CN109557817A - 一种改进的全局滑模控制方法 - Google Patents

一种改进的全局滑模控制方法 Download PDF

Info

Publication number
CN109557817A
CN109557817A CN201910011307.4A CN201910011307A CN109557817A CN 109557817 A CN109557817 A CN 109557817A CN 201910011307 A CN201910011307 A CN 201910011307A CN 109557817 A CN109557817 A CN 109557817A
Authority
CN
China
Prior art keywords
sliding
total
mode control
function
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910011307.4A
Other languages
English (en)
Other versions
CN109557817B (zh
Inventor
赵海滨
刘冲
陆志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910011307.4A priority Critical patent/CN109557817B/zh
Publication of CN109557817A publication Critical patent/CN109557817A/zh
Application granted granted Critical
Publication of CN109557817B publication Critical patent/CN109557817B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明提出一种改进的全局滑模控制方法,流程包括:建立带有建模不确定和外部干扰信号的三阶严反馈系统;设计改进的全局滑模面;在全局滑模控制器的设计中,采用指数趋近律;设计全局滑模控制器;用全局滑模控制器对三阶严反馈系统进行平衡控制,形成闭环系统,该闭环系统能够实现三阶严反馈系统的平衡控制。本发明设计改进的全局滑模面,全局滑模面中函数p(t)在设定的有限时间t0内收敛到零,采用改进的全局滑模面和指数趋近律设计全局滑模控制器,该全局滑模控制器能够实现三阶严反馈系统的平衡控制,具有非常快的收敛速度,对建模不确定和外部干扰信号具有很好的鲁棒性,为了削弱抖振,采用连续函数con(s,δ)代替符号函数sgn(s)。

