06-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6746517B2 (en) * 2000-09-05 2004-06-08 Donaldson Company, Inc. Filter structure with two or more layers of fine fiber having extended useful service life
WO2002072237A1 (en) * 2000-11-14 2002-09-19 Lydall, Inc. Air laid/wet laid gas filtration media
US20030003834A1 (en) * 2000-11-20 2003-01-02 3M Innovative Properties Company Method for forming spread nonwoven webs
US6936554B1 (en) * 2000-11-28 2005-08-30 Kimberly-Clark Worldwide, Inc. Nonwoven fabric laminate with meltblown web having a gradient fiber size structure
US20030050268A1 (en) 2001-03-29 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases
EP1247558A1 (en) * 2001-04-07 2002-10-09 3M Innovative Properties Company A combination filter for filtering fluids
JP2002346319A (ja) * 2001-05-21 2002-12-03 Nitto Denko Corp タービン用吸気フィルタ濾材
RU2300543C2 (ru) * 2001-05-31 2007-06-10 Дональдсон Компани, Инк. Составы тонкого волокна, способы их получения, способ изготовления тонковолокнистого материала
JP2003001028A (ja) * 2001-06-22 2003-01-07 Bridgestone Corp フィルター材
US7176150B2 (en) * 2001-10-09 2007-02-13 Kimberly-Clark Worldwide, Inc. Internally tufted laminates
US6517612B1 (en) * 2001-10-29 2003-02-11 Gore Enterprise Holdings, Inc. Centrifugal filtration device
US20030082979A1 (en) * 2001-10-31 2003-05-01 Kimberly-Clark Worldwide, Inc. Pulp and conjugate glass fiber composite with enhanced stiffness and permeability
US7655112B2 (en) * 2002-01-31 2010-02-02 Kx Technologies, Llc Integrated paper comprising fibrillated fibers and active particles immobilized therein
US6872311B2 (en) * 2002-01-31 2005-03-29 Koslow Technologies Corporation Nanofiber filter media
US6835311B2 (en) 2002-01-31 2004-12-28 Koslow Technologies Corporation Microporous filter media, filtration systems containing same, and methods of making and using
JP4361263B2 (ja) * 2002-02-07 2009-11-11 本田技研工業株式会社 フィルタエレメント
US20030211802A1 (en) 2002-05-10 2003-11-13 Kimberly-Clark Worldwide, Inc. Three-dimensional coform nonwoven web
DE10221694B4 (de) * 2002-05-16 2018-07-12 Branofilter Gmbh Mehrlagiger Filteraufbau, Verwendung eines solchen mehrlagigen Filteraufbaus, Staubfilterbeutel, Taschenfilterbeutel, plissierter Filter, flächiger Abluftfilter und Luftfilter für Kraftfahrzeuge
DE60329922D1 (de) * 2002-09-17 2009-12-17 Du Pont Extrem flüssigkeitsundurchlässiges gewebe
US8129450B2 (en) 2002-12-10 2012-03-06 Cellresin Technologies, Llc Articles having a polymer grafted cyclodextrin
US7166671B2 (en) * 2002-12-10 2007-01-23 Cellresin Technologies, Llc Grafted cyclodextrin
US7097684B2 (en) * 2002-12-12 2006-08-29 Aaf-Mcquay, Inc. Method of forming combined pleated scrim and filter media materials and product of same
US6986428B2 (en) * 2003-05-14 2006-01-17 3M Innovative Properties Company Fluid separation membrane module
US7008465B2 (en) * 2003-06-19 2006-03-07 Donaldson Company, Inc. Cleanable high efficiency filter media structure and applications for use
JP4393513B2 (ja) 2003-06-30 2010-01-06 ザ プロクター アンド ギャンブル カンパニー ナノファイバーウェブにおける微粒子
US20040266300A1 (en) 2003-06-30 2004-12-30 Isele Olaf Erik Alexander Articles containing nanofibers produced from a low energy process
