CN106929499A - 一种定向改造的氨基葡萄糖合酶突变体及其应用 - Google Patents

一种定向改造的氨基葡萄糖合酶突变体及其应用 Download PDF

Info

Publication number
CN106929499A
CN106929499A CN201710282955.4A CN201710282955A CN106929499A CN 106929499 A CN106929499 A CN 106929499A CN 201710282955 A CN201710282955 A CN 201710282955A CN 106929499 A CN106929499 A CN 106929499A
Authority
CN
China
Prior art keywords
ala
glucosamine
val
leu
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710282955.4A
Other languages
English (en)
Inventor
史劲松
许正宏
张超
龚劲松
李恒
丁振中
方祥
张万宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANGZHOU RIXING BIO-TECH Co Ltd
Jiangnan University
Original Assignee
YANGZHOU RIXING BIO-TECH Co Ltd
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANGZHOU RIXING BIO-TECH Co Ltd, Jiangnan University filed Critical YANGZHOU RIXING BIO-TECH Co Ltd
Priority to CN201710282955.4A priority Critical patent/CN106929499A/zh
Priority to US15/613,286 priority patent/US10233439B2/en
Publication of CN106929499A publication Critical patent/CN106929499A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01016Glutamine-fructose-6-phosphate transaminase (isomerizing) (2.6.1.16), i.e. glucosamine-6-phosphate-synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H11/00Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof
    • C07H11/04Phosphates; Phosphites; Polyphosphates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/04Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to nitrogen
    • C07H5/06Aminosugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Abstract

本发明公开了一种定向改造的氨基葡萄糖合酶突变体及其应用。其氨基酸序列如序列表SEQ ID No.1所示,其核苷酸序列如序列表SEQ ID No.2所示。本发明成功构建氨基葡萄糖合酶基因工程菌,为提升重组菌对氨基葡萄糖的耐受能力,对氨基葡萄糖合酶进行定向进化改造,通过高通量筛选方法从突变文库中筛选获得一种氨基葡萄糖合酶突变体,突变体氨基酸的变化改变了酶的空间构象,增加了酶与底物结合的区域,提高了酶与底物的结合效率。应用本发明的氨基葡萄糖合酶,具有生产周期短、原料葡萄糖来源丰富、后续提取方便等优点,为发酵法合成氨基葡萄糖的大规模、低成本工业应用奠定了基础。

Description

一种定向改造的氨基葡萄糖合酶突变体及其应用
技术领域
本发明属于工业生物技术领域,具体涉及一种定向改造的氨基葡萄糖合酶突变体及其应用。
背景技术