Description

一种改进的全局滑模控制方法
技术领域
本发明属于自动控制技术领域,具体涉及一种改进的全局滑模控制方法。
背景技术
滑模控制对于建模不确定和外部干扰信号具有很强的鲁棒性,并具有响应速度快和容易实现等优点,经常用于非线性系统的控制。采用线性滑模面的普通滑模控制分为趋近模态和滑动模态,且只在滑动模态具有鲁棒性,在趋近模态没有鲁棒性。全局滑模控制是通过设计动态非线性滑模面来实现的,在趋近模态和滑动模态的全过程都具有鲁棒性。全局滑模控制器具有比普通滑模控制器更好的鲁棒性,具有非常广泛的应用。
传统的全局滑模控制方法中,全局滑模面中函数p(t)采用单调的指数衰减形式,即p(t)=p(0)e-βt,其中β>0,当t→∞时,p(t)→0,函数p(t)不能在有限的时间内收敛到零,因此状态变量收敛的速度较慢。因此,设计改进的全局滑模面和改进的全局滑模控制器非常的必要。
发明内容
基于以上的技术问题,本发明提供一种改进的全局滑模控制方法,对于带有建模不确定和外部干扰信号的三阶严反馈系统,设计改进的全局滑模面,全局滑模面中函数p(t)能够在设定的有限时间内收敛到零,采用改进的全局滑模面和指数趋近律设计全局滑模控制器,该全局滑模控制器对三阶严反馈系统进行平衡控制,形成闭环系统,该闭环系统能够实现三阶严反馈系统的平衡控制,状态变量收敛的速度非常快,对建模不确定和外部干扰信号具有较好的鲁棒性。
所述一种改进的全局滑模控制方法,包括以下步骤:
步骤1:建立带有建模不确定和外部干扰信号的三阶严反馈系统;
其中,x1,x2和x3为系统的状态变量,x=[x1,x2,x3]T,f1(x)为连续函数,△f1(x)为建模不确定,d(t)为外部干扰信号,t为时间,u为控制输入,建模不确定△f1(x)和外部干扰信号d(t)均有界,即|△f1(x)|≤d1,|d(t)|≤d2,且d1≥0,d2≥0。
步骤2,设计改进的全局滑模面s:
s=x3+2λx22x1-p(t) (2)
其中,λ为常数,且λ>0,p(t)是为了实现全局滑模控制设计的函数,p(t)能够在有限时间内收敛到零,且s(0)=0,函数p(t)必须满足下面的三个条件:
(1)p(0)=p0,且p0=x3(0)+2λx2(0)+λ2x1(0);
(2)当t→∞时,p(t)→0;
(2)p(t)具有一阶导数;
根据以上三个条件,在改进的全局滑模面公式(2)中,将函数p(t)设计为
其中,n为偶数,t0为常数,且t0>0,t为时间,当t=0时,p(0)=p0;当t=t0时,p(t0)=0,函数p(t)在t0时刻收敛到零,函数p(t)对时间t进行求导,得到
步骤3:在全局滑模控制器的设计中,采用的指数趋近律为:
其中,k1和k2为常数,且k1≥0,k2≥d1+d2
步骤4:设计全局滑模控制器:对于三阶严反馈系统公式(1),采用改进的全局滑模面公式(2)和指数趋近律公式(5),全局滑模控制器设计为:
在公式(6)的控制器中存在符号函数sgn(s),会使控制器不连续,出现抖振现象,为了削弱抖振的影响,采用连续函数con(s,δ)代替符号函数sgn(s),最终的全局滑模控制器设计为:
其中,连续函数con(s,δ)的表达式为δ为常数,且δ>0。
步骤5:用全局滑模控制器对三阶严反馈系统进行平衡控制,形成闭环系统,该闭环系统能够实现三阶严反馈系统的平衡控制,即对建模不确定和外部干扰信号具有鲁棒性。
通过Lyapunov稳定性理论对闭环系统的稳定性进行证明,Lyapunov函数为:
其中,s是公式(2)中定义的改进的全局滑模面,对公式(8)进行求导,并将公式(1)和公式(2)带入公式(8)求导后公式,得到:
将公式(6)带入到公式(9)并化简后可以得到:
由于V≥0,由Lyapunov稳定性理论证明了由公式(1)和公式(6)组成的闭环系统是稳定的,三阶严反馈系统的状态变量渐进收敛到零,即能够实现三阶严反馈系统的平衡控制,对建模不确定和外部干扰信号具有很好的鲁棒性。
有益技术效果:
本发明提供的一种改进的全局滑模控制方法,设计改进的全局滑模面,全局滑模面中函数p(t)在设定的有限时间t0内收敛到零,采用改进的全局滑模面和指数趋近律设计全局滑模控制器,该全局滑模控制器能够实现三阶严反馈系统的平衡控制,具有非常快的收敛速度,对建模不确定和外部干扰信号具有很好的鲁棒性,为了削弱抖振,采用连续函数con(s,δ)代替符号函数sgn(s)。
附图说明
图1为本发明的总体原理图;
图2为具体实施例1中采用符号函数时控制输入的响应曲线;
图3为具体实施例1中采用连续函数时控制输入的响应曲线;
图4为具体实施例1中函数p(t)和的响应曲线;
图5为具体实施例1中状态变量的响应曲线;
图6为具体实施例2中采用符号函数时控制输入的响应曲线;
图7为具体实施例2中采用连续函数时控制输入的响应曲线;
图8为具体实施例2中函数p(t)和的响应曲线;
图9为具体实施例2中状态变量的响应曲线;
图10为具体实施例1和2的流程图;
具体实施方式
