CN107102542A - 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法 - Google Patents

一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法 Download PDF

Info

Publication number
CN107102542A
CN107102542A CN201710240319.5A CN201710240319A CN107102542A CN 107102542 A CN107102542 A CN 107102542A CN 201710240319 A CN201710240319 A CN 201710240319A CN 107102542 A CN107102542 A CN 107102542A
Authority
CN
China
Prior art keywords
mover
msub
mrow
centerdot
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710240319.5A
Other languages
English (en)
Other versions
CN107102542B (zh
Inventor
姚秀明
赵富
董海荣
林雪
张暖笛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201710240319.5A priority Critical patent/CN107102542B/zh
Publication of CN107102542A publication Critical patent/CN107102542A/zh
Application granted granted Critical
Publication of CN107102542B publication Critical patent/CN107102542B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法,包括:S1、分析列车纵向运动进行受力情况,建立包含未知参数、不确定性和外部干扰的列车纵向运动动力方程;S2、构造非奇异终端滑模面;S3、设计各未知参数估计值的自适应律和滑模面参数的参数方程;S4、将非奇异终端滑模面、各未知参数估计值的自适应律和滑模面参数的参数方程代入包含未知参数、不确定性和外部干扰的列车纵向运动动力方程,得到非奇异终端滑模闭环控制方程,利用非奇异终端滑模闭环控制方程进行列车自动运行的鲁棒自适应非奇异终端滑模控制。本发明能使ATO系统的位置跟踪误差和速度跟踪误差在有限时间内到达滑动表面,且在有限时间内收敛到零。