氨基葡萄糖(Glucosamine,GlcN),简称氨糖,存在多种有机体中,能够作为蛋白聚糖与糖蛋白的主要成分,在细胞内通过氨基化生成6-磷酸葡萄糖。N-乙酰化氨基葡萄糖(GlcNAc)在医药、食品以及日化等领域有着广泛的应用。传统生产工艺主要采用虾蟹来源的甲壳素为原料,较多采用酸水解进行制备,反应需要浓酸和高温条件,对环境污染严重,设备要求高,且生产成本偏高。随着代谢工程与合成生物学的迅速发展,生物发酵法运用在工业上的生产也日趋成熟,以葡萄糖为原料直接进行氨糖的转化,具有原料成本低、提取简单、产品纯度高、过程污染少等优势。
氨基葡萄糖合酶(简称氨糖合酶,gls)是GlcN生物合成的关键酶,能够催化6-磷酸果糖生成GlcN-6-P,由谷氨酰胺作为氨基供体。该步是GlcN合成途径中第一个限速反应,gls严重受该合成途径代谢产物GlcN-6-P的反馈抑制,因而GlcN-6-P在正常的代谢合成中无法大量积累。为降低这种产物抑制作用,在大肠杆菌E.coli体系中通常采用共表达氨糖乙酰化酶基因,将代谢体系中的GlcN-6-P转化为刺激性较小的GlcNAc-6-P,产物GlcN-6-P和GlcNAc-6-P均可以从胞内转移到胞外,并经去磷酸化作用形成GlcN和GlcNAc,而GlcNAc能在酸性条件下去乙酰化再次转化为GlcN。
gls的生物合成能力偏低、对产物耐受能力较差是影响产量水平提升的主要原因。尽管目前工业生产上使用的菌株已远远突破上述水平,其中大都经过系统的代谢工程技术改造和发酵优化控制,但从有关文献分析,其改造的重点之一是氨糖合酶。
发明内容
本发明旨在提供一种通过基因工程的方法克隆表达氨糖合酶以及通过易错PCR对氨基葡萄糖合酶进行定向改造,从而构建高产氨糖的工程菌的方法。该方法是一种简便、有效地获得DNA序列变异的技术,主要是针对特定的基因,这在遗传和基因改良研究中具有巨大的应用前景。该方法构建的工程菌在工业生产中周期短、能耗少、污染小,完全适合于工业化生产的要求。
本发明为探索gls新的改造策略,首先筛选出较优的表达质粒和表达宿主,进而利用易错PCR对gls进行非理性改造,通过培养基中外加氨糖作为筛选压力,筛选出耐受性提升的突变株。此外,本发明也通过共表达氨基葡萄糖乙酰化酶gnal的方式,削弱GlcN积累对宿主细胞的抑制效应,考察突变株的合成能力。
一种定向改造的氨基葡萄糖合酶突变体,其氨基酸序列如序列表SEQ ID No.1所示。
上述定向改造的氨基葡萄糖合酶突变体的核苷酸序列如序列表SEQ ID No.2所示。
包含所述氨基葡萄糖合酶突变体基因的工程菌。
上述定向改造的氨基葡萄糖合酶突变体在氨基葡萄糖生物合成中的应用,将突变体通过共表达氨基葡萄糖乙酰化酶,将发酵体系中的氨基葡萄糖转化为乙酰化氨基葡萄糖,从而减少产物的抑制效应,提升氨基葡萄糖产量。
一种通过基因工程手段定向改造氨基葡萄糖合酶的方法,包括克隆表达氨基葡萄糖合酶基因,并采用连续易错PCR,建立突变体文库进行高通量筛选,获得发酵性能提升的氨基葡萄糖合酶突变体M15-9。
所述定向改造的氨基葡萄糖合酶编码基因相对于天然酶60位的丙氨酸变为丝氨酸,128位的缬氨酸变为丙氨酸,352位的天冬氨酸变成了丙氨酸,354位的精氨酸变成半胱氨酸,422位的异亮氨酸变成蛋氨酸,432位的亮氨酸变成了缬氨酸,471位的天冬氨酸变成了谷氨酸,556位的亮氨酸变成了脯氨酸,567位的的缬氨酸变为谷氨酸。上述突变是多轮累积的结果,结构分析结果显示突变酶相对于野生酶疏水性明显增加,导致酶活性中心的残基向里或侧面聚集,同时突变酶的氢键加强,另外带负电荷的氨基酸明显减少,变成了中性氨基酸,减弱了酶分子的极性,更利于酶与底物结合的区域;以上变化改变了酶的空间构象,增加了酶与底物结合的区域,提高了酶与底物的结合效率。
与现有技术相比,本发明具有如下有益效果:本发明通过基因工程的方法克隆表达氨糖合酶,采用基因工程手段克隆表达氨糖合酶,通过不同表达质粒和宿主的优化筛选出最优表达体系,以大肠杆菌E.coli为例,成功构建获得E.coli Rosetta-gami(DE3)-pET-24a-gls工程菌,检测其氨糖产量为1.63g/L。为提升重组菌对氨糖的耐受能力,采用易错PCR技术对氨糖合酶进行定向进化改造,通过高通量筛选方法从2700余株突变株中筛选获得一株高产GlcN的菌株,GlcN产量达到3.57g/L,相比出发菌株提高1.19倍。由于GlcN的积累对于氨糖合酶重组菌生长及代谢活动具有一定的抑制作用,本发明进一步通过共表达氨糖乙酰化酶gnal将GlcN转化为乙酰化氨糖GlcNAc从而减少产物的抑制效应,结果表明gnal与gls串联表达能显著提升菌株的发酵能力,GlcN及GlcNAc累积产量达到7.83g/L,相比单独表达gls时提升2.19倍。经过初步摇瓶发酵优化及5L罐发酵验证,结果显示氨糖发酵水平基本稳定,经过22h发酵最高产量可达到9.85g/L。