US20050006303A1 (en) * 2003-07-11 2005-01-13 Sanders Robert G. Atmospheric plasma treatment of meltblown fibers used in filtration
US20050026526A1 (en) * 2003-07-30 2005-02-03 Verdegan Barry M. High performance filter media with internal nanofiber structure and manufacturing methodology
US20050079379A1 (en) * 2003-08-11 2005-04-14 University Of Tennessee Research Foundation Enhancement of barrier fabrics with breathable films and of face masks and filters with novel fluorochemical electret reinforcing treatment
US20050136292A1 (en) * 2003-08-14 2005-06-23 Mariani Robert D. Thin film dielectrics with perovskite structure and preparation thereof
US7237638B2 (en) * 2003-09-30 2007-07-03 Honda Motor Co., Ltd. V-belt type continuously variable transmission
FR2862798B1 (fr) * 2003-11-21 2006-03-17 Snecma Moteurs Panneau insonorisant a billes et procede de realisation
US7459064B2 (en) * 2003-11-24 2008-12-02 Hamilton Sundstrand Corporation Solar electrolysis power source
US20050148261A1 (en) * 2003-12-30 2005-07-07 Kimberly-Clark Worldwide, Inc. Nonwoven webs having reduced lint and slough
US7501003B2 (en) * 2004-03-02 2009-03-10 Gore Enterprise Holdings Composite filter media
US20050211598A1 (en) * 2004-03-23 2005-09-29 Gerald Mizak Plastic film protector for teflon coated skillets
US20050217226A1 (en) * 2004-04-05 2005-10-06 3M Innovative Properties Company Pleated aligned web filter
US20050240517A1 (en) 2004-04-23 2005-10-27 Rga Reinsurance Company Automatically administering a non-disinvesting policy loan on an insurance contract
JP4412190B2 (ja) 2004-04-28 2010-02-10 トヨタ自動車株式会社 可変動弁機構
JP4572585B2 (ja) * 2004-06-03 2010-11-04 トヨタ紡織株式会社 積層フィルタの製造方法
JP4717817B2 (ja) * 2004-07-21 2011-07-06 北越紀州製紙株式会社 液体濾過用フィルタ濾材及びその製造方法
EP1839109A1 (en) 2004-09-19 2007-10-03 E.B.T. Interactive Ltd. Computer-implemented method and system for giving a user an impression of tactile feedback
CN101039734B (zh) * 2004-10-15 2010-09-08 3M创新有限公司 褶式多层过滤介质及滤筒
US7501085B2 (en) * 2004-10-19 2009-03-10 Aktiengesellschaft Adolph Saurer Meltblown nonwoven webs including nanofibers and apparatus and method for forming such meltblown nonwoven webs
US7390760B1 (en) * 2004-11-02 2008-06-24 Kimberly-Clark Worldwide, Inc. Composite nanofiber materials and methods for making same
RU2389529C2 (ru) * 2004-11-05 2010-05-20 Дональдсон Компани, Инк. Фильтрующий материал (варианты) и способ фильтрации (варианты)
US8021457B2 (en) * 2004-11-05 2011-09-20 Donaldson Company, Inc. Filter media and structure
US7235122B2 (en) * 2004-11-08 2007-06-26 E. I. Du Pont De Nemours And Company Filtration media for filtering particulate material from gas streams
US8092566B2 (en) * 2004-12-28 2012-01-10 E.I. Du Pont De Nemours And Company Filtration media for filtering particulate material from gas streams
US7717975B2 (en) * 2005-02-16 2010-05-18 Donaldson Company, Inc. Reduced solidity web comprising fiber and fiber spacer or separation means
JP2008531279A (ja) * 2005-03-07 2008-08-14 ゴア エンタープライズ ホールディングス,インコーポレイティド 複合フィルタ媒体
DE202005007503U1 (de) 2005-05-12 2006-09-21 Melitta Haushaltsprodukte Gmbh & Co. Kg Filterbeutel
US20060292947A1 (en) 2005-06-24 2006-12-28 Lavietes Daniel Polyester fiber scrim and method for making same