下面结合附图和具体实施实例对发明做进一步说明:如图1所示,根据带有建模不确定和外部干扰信号的三阶严反馈系统,设计改进的全局滑模面,采用改进的全局滑模面和指数趋近律设计全局滑模控制器,该全局滑模控制器和三阶严反馈系统形成闭环控制系统,该闭环控制系统实现三阶严反馈系统的平衡控制,三阶严反馈系统的状态变量渐进收敛到零,对建模不确定和外部干扰信号具有很好的鲁棒性。
为了更加直观的显示本发明提出的一种改进的全局滑模控制方法的有效性,采用MATLAB/Simulink软件对本控制方案进行仿真实验。在仿真实验中,采用ode45算法,ode45算法即四阶-五阶Runge-Kutta算法,是一种自适应步长的常微分方程数值解法,最大步长为0.0001s,仿真时间为6s。
具体实施例1:
流程如图10所示:
步骤1:建立带有建模不确定和外部干扰信号的三阶严反馈系统;
其中,f1(x)=-x1-x2-0.6x3+sgn(x1)+sgn(x1+2)+sgn(x1-2),建模不确定△f1(x)设定为△f1(x)=0.6sin(x2)sin(x3),则d1=0.6,外部干扰信号d(t)设定为d(t)=0.6cos(2t),则d2=0.6,t为时间,u为控制输入。三阶严反馈系统公式(11)的初始状态设定为x1(0)=2,x2(0)=-1,x3(0)=-2。
步骤2,设计改进的全局滑模面s:
s=x3+2λx22x1-p(t) (2)
其中,参数设定为λ=4。
在改进的全局滑模面中,函数p(t)为公式(3):
其中,参数设定为t0=1,n=4,p0=x3(0)+2λx2(0)+λ2x1(0)=22。
步骤3:在全局滑模控制器的设计中,采用的指数趋近律为公式(5):
其中,参数设定为λ1=2,λ2=d1+d2=1.2。
步骤4:设计全局滑模控制器:对于三阶严反馈系统公式(1),采用改进的全局滑模面公式(2)和指数趋近律公式(5),设计的全局滑模控制器为公式(6):
为了削弱抖振的影响,采用连续函数con(s,δ)代替符号函数sgn(s),最终设计的全局滑模控制器为公式(7):
其中,连续函数con(s,δ)的表达式为参数设定为δ=0.001。
步骤5:用全局滑模控制器对三阶严反馈系统进行平衡控制,形成闭环系统,该闭环系统能够实现三阶严反馈系统的平衡控制,即对建模不确定和外部干扰信号具有鲁棒性。
控制参数如前所设,进行系统的仿真。图2是采用符号函数sgn(s)时,全局滑模控制器的控制输入曲线。图3是采用连续函数con(s,δ)代替符号函数sgn(s)后,全局滑模控制器的控制输入曲线。在图2中,控制输入出现了明显的抖振现象,在图3中,控制输入比较平滑,没有出现抖振现象。图4是函数p(t)和的响应曲线,函数p(t)和在t0=1s时收敛到零。图5是状态变量的响应曲线,状态变量渐进收敛并在2.8s时基本收敛到零,状态变量收敛的速度非常快。从仿真曲线可以直观的观察到,采用改进的全局滑模控制器能够实现三阶严反馈系统的平衡控制,状态变量快速收敛到零,能够克服建模不确定和外部干扰信号的影响,具有很好的鲁棒性和可靠性。
具体实施例2:
流程如图10所示:
步骤1:建立带有建模不确定和外部干扰信号的三阶严反馈系统;
其中,f1(x)=-x1-1.1x2-0.45x3+x1 2,建模不确定△f1(x)设定为△f1(x)=cos(x1)sin(x2),则d1=1,外部干扰信号d(t)设定为d(t)=sin(3t),则d2=1,t为时间,u为控制输入。三阶严反馈系统公式(12)的初始状态设定为x1(0)=3,x2(0)=-2,x3(0)=-3。
步骤2,设计改进的全局滑模面,改进的全局滑模面为公式(2):
s=x3+2λx22x1-p(t) (2)
其中,参数设定为λ=4.5。
在改进的全局滑模面中,函数p(t)为公式(3):
其中,参数设定为t0=1.2,n=4,p0=x3(0)+2λx2(0)+λ2x1(0)=39.75。
步骤3:在全局滑模控制器的设计中,采用的指数趋近律为公式(5):
其中,参数设定为λ1=2,λ2=d1+d2=2。
步骤4:设计全局滑模控制器:对于三阶严反馈系统公式(1),采用改进的全局滑模面公式(2)和指数趋近律公式(5),设计的全局滑模控制器为公式(6):
为了削弱抖振的影响,采用连续函数con(s,δ)代替符号函数sgn(s),最终设计的全局滑模控制器为公式(7):
其中,连续函数con(s,δ)的表达式为参数设定为δ=0.001。
步骤5:用全局滑模控制器对三阶严反馈系统进行平衡控制,形成闭环系统,该闭环系统能够实现三阶严反馈系统的平衡控制,即对建模不确定和外部干扰信号具有鲁棒性。
控制参数如前所设,进行系统的仿真。图6是采用符号函数sgn(s)时,全局滑模控制器的控制输入曲线。图7是采用连续函数con(s,δ)代替符号函数sgn(s)后,全局滑模控制器的控制输入曲线。在图6中,控制输入出现了明显的抖振现象,在图7中,控制输入比较平滑,没有出现抖振现象。图8是函数p(t)和的响应曲线,函数p(t)和在t0=1.2s时收敛到零。图9是状态变量的响应曲线,状态变量渐进收敛并在2.8s时基本收敛到零,状态变量收敛的速度非常快。从仿真曲线可以直观的观察到,采用改进的全局滑模控制器能够实现三阶严反馈系统的平衡控制,状态变量快速收敛到零,能够克服建模不确定和外部干扰信号的影响,具有很好的鲁棒性和可靠性。