附图说明
图1为gls基因扩增产物电泳图;
图中的M为Marker,lane 1和lane 2为PCR扩增获得的gls基因,在1800bp左右能看到目的条带。
图2为表达质粒和表达宿主的优化图;
图中,●:pET-28a,■:pET-24a,▲:pRSFDuet-1,◆:pET-22b,图A为E.coli BL21(DE3)的表达宿主;图B为E.coli BL21(DE3)plss;图C为E.coli Rosetta-gami(DE3)。
图3为突变株的GlcN产量;
图中,●:原始菌株;■:第一轮最优突变株;▲:第二轮最优突变株;◆:第三轮最优突变株。
图4为野生酶和M15-9突变酶疏水性的对比;
图中,(A)为野生酶,(B)为M15-9突变酶。
图5为两种酶氢键的对比;
图中,(A)为野生酶,(B)为M15-9突变酶。
图6为两种酶电荷的对比;
图中(A)为野生酶,(B)为M15-9突变酶。
图7为共表达重组菌的GlcN产量;
图中1为gls未突变重组菌;2为gls突变后的重组菌;3为突变后的gls与gnal共表达的重组菌。
图8为7L发酵液中的GlcN和GlcNAc产量
图中●:GlcNAc,▲:GlcN,■:GlcNAc+GlcNAc,◆:OD600,◇:pH。
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1
根据gls基因设计引物5’端的引物为gls(1),3‘端的引物为gls(2)。根据gnal基因设计引物5’端的引物为gnal(1),3’端的引物为gnal(2),本发明中所涉及到的引物序列如表1所示。
表1本实验所用的引物
以引物gls(1)和gls(2)对gls基因进行克隆,反应采用Extaq聚合酶进行扩增,体系为体系为50μL,PCR反应条件为:94℃预变性10min;94℃变性30s,62℃退火45s,72℃延伸60s,35个循环;72℃终延伸10min。PCR反应结束后,将PCR产物进行1.0%的琼脂糖凝胶电泳(图1),对目的片段进行胶回收。将gls和pMD19-T连接构建克隆质粒,将克隆质粒和表达质粒分别用BamH I和EcoR I进行酶切,然后通过T4连接酶反应构建重组表达质粒。
实施例2
选择四种不同的表达质粒,分别是pET-22b,pET-24a,pET-28a及pRSFduet-1,表达质粒均采用EcoR I和BamH I进行酶切。通过T4连接酶将gls连接到表达质粒上,分别构建重组质粒pET-22b-gls,pET-24a-gls,pET-28a-gls和pRSFduet-1-gls。以E.coli Rosetta-gami(DE3),E.coli BL21(DE3),E.coli BL21(DE3)plss作为表达宿主,建立了不同的gls重组表达系统,经筛选获得的阳性克隆加入IPTG进行诱导表达,结果表明以pET-24a作为表达质粒时具有最高氨糖合成能力,在E.coli BL21(DE3),E.coli BL21(DE3)plss和E.coliRosetta-gami(DE3)分别达到1.31g/L,1.37g/L及1.63g/L(图2)。
实施例3
为提升氨糖合酶的氨糖耐受能力和氨糖产生能力,采用易错PCR方法对氨糖合酶进行定向进化改造。经过优化的易错PCR反应体系如表2所示:
表2易错PCR的反应体系
PCR反应条件为:94℃预变性10min;94℃变性30s,56℃退火45s,72℃延伸60s,30个循环;72℃终延伸10min。PCR反应结束后,将PCR产物进行1.0%的琼脂糖凝胶电泳,对目的片段割胶回收,用Elution buffer复溶。将PCR产物进行1.0%的琼脂糖凝胶电泳,对目的片段进行割胶,通过胶回收试剂盒回收。将gls和pET-24a用BamH I和EcoR I进行双酶切,然后通过T4连接酶反应构建pET-24a-gls重组质粒。
实施例4
将突变的重组质粒转化到E.coli Rosetta-gami(DE3),转接到5mL含有25g/L氨糖的LB培养基中进行驯化培养,在37℃,220rpm的条件下培养10h。将培养后的菌液涂布于含有25g/L氨糖的LB固体平板上,放置在37℃培养箱中培养12h,实时监测菌落的生长情况。挑取转化子接入含有3%葡萄糖的TB液体培养基,在96孔深孔培养板中进行培养,同时对每个挑取的菌株在孔板上做上标。每孔对应一个阳性转化子,同时预留2孔作为对照,一孔接入出发菌株,一孔只添加培养基不接入任何菌种,培养条件为37℃、220rpm。培养至OD600为0.6-0.8时加入终浓度为0.5mM的IPTG进行产酶诱导,培养条件为25℃、220rpm。发酵24h后测定氨糖含量。