Description

一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法
技术领域
本发明涉及列车控制技术领域。更具体地,涉及一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法。
背景技术
随着现代铁路交通系统的大量需求和发展,对列车运行速度的追求是非常迫切和必然的。因此,有必要提高当前列车自动控制(ATC)系统的性能以实现高效率,高安全性和高精度。ATC系统主要包括三个子系统,即列车自动监控(ATS)系统,列车自动保护(ATP)系统和列车自动运行(ATO)系统。在上述三个子系统中,ATO系统可以控制列车运行的所有阶段,例如自动离开,加速,巡航,制动,精确停止,站间临时停车,自动返回等,这有助于实现无人驾驶操作。因此ATO系统在ATC系统的性能中起着至关重要的作用,并且在理论和工程领域的研究人员中引起了极大的关注,推动许多高效算法的发现,如鲁棒控制,预测控制,最优控制等。
然而,模型的不确定性和外部干扰引起的未建模动态、上车/下车乘客、天气条件(如阵风和雨)、列车线条件(如斜坡)等是影响列车运行的关键因素,在现有技术中没有深入关注。因此,必须结合纵向列车动力学设计合适的控制方法以保证对上述因素的鲁棒性。
另一方面,众所周知,滑模控制对模型不确定性,外部干扰和参数变化非常不敏感。在过去几十年中,滑模控制策略已经被大量的应用在实际系统中,例如机器人操纵器,陀螺仪和电力系统。滑动表面的形式确定相应的滑模控制系统的动态性能是否良好。为了克服传统的线性滑模的缺点,提出了非线性流形。近年来,具有非线性滑动表面的TSM控制已经受到了极大的关注,其可以确保所产生的闭环系统的状态能够在有限时间内收敛到平衡点。然而,在没有适当地给出初始条件的情况下可能引起奇异性问题。
因此,需要提供一种解决未知参数、模型不确定性和外部干扰的影响下位置和速度跟踪控制问题的列车自动运行的鲁棒自适应非奇异终端滑模控制方法。
发明内容
本发明的目的在于提供一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法,以解决未知参数、模型不确定性和外部干扰的影响下位置和速度跟踪控制问题。
为达到上述目的,本发明采用下述技术方案:
一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法,该方法包括如下步骤:
S1、分析列车纵向运动进行受力情况,建立包含未知参数、不确定性和外部干扰的列车纵向运动动力方程;
S2、构造非奇异终端滑模面;
S3、设计各未知参数估计值的自适应律和滑模面参数的参数方程;
S4、将非奇异终端滑模面、各未知参数估计值的自适应律和滑模面参数的参数方程代入包含未知参数、不确定性和外部干扰的列车纵向运动动力方程,得到非奇异终端滑模闭环控制方程,利用非奇异终端滑模闭环控制方程进行列车自动运行的鲁棒自适应非奇异终端滑模控制。
优选地,步骤S1中建立的建立包含未知参数、不确定性和外部干扰的列车纵向运动动力方程为:
其中,m为未知的列车总质量;为列车的速度;为列车的加速度;u为未知的列车所需的纵向控制力;c0、cv和ca为未知的戴维方程的系数;θ为列车运行轨道的坡度;且满足d表示外部干扰,Δm、Δca、Δcv和Δco分别表示m,ca,cv和co的不确定性,b0>0,b1>0,b2>0,b3>0且b0、b1、b2和b3均是未知参数。
优选地,步骤S2的具体过程为:
定义位置误差、速度误差和加速度误差为:
e=x-xr
其中,xr分别为列车运行的期望位置、期望速度和期望加速度;
设计非奇异终端滑模面:
其中,β为未知的待设计函数,定义p和q分别为正奇数,且满足
优选地,步骤S3的具体过程为:
设计各未知参数估计值的自适应律:
u=u1+u2+u3+u4
其中,ks3是待设计的正常数;
设计滑模面参数的参数方程:
其中,km、ko、kv、ka和kβ均为待设计的正参数。
优选地,步骤S4中得到的非奇异终端滑模闭环控制方程为:
本发明的有益效果如下:
1、本发明能有效消除终端滑模控制引起的奇异性。
2、本发明能有效补偿未知参数、模型不确定性和外部干扰的影响。
3、本发明能使ATO系统的位置跟踪误差和速度跟踪误差在有限时间内到达滑动表面,且在有限时间内收敛到零。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明;