Claims (2)

1.一种改进的全局滑模控制方法,其特征在于,
步骤1:建立带有建模不确定和外部干扰信号的三阶严反馈系统;
其中,x1,x2和x3为系统的状态变量,x=[x1,x2,x3]T,f1(x)为连续函数,△f1(x)为建模不确定,d(t)为外部干扰信号,t为时间,u为控制输入,建模不确定△f1(x)和外部干扰信号d(t)均有界,即|△f1(x)|≤d1,|d(t)|≤d2,且d1≥0,d2≥0;
步骤2,设计改进的全局滑模面s:
s=x3+2λx22x1-p(t) (2)
其中,λ为常数,且λ>0,p(t)是为了实现全局滑模控制设计的函数,p(t)能够在有限时间内收敛到零,且s(0)=0,函数p(t)必须满足下面的三个条件:
(1)p(0)=p0,且p0=x3(0)+2λx2(0)+λ2x1(0);
(2)当t→∞时,p(t)→0;
(2)p(t)具有一阶导数;
根据以上三个条件,在改进的全局滑模面公式(2)中,将函数p(t)设计为
其中,n为偶数,t0为常数,且t0>0,t为时间,当t=0时,p(0)=p0;当t=t0时,p(t0)=0,函数p(t)在t0时刻收敛到零,函数p(t)对时间t进行求导,得到
步骤3:在全局滑模控制器的设计中,采用的指数趋近律为:
其中,k1和k2为常数,且k1≥0,k2≥d1+d2
步骤4:设计全局滑模控制器:对于三阶严反馈系统公式(1),采用改进的全局滑模面公式(2)和指数趋近律公式(5),全局滑模控制器设计为:
在公式(6)的控制器中存在符号函数sgn(s),会使控制器不连续,出现抖振现象,为了削弱抖振的影响,采用连续函数con(s,δ)代替符号函数sgn(s),最终的全局滑模控制器设计为:
其中,连续函数con(s,δ)的表达式为δ为常数,且δ>0;
步骤5:用全局滑模控制器对三阶严反馈系统进行平衡控制,形成闭环系统,该闭环系统能够实现三阶严反馈系统的平衡控制,即
2.根据权利要求1所述一种改进的全局滑模控制方法,其特征在于,通过Lyapunov稳定性理论对闭环系统的稳定性进行证明,Lyapunov函数为:
其中,s是公式(2)中定义的改进的全局滑模面。
CN201910011307.4A 2019-01-07 2019-01-07 一种改进的全局滑模控制方法 Expired - Fee Related CN109557817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910011307.4A CN109557817B (zh) 2019-01-07 2019-01-07 一种改进的全局滑模控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910011307.4A CN109557817B (zh) 2019-01-07 2019-01-07 一种改进的全局滑模控制方法