JP4782489B2 (ja) * 2005-06-27 2011-09-28 トヨタ紡織株式会社 フィルタ用濾材
JP4933546B2 (ja) * 2005-07-29 2012-05-16 ファイバーウェブ,インコーポレイテッド 液体バリア性能を有する二成分シート材料
WO2007024445A1 (en) 2005-08-19 2007-03-01 Hollingsworth & Vose Company Hvac meltblown nanoweb filter media
US8689985B2 (en) * 2005-09-30 2014-04-08 E I Du Pont De Nemours And Company Filtration media for liquid filtration
US20070074628A1 (en) * 2005-09-30 2007-04-05 Jones David C Coalescing filtration medium and process
US20070084786A1 (en) 2005-10-14 2007-04-19 General Electric Company Filter, filter media, and methods for making same
DE102005055607B3 (de) 2005-11-22 2007-03-22 Helsa-Automotive Gmbh & Co. Kg Filterelement und Verfahren zu seiner Herstellung
US20070125700A1 (en) * 2005-12-05 2007-06-07 Jiang Ding Nanoweb composite material and gelling method for preparing same
DE202005019004U1 (de) 2005-12-06 2007-04-19 Melitta Haushaltsprodukte Gmbh & Co. Kg Filtermaterial und Staubsaugerbeutel
DE102005059214B4 (de) 2005-12-12 2007-10-25 Eurofilters N.V. Filterbeutel für einen Staubsauger
US7981509B2 (en) * 2006-02-13 2011-07-19 Donaldson Company, Inc. Polymer blend, polymer solution composition and fibers spun from the polymer blend and filtration applications thereof
JP4922626B2 (ja) * 2006-02-27 2012-04-25 株式会社タムロン 撮像レンズ
DE102006017553B3 (de) 2006-04-13 2007-12-27 Eurofilters N.V. Filterbeutel für einen Staubsauger
US7902096B2 (en) * 2006-07-31 2011-03-08 3M Innovative Properties Company Monocomponent monolayer meltblown web and meltblowing apparatus
US7807591B2 (en) * 2006-07-31 2010-10-05 3M Innovative Properties Company Fibrous web comprising microfibers dispersed among bonded meltspun fibers
US20080017038A1 (en) * 2006-07-21 2008-01-24 3M Innovative Properties Company High efficiency hvac filter
US7754041B2 (en) * 2006-07-31 2010-07-13 3M Innovative Properties Company Pleated filter with bimodal monolayer monocomponent media
US20080060328A1 (en) * 2006-09-12 2008-03-13 Bha Group, Inc. Filter and filter media
US20080105626A1 (en) * 2006-11-02 2008-05-08 David Charles Jones Fuel filter
US8129019B2 (en) * 2006-11-03 2012-03-06 Behnam Pourdeyhimi High surface area fiber and textiles made from the same
US8361180B2 (en) * 2006-11-27 2013-01-29 E I Du Pont De Nemours And Company Durable nanoweb scrim laminates
EP2117674A1 (en) * 2007-02-22 2009-11-18 Donaldson Company, Inc. Filter element and method
CN101680185B (zh) * 2007-04-17 2011-11-23 帝人纤维株式会社 湿式无纺布及过滤器
US8679216B2 (en) 2007-06-07 2014-03-25 E I Du Pont De Nemours And Company Process for forming a laminate of a nanoweb and a substrate and filters using the laminate
CN101939469B (zh) * 2007-08-02 2012-07-04 北卡罗来纳州立大学 混合纤维和由其制备的非织造织物
DE202007013215U1 (de) * 2007-09-19 2009-02-12 Mann+Hummel Gmbh Getriebeölfilter mit abströmseitiger Meltblownlage
EP2203235B1 (en) * 2007-09-24 2011-07-06 Parker-Hannifin Corporation Surface modified filtration media
US8986432B2 (en) * 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
CN101939072B (zh) * 2007-11-09 2017-04-05 霍林斯沃思和沃斯有限公司 熔喷过滤介质
DE202007015994U1 (de) 2007-11-14 2008-01-17 Wolf Pvg Gmbh & Co. Kg Luftfiltermedium