图1示出列车自动运行的鲁棒自适应非奇异终端滑模控制方法的流程图。
图2示出列车运行期望位移和期望速度曲线示意图。
图3示出位置误差响应曲线示意图。
图4示出速度误差响应曲线示意图。
图5示出控制输入的示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
如图1所示,本发明公开的列车自动运行的鲁棒自适应非奇异终端滑模控制方法,包括如下步骤:
S1、分析列车纵向运动进行受力情况,建立包含未知参数、不确定性和外部干扰的列车纵向运动动力方程;
S2、构造非奇异终端滑模面;
S3、设计各未知参数估计值的自适应律和滑模面参数的参数方程;
S4、将非奇异终端滑模面、各未知参数估计值的自适应律和滑模面参数的参数方程代入包含未知参数、不确定性和外部干扰的列车纵向运动动力方程,得到非奇异终端滑模闭环控制方程,利用非奇异终端滑模闭环控制方程进行列车自动运行的鲁棒自适应非奇异终端滑模控制。
其中,
步骤S1的具体过程为:
分析列车纵向运动进行受力情况,建立列车纵向运动的动力方程:
其中,m为未知的包括列车车体质量和列车中乘客质量的列车总质量;x为列车的位置;为列车的速度;为列车的加速度;v为列车的纵向速度;u为未知的列车所需的纵向控制力;
f1为由滚动机械阻力fm和空气动力阻力fa组成的列车运行阻力,可以描述为:
f1=fm+fa
其中,c0、cv和ca为未知的戴维方程的系数;
f2为由斜率引起的斜坡阻力,可以描述为:
f2=mg sinθ
其中,g表示重力加速度,θ为列车运行轨道的坡度。
考虑未知参数的不确定性和外部扰动,将列车纵向运动的动力方程描述为:
其中,d表示外部干扰;Δm、Δca、Δcv和Δco分别表示m,ca,cv和co的不确定性。通过定义且满足如下条件:
其中,b0>0,b1>0,b2>0,b3>0且b0、b1、b2和b3均是未知参数。
因此,包含未知参数、不确定性和外部干扰的列车纵向运动的动力方程为:
步骤S2的具体过程为:
定义位置误差、速度误差和加速度误差为:
e=x-xr
其中,xr分别为列车运行的期望位置、期望速度和期望加速度。
设计非奇异终端滑模面:
其中,β为未知的待设计函数,定义p和q分别为正奇数,且满足
步骤S3的具体过程为:
设计各未知参数估计值的自适应律:
u=u1+u2+u3+u4
其中,ks3是待设计的正常数;
设计滑模面参数的参数方程:
其中,km、ko、kv、ka和kβ均为待设计的正参数。
步骤S4中得到的非奇异终端滑模闭环控制方程为:
下面通过Lyapunov(李雅普诺夫)函数证明本发明公开的非奇异终端滑模闭环控制方程的有效性。
构造如下Lyapunov函数:
对Lyapunov函数求导,整理得
因此,得出以下结论:系统的位置误差和速度误差在有限的时间内到达滑模面,且在任意初始条件下经过有限时间收敛到零。
为了验证所设计的针对列车自动运行的鲁棒自适应非奇异终端滑模控制方法的有效性,采用MATLAB进行仿真实验验证,详细说明如下。
仿真实验中,运行距离为82.711km,列车总质量m=5×105kg,重力加速度g=9.8N/kg,戴维斯系数ca=1.6×10-5N·s2/(m2·kg)、co=m×0.01176N/kg、cv=m×7.7616×10-4N·s/(m·kg)N/kg,参数不确定性Δm=3000、Δco=200、Δcv=30、Δca=0.2。外部干扰d满足如下表达式:
其中,隧道阻力为wr=10.5αrmg/(1000lr);曲线阻力为wr=1.3lsmg/(107);其它阻力为we=0.08mgsin(0.2t)cos(0.2t)/103。仿真过程中,初始状态取为[2.50]T,滑模面参数β=1.6、p=49、q=47。
基于上述参数和图2所示期望的位移曲线和速度曲线,对本发明提出的控制方法进行仿真验证,得到如图3、图4和图5所示的结果。其中,图3示出了基于列车自动运行的鲁棒自适应非奇异终端滑模控制方法下的位置误差曲线,图4示出了基于列车自动运行的鲁棒自适应非奇异终端滑模控制方法下的速度误差曲线,图5示出了基于列车自动运行的鲁棒自适应非奇异终端滑模控制方法下系统的控制输入曲线。仿真图3-5示出了该控制方法能有效保证闭环系统的稳定性及良好的位置和速度跟踪性能。
经过上述分析,证明了本发明公开的列车自动运行的鲁棒自适应非奇异终端滑模控制方法的有效性。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (5)