Publications (2)

Publication Number Publication Date
CN109557817A true CN109557817A (zh) 2019-04-02
CN109557817B CN109557817B (zh) 2021-11-16

Family

ID=65872432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910011307.4A Expired - Fee Related CN109557817B (zh) 2019-01-07 2019-01-07 一种改进的全局滑模控制方法

Country Status (1)

Country Link
CN (1) CN109557817B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976162A (zh) * 2019-04-23 2019-07-05 东北大学 一种三阶严反馈系统的全局非线性积分滑模控制方法
CN109991854A (zh) * 2019-04-23 2019-07-09 东北大学 一种结合全局滑模和线性滑模的组合滑模控制方法
CN110018636A (zh) * 2019-05-16 2019-07-16 东北大学 一种饱和约束下三阶严反馈混沌轨比例投影同步方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239282A1 (en) * 2003-05-29 2004-12-02 Koji Yoneda Motion controller having sliding mode controller
US20110257800A1 (en) * 2010-04-14 2011-10-20 Zakariya Al-Hamouz Particle swarm optimizing sliding mode controller
CN102929151A (zh) * 2012-11-14 2013-02-13 北京理工大学 一种基于指数时变二阶滑模的再入飞行姿态控制方法
CN107102542A (zh) * 2017-04-13 2017-08-29 北京交通大学 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法
CN108398884A (zh) * 2018-03-09 2018-08-14 南京航空航天大学 一种基于滑模的不确定时滞系统的自适应容错控制方法
CN108845494A (zh) * 2018-08-29 2018-11-20 东北大学 一种二阶严反馈混沌投影同步方法
CN108873690A (zh) * 2018-08-29 2018-11-23 东北大学 一种二阶严反馈混沌系统的轨迹跟踪方法
CN108931917A (zh) * 2018-09-04 2018-12-04 东北大学 一种三阶严反馈混沌投影同步方法
CN108958042A (zh) * 2018-09-28 2018-12-07 东北大学 基于两种趋近律的滑模控制方法
CN109062034A (zh) * 2018-09-28 2018-12-21 东北大学 一种改进双幂次趋近律滑模的三阶严反馈系统控制方法
CN109062054A (zh) * 2018-09-04 2018-12-21 东北大学 一种三阶严反馈混沌轨迹跟踪方法
CN109143871A (zh) * 2018-10-31 2019-01-04 东北大学 基于改进极点配置的三阶严反馈混沌比例投影同步方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239282A1 (en) * 2003-05-29 2004-12-02 Koji Yoneda Motion controller having sliding mode controller
US20110257800A1 (en) * 2010-04-14 2011-10-20 Zakariya Al-Hamouz Particle swarm optimizing sliding mode controller
CN102929151A (zh) * 2012-11-14 2013-02-13 北京理工大学 一种基于指数时变二阶滑模的再入飞行姿态控制方法
CN107102542A (zh) * 2017-04-13 2017-08-29 北京交通大学 一种列车自动运行的鲁棒自适应非奇异终端滑模控制方法
CN108398884A (zh) * 2018-03-09 2018-08-14 南京航空航天大学 一种基于滑模的不确定时滞系统的自适应容错控制方法
CN108845494A (zh) * 2018-08-29 2018-11-20 东北大学 一种二阶严反馈混沌投影同步方法
CN108873690A (zh) * 2018-08-29 2018-11-23 东北大学 一种二阶严反馈混沌系统的轨迹跟踪方法
CN108931917A (zh) * 2018-09-04 2018-12-04 东北大学 一种三阶严反馈混沌投影同步方法
CN109062054A (zh) * 2018-09-04 2018-12-21 东北大学 一种三阶严反馈混沌轨迹跟踪方法
CN108958042A (zh) * 2018-09-28 2018-12-07 东北大学 基于两种趋近律的滑模控制方法
CN109062034A (zh) * 2018-09-28 2018-12-21 东北大学 一种改进双幂次趋近律滑模的三阶严反馈系统控制方法
CN109143871A (zh) * 2018-10-31 2019-01-04 东北大学 基于改进极点配置的三阶严反馈混沌比例投影同步方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵海滨等: "Terminal滑模控制仿真实验", 《实验技术与管理》 *
赵海滨等: "基于不同趋近律的滑模控制仿真实验", 《科技创新导报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976162A (zh) * 2019-04-23 2019-07-05 东北大学 一种三阶严反馈系统的全局非线性积分滑模控制方法
CN109991854A (zh) * 2019-04-23 2019-07-09 东北大学 一种结合全局滑模和线性滑模的组合滑模控制方法
CN109991854B (zh) * 2019-04-23 2021-05-28 东北大学 一种结合全局滑模和线性滑模的组合滑模控制方法
CN110018636A (zh) * 2019-05-16 2019-07-16 东北大学 一种饱和约束下三阶严反馈混沌轨比例投影同步方法
CN110018636B (zh) * 2019-05-16 2020-12-25 东北大学 一种饱和约束下三阶严反馈混沌轨比例投影同步方法