BRPI0821434A2 (pt) 2007-12-28 2015-06-16 3M Innovative Properties Co Mantas fibrosas não-tecidas compósitas e métodos de preparo e utilização das mesmas
WO2009088647A1 (en) 2007-12-31 2009-07-16 3M Innovative Properties Company Fluid filtration articles and methods of making and using the same
US20090266759A1 (en) 2008-04-24 2009-10-29 Clarcor Inc. Integrated nanofiber filter media
US8142535B2 (en) * 2008-08-05 2012-03-27 Johns Manville High dust holding capacity filter media
US8357220B2 (en) * 2008-11-07 2013-01-22 Hollingsworth & Vose Company Multi-phase filter medium
US8950587B2 (en) * 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US20120152821A1 (en) * 2010-12-17 2012-06-21 Hollingsworth & Vose Company Fine fiber filter media and processes
DE102011111738A1 (de) * 2011-08-26 2013-02-28 Neenah Gessner Gmbh Mehrlagiges Filtermaterial und daraus hergestelltes Filterelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955174A (en) * 1995-03-28 1999-09-21 The University Of Tennessee Research Corporation Composite of pleated and nonwoven webs
EP1236494B1 (en) * 2001-03-02 2003-10-15 Airflo Europe N.V. Composite filter and method of making the same
CN1688376A (zh) * 2002-09-26 2005-10-26 霍林斯沃斯及福斯公司 高效ashrae过滤介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893864A (zh) * 2018-08-15 2018-11-27 安徽依采妮纤维材料科技有限公司 一种双组份熔喷无纺布及其制备工艺
CN109209686A (zh) * 2018-09-27 2019-01-15 上海恩阔弗环保科技有限公司 带熔喷滤芯的碳罐滤清器
CN109224634A (zh) * 2018-09-28 2019-01-18 九江七所精密机电科技有限公司 一种高强度抗应力复合过滤材料及其制备方法

Also Published As

Publication number Publication date
CN101939072B (zh) 2017-04-05
WO2009062009A2 (en) 2009-05-14
US8608817B2 (en) 2013-12-17
US20110147976A1 (en) 2011-06-23
WO2009062009A3 (en) 2009-09-17
EP2227308A2 (en) 2010-09-15
US20090120048A1 (en) 2009-05-14
CN101939072A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
CN101939072B (zh) 熔喷过滤介质
US8986432B2 (en) Meltblown filter medium, related applications and uses
CN101674873B (zh) 袋式过滤器及介质
CN102917769B (zh) 具有多层结构的过滤介质
CN101754791B (zh) 真空清洁器滤袋
CN101052454B (zh) 用于从气体物流过滤颗粒材料的过滤介质
JP4871883B2 (ja) 粒子状物質をガス流れから濾過するための濾過媒体
CN101730621B (zh) 形成纳米纤维网和基底的层压体的方法以及使用该层压体的过滤器
AU2011220735B2 (en) Fine fiber liquid particulate filter media
CN105148618B (zh) 真空清洁器滤袋
RU2008124143A (ru) Мешочный фильтр пылесоса
MXPA03001746A (es) Material laminado no tejido integrado.
JP2016508866A (ja) 不織布エレクトレット繊維ウェブ及びその製造方法
JP2023052207A (ja) 再ロフトスパンボンドウェブを含むエアフィルタ媒体、並びにその製造方法及び使用方法
JP4900675B2 (ja) エアフィルター用複合不織布
US20230321568A1 (en) Filtration media and filters
JP2019000793A (ja) 集塵機フィルター用濾過材
DE202010009671U1 (de) Schmelzblas-Filtermaterial, zugehörige Einsatzmöglichkeiten und Verwendungen
JP7047038B2 (ja) 自動車用燃料用フィルター材
US20230321570A1 (en) Systems and methods for continuous production of fibrous materials and nanoparticles
US20230323055A1 (en) Systems and methods for retaining nanoparticles within nonwoven material
US20230321571A1 (en) Dual-layer gas filters and systems and methods for making the same
US20230321573A1 (en) Systems and methods of making products containing fibrous material
TW311096B (en) Airfilter, method for forming an electret nonwoven filter web, and eletret fiber nonwoven filter media
JP2018015702A (ja) 自動車用燃料用フィルター材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170905