1.一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法,其特征在于,该方法包括如下步骤:
S1、分析列车纵向运动进行受力情况,建立包含未知参数、不确定性和外部干扰的列车纵向运动动力方程;
S2、构造非奇异终端滑模面;
S3、设计各未知参数估计值的自适应律和滑模面参数的参数方程;
S4、将非奇异终端滑模面、各未知参数估计值的自适应律和滑模面参数的参数方程代入包含未知参数、不确定性和外部干扰的列车纵向运动动力方程,得到非奇异终端滑模闭环控制方程,利用非奇异终端滑模闭环控制方程进行列车自动运行的鲁棒自适应非奇异终端滑模控制。
2.根据权利要求1所述的列车自动运行的鲁棒自适应非奇异终端滑模控制方法,其特征在于,步骤S1中建立的建立包含未知参数、不确定性和外部干扰的列车纵向运动动力方程为:
<mrow> <mi>m</mi> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>c</mi> <mi>a</mi> </msub> <msup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>c</mi> <mi>v</mi> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>u</mi> <mo>+</mo> <msub> <mi>p</mi> <mi>o</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mi>o</mi> </msub> <mo>-</mo> <mi>m</mi> <mi>g</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> </mrow>
其中,m为未知的列车总质量;为列车的速度;为列车的加速度;u为未知的列车所需的纵向控制力;c0、cv和ca为未知的戴维方程的系数;θ为列车运行轨道的坡度;且满足d表示外部干扰,Δm、Δca、Δcv和Δco分别表示m,ca,cv和co的不确定性,b0>0,b1>0,b2>0,b3>0且b0、b1、b2和b3均是未知参数。
3.根据权利要求2所述的列车自动运行的鲁棒自适应非奇异终端滑模控制方法,其特征在于,步骤S2的具体过程为:
定义位置误差、速度误差和加速度误差为:
e=x-xr
<mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> </mrow>
<mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> </mrow>
其中,xr分别为列车运行的期望位置、期望速度和期望加速度;
设计非奇异终端滑模面:
<mrow> <mi>s</mi> <mo>=</mo> <mi>e</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mover> <mi>&amp;beta;</mi> <mo>^</mo> </mover> </mfrac> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mi>q</mi> <mi>p</mi> </mfrac> </msup> </mrow>
其中,β为未知的待设计函数,定义p和q分别为正奇数,且满足
4.根据权利要求3所述的列车自动运行的鲁棒自适应非奇异终端滑模控制方法,其特征在于,步骤S3的具体过程为:
设计各未知参数估计值的自适应律:
<mrow> <mover> <mover> <mi>m</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>k</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mi>q</mi> </mrow> <mi>p</mi> </mfrac> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>q</mi> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mo>(</mo> <mrow> <mi>g</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> </mrow> <mo>)</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> 1
<mrow> <msub> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>o</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>o</mi> </msub> <mfrac> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mi>q</mi> </mrow> <mi>p</mi> </mfrac> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>q</mi> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mi>s</mi> </mrow>
<mrow> <msub> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>v</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>v</mi> </msub> <mfrac> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mi>q</mi> </mrow> <mi>p</mi> </mfrac> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>q</mi> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mi>s</mi> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow>
<mrow> <msub> <mover> <mover> <mi>c</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>a</mi> </msub> <mfrac> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mi>q</mi> </mrow> <mi>p</mi> </mfrac> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>q</mi> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mi>s</mi> <msup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msup> </mrow>
u=u1+u2+u3+u4
<mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>c</mi> <mo>^</mo> </mover> <mi>o</mi> </msub> <mo>+</mo> <msub> <mover> <mi>c</mi> <mo>^</mo> </mover> <mi>v</mi> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mover> <mi>c</mi> <mo>^</mo> </mover> <mi>a</mi> </msub> <msup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msup> <mo>+</mo> <mover> <mi>m</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>g</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mi>p</mi> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mi>q</mi> </mrow> </mfrac> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>q</mi> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>m</mi> <mo>^</mo> </mover> </mrow>
<mrow> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>s</mi> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>q</mi> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>u</mi> <mn>4</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>s</mi> <mn>3</mn> </mrow> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>p</mi> <mo>-</mo> <mi>q</mi> </mrow> <mi>p</mi> </mfrac> </msup> </mrow>
其中,ks3是待设计的正常数;
设计滑模面参数的参数方程:
<mrow> <msub> <mover> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>&amp;beta;</mi> </msub> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow>
其中,km、ko、kv、ka和kβ均为待设计的正参数。
5.根据权利要求4所述的列车自动运行的鲁棒自适应非奇异终端滑模控制方法,其特征在于,步骤S4中得到的非奇异终端滑模闭环控制方程为:
<mrow> <mi>m</mi> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>m</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <mi>q</mi> </mrow> <mi>p</mi> </mfrac> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mrow> <mi>q</mi> <mo>-</mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msup> <mrow> <mo>(</mo> <mi>u</mi> <mo>-</mo> <msub> <mi>c</mi> <mi>o</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mi>v</mi> </msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mi>c</mi> <mi>a</mi> </msub> <msup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>m</mi> <mi>g</mi> <mi> </mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mo>-</mo> <mi>m</mi> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>m</mi> <msub> <mover> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <msup> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mfrac> <mi>q</mi> <mi>p</mi> </mfrac> </msup> <mo>.</mo> </mrow> 2
CN201710240319.5A 2017-04-13 2017-04-13 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法 Expired - Fee Related CN107102542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710240319.5A CN107102542B (zh) 2017-04-13 2017-04-13 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710240319.5A CN107102542B (zh) 2017-04-13 2017-04-13 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法