Also Published As

Publication number Publication date
CN109557817B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN108958042B (zh) 基于两种趋近律的滑模控制方法
CN108931917B (zh) 一种三阶严反馈混沌投影同步方法
Gao et al. Stabilization of nonlinear systems under variable sampling: a fuzzy control approach
CN109557817A (zh) 一种改进的全局滑模控制方法
CN109240093B (zh) 一种基于全局积分滑模的三阶严反馈混沌轨迹跟踪方法
CN108241292B (zh) 一种基于扩张状态观测器的水下机器人滑模控制方法
CN109298636B (zh) 一种改进的积分滑模控制方法
CN109062054B (zh) 一种三阶严反馈混沌轨迹跟踪方法
CN108845494B (zh) 一种二阶严反馈混沌投影同步方法
CN109143871B (zh) 基于改进极点配置的三阶严反馈混沌比例投影同步方法
CN108833075A (zh) 一种基于非奇异终端滑模控制器的二阶混沌投影同步方法
CN109324504B (zh) 基于全局积分滑模的三阶严反馈混沌比例投影同步方法
CN108873690A (zh) 一种二阶严反馈混沌系统的轨迹跟踪方法
CN110018637A (zh) 一种考虑完成时间约束的航天器姿态跟踪保性能控制方法
CN108646570A (zh) 一种改进极点配置的混沌轨迹跟踪方法
CN109946969B (zh) 一种控制输入受限的二阶混沌轨迹跟踪方法
CN110244561A (zh) 一种基于干扰观测器的二级倒立摆自适应滑模控制方法
CN103838139A (zh) 具有积分饱和预处理功能的pid控制方法
CN104267596A (zh) 一种小车倒立摆系统的有限时间解耦控制方法
CN104950670A (zh) 一种连续搅拌釜式反应器的一体化多模型控制方法
Wang et al. Fast finite-time event-triggered consensus control for uncertain nonlinear multiagent systems with full-state constraints
CN109445280B (zh) 一种基于改进极点配置的三阶严反馈混沌轨迹跟踪方法
CN109976162A (zh) 一种三阶严反馈系统的全局非线性积分滑模控制方法
Zhang et al. A novel disturbance observer design for a larger class of nonlinear strict-feedback systems via improved DSC technique
CN109946973B (zh) 一种结合快速终端滑模和线性滑模的组合滑模控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211116

CF01 Termination of patent right due to non-payment of annual fee