Publications (2)

Publication Number Publication Date
CN107102542A true CN107102542A (zh) 2017-08-29
CN107102542B CN107102542B (zh) 2019-06-21

Family

ID=59675166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710240319.5A Expired - Fee Related CN107102542B (zh) 2017-04-13 2017-04-13 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法

Country Status (1)

Country Link
CN (1) CN107102542B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390517A (zh) * 2017-07-21 2017-11-24 北京交通大学 用于列车ato系统的鲁棒自适应非奇异终端滑模控制方法
CN108398884A (zh) * 2018-03-09 2018-08-14 南京航空航天大学 一种基于滑模的不确定时滞系统的自适应容错控制方法
CN109557817A (zh) * 2019-01-07 2019-04-02 东北大学 一种改进的全局滑模控制方法
CN110758413A (zh) * 2019-10-24 2020-02-07 北京航盛新能科技有限公司 一种基于系统参数辨识的列车速度自适应控制方法
CN111169513A (zh) * 2020-01-07 2020-05-19 北京交通大学 面向乘客舒适性的多自动驾驶列车分布式协同控制方法
CN112706783A (zh) * 2021-01-12 2021-04-27 重庆大学 一种基于状态流的自动驾驶汽车纵向速度控制方法
CN113110071A (zh) * 2021-05-31 2021-07-13 郑州轻工业大学 一种基于模态约束的奇异振动结构鲁棒镇定方法
CN113110512A (zh) * 2021-05-19 2021-07-13 哈尔滨工程大学 一种减弱未知干扰与抖振影响的可底栖式auv自适应轨迹跟踪控制方法
CN113671838A (zh) * 2021-08-25 2021-11-19 西南交通大学 一种基于迭代滑模控制的列车运行跟踪方法
CN114326386A (zh) * 2021-11-30 2022-04-12 卡斯柯信号有限公司 一种列车自动驾驶轨迹规划与跟踪一体化控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898431A (zh) * 2015-06-10 2015-09-09 北京理工大学 一种基于扰动观测器的再入飞行器有限时间控制方法
CN106227223A (zh) * 2016-09-27 2016-12-14 哈尔滨工程大学 一种基于动态滑模控制的uuv轨迹跟踪方法
CN106249591A (zh) * 2016-09-13 2016-12-21 北京交通大学 一种针对列车未知扰动的神经自适应容错控制方法
CN106249602A (zh) * 2016-09-30 2016-12-21 山东大学 桥式吊车有限时间轨迹跟踪控制器及其设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898431A (zh) * 2015-06-10 2015-09-09 北京理工大学 一种基于扰动观测器的再入飞行器有限时间控制方法
CN106249591A (zh) * 2016-09-13 2016-12-21 北京交通大学 一种针对列车未知扰动的神经自适应容错控制方法
CN106227223A (zh) * 2016-09-27 2016-12-14 哈尔滨工程大学 一种基于动态滑模控制的uuv轨迹跟踪方法
CN106249602A (zh) * 2016-09-30 2016-12-21 山东大学 桥式吊车有限时间轨迹跟踪控制器及其设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
余晓华: "非奇异终端滑模控制在列车运行自动控制系统中的应用", 《计算机光盘软件与应用》 *
李浩等: "电动舵机的复合自适应非奇异终端滑模控制", 《控制理论与应用》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390517B (zh) * 2017-07-21 2019-06-25 北京交通大学 用于列车ato系统的鲁棒自适应非奇异终端滑模控制方法
CN107390517A (zh) * 2017-07-21 2017-11-24 北京交通大学 用于列车ato系统的鲁棒自适应非奇异终端滑模控制方法
CN108398884A (zh) * 2018-03-09 2018-08-14 南京航空航天大学 一种基于滑模的不确定时滞系统的自适应容错控制方法
CN109557817B (zh) * 2019-01-07 2021-11-16 东北大学 一种改进的全局滑模控制方法
CN109557817A (zh) * 2019-01-07 2019-04-02 东北大学 一种改进的全局滑模控制方法
CN110758413A (zh) * 2019-10-24 2020-02-07 北京航盛新能科技有限公司 一种基于系统参数辨识的列车速度自适应控制方法
CN111169513A (zh) * 2020-01-07 2020-05-19 北京交通大学 面向乘客舒适性的多自动驾驶列车分布式协同控制方法
CN112706783A (zh) * 2021-01-12 2021-04-27 重庆大学 一种基于状态流的自动驾驶汽车纵向速度控制方法
CN113110512A (zh) * 2021-05-19 2021-07-13 哈尔滨工程大学 一种减弱未知干扰与抖振影响的可底栖式auv自适应轨迹跟踪控制方法
CN113110071A (zh) * 2021-05-31 2021-07-13 郑州轻工业大学 一种基于模态约束的奇异振动结构鲁棒镇定方法
CN113110071B (zh) * 2021-05-31 2023-04-14 郑州轻工业大学 一种基于模态约束的奇异振动结构鲁棒镇定方法
CN113671838A (zh) * 2021-08-25 2021-11-19 西南交通大学 一种基于迭代滑模控制的列车运行跟踪方法
CN113671838B (zh) * 2021-08-25 2023-02-24 西南交通大学 一种基于迭代滑模控制的列车运行跟踪方法
CN114326386A (zh) * 2021-11-30 2022-04-12 卡斯柯信号有限公司 一种列车自动驾驶轨迹规划与跟踪一体化控制方法及装置
CN114326386B (zh) * 2021-11-30 2024-01-23 卡斯柯信号有限公司 一种列车自动驾驶轨迹规划与跟踪一体化控制方法及装置

Also Published As

Publication number Publication date
CN107102542B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN107102542A (zh) 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法
Yao et al. Robust adaptive nonsingular terminal sliding mode control for automatic train operation
CN108536020B (zh) 一种针对垂直起降重复使用运载器的模型参考自适应滑模控制方法
Xu et al. Modeling and robust control of heterogeneous vehicle platoons on curved roads subject to disturbances and delays
CN107390517B (zh) 用于列车ato系统的鲁棒自适应非奇异终端滑模控制方法
CN106529023B (zh) 一种基于迭代学习的地铁列车自动运行速度控制方法
CN103558857B (zh) 一种btt飞行器的分布式复合抗干扰姿态控制方法
CN103616816B (zh) 一种高超声速飞行器升降舵故障控制方法
CN102649438B (zh) 轨道交通列车运行路径的制动点确定方法
Li et al. Optimal guaranteed cost cruise control for high-speed train movement
CN105024609B (zh) 考虑铁损的电动汽车永磁同步电机命令滤波模糊控制方法
CN105159305A (zh) 一种基于滑模变结构的四旋翼飞行控制方法
CN104176275B (zh) 一种使用动量轮与磁力矩器联合的速率阻尼方法
CN103970137A (zh) 基于自抗扰的alv横向位移跟踪系统控制方法
CN105467996A (zh) 基于微分平坦和自抗扰的四轮转向汽车轨迹跟踪控制方法
CN104950901A (zh) 无人直升机姿态误差有限时间收敛非线性鲁棒控制方法
Li et al. Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains
CN103592847A (zh) 一种基于高增益观测器的高超声速飞行器非线性控制方法
CN107515533B (zh) 一种用于列车ato系统的鲁棒非奇异终端滑模控制方法
CN104298109A (zh) 基于多控制器融合的无尾飞行器协调转弯控制方法
Gao et al. Characteristic model-based all-coefficient adaptive control for automatic train control systems
Yu et al. Study on the operational safety of high-speed trains exposed to stochastic winds
CN107450318A (zh) 一种基于二阶滑模控制的气垫船路径跟踪控制方法
CN109375510A (zh) 一种用于高速列车的自适应滑模容错控制方法
CN111027235B (zh) 一种具有输入饱和的重载列车滑模跟踪控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190621

Termination date: 20200413

CF01 Termination of patent right due to non-payment of annual fee