发酵结束后取出深孔板进行离心,然后向深孔板里面加入100μL乙酰丙酮试剂,然后将孔板固定在90℃的水浴锅中水浴1h,取出待其冷却后加入1mL的96%的乙醇,然后加入100μL的DMAB试剂,然后室温显色1h后用排枪从深孔板中对应吸出200μL样品到96孔板中,然后将96孔板放在酶标仪上测量530nm处的分光光度值,筛选出高于出发菌株的编号并再次从平板上挑取出进行培养测量GlcN产量。
实验以pET-24a-gls作为模板,采用易错PCR技术对gls进行体外突变时,应用高浓度GlcN进行驯化以筛选突变株,在96孔板上进行高通量筛选。第一轮易错PCR从1152株克隆中筛选出产量性状得到提升的突变株22株,经复筛验证,其中的编号M4-27突变株GlcN生成量为2.84g/L,产量提升了74.2%。提取该突变株的质粒作为模板,进行下一轮突变和筛选,从864株克隆中筛选出突变株15株,产量最高的一株为3.39g/L(编号M6-9);第三轮实验从691株克隆中筛选出突变株20株,最高产量达到3.57g/L(编号M15-9),其产量累计提升119%(图3)。
实施例5
将原始菌株M0-0和最优突变株M15-9接种到LB的种子培养基中,并转接到TB(3%葡萄糖)发酵培养基中在37℃、220r/min的条件下发酵至菌液的OD600至0.6-0.8时,向发酵液中添加终浓度为0.5mmol/L的IPTG并转移到25℃进行诱导,发酵18h后测定产量。野生菌及突变菌各项指标对比如表3所示。
表3菌株摇瓶发酵指标对比
本实施例通过调控反应体系中的MnCl2和dGTP的含量控制碱基突变率为2-3‰,使每一轮的突变株中均可以获得阳性突变。每一轮突变的碱基和氨基酸位点如表4所示,多轮优势积累最终获得一株稳定高产的菌株M15-9,该突变酶成熟蛋白的核苷酸序列如SEQ IDNO.2所示,氨基酸序列如SEQ ID NO.1所示。该氨糖合酶野生酶氨基酸序列如SEQ ID NO.3所示;氨基酸序列如SEQ ID NO.4所示。
表4突变碱基和氨基酸
氨糖合酶的模型构建:通过与蛋白质数据库(PDB)内同源性高的蛋白序列分析,利用在线软件SWISS-MODEL进行同源建模,获得氨糖合酶的立体结构模型。通过序列和结构分析得知氨糖合酶的三维结构活性中心附近有两个位点的改变,尤其是突变位点352(D-A)和354(R-C)的改变对底物果糖-6-磷酸的结合区域的影响最大,具体改变如下:
①疏水性的对比
在酶的氨基酸残基变化后,导致如图4B左下角区域中的突变酶相对于野生酶有明显疏水性的增加,导致酶活性中心的残基向里或侧面聚集,改变了酶的空间构象,增加了酶与底物结合的区域,提高了酶的结合效率。
②氢键的对比
如图5的(A)中的野生酶中含有5个氢键,图5的(B)中含有7个氢键,活性中心的氢键加强。氢键及疏水相互作用在维系酶分子三维构象的稳定性中起着至关重要的作用。活性中心周围由氢键连接起来增强了非极性基团之间的疏水相互作用,也使得酶分子三维构象更加稳定。残基的改变导致氢键的增减和相互作用影响了酶的空间结构,从而影响了酶分子的三维构象,提升了酶和底物的催化效率。
③电荷的对比
在酶的氨基酸残基变化后,导致如图6的(B)左下角区域中的突变酶相对于野生酶带负电荷的氨基酸明显减少,变成了中性氨基酸,减弱了酶分子的极性,更利于酶与底物结合的区域,提高了酶与底物的结合效率。
实施例6
由于乙酰氨基葡萄糖对细胞刺激性小,且在下游提取过程中,用弱酸进行脱乙酰化即可转化为GlcN,所以发酵产物通常是乙酰氨基葡萄糖。以引物gnal(1)和gnal(2)对gnal基因进行扩增,将PCR产物进行1.0%的琼脂糖凝胶电泳,对目的片段割胶回收,然后将gnal和pET-24a-gls用Hind III和Xho I进行双酶切,然后通过T4连接酶反应构建pET-24a-gls-gnal重组质粒。并将重组质粒导入到E.coli Rosetta-gami(DE3)中,将验证成功后的阳性克隆子接入发酵培养基,在37℃、250r/min的条件下发酵至菌液的OD600至0.6~0.8时,向发酵液中添加终浓度为0.5mmol/L的IPTG并转移到25℃进行诱导,发酵18h后测定GlcN和GlcNAc的含量,结果显示,GlcN及GlcNAc累积产量达到8.57g/L,相比单独表达gls时产量提升2.4倍(图7)。
在7L数控式发酵罐中进行分批补糖发酵实验,初始装液量控制在4L。接种量5%,初始培养温度37℃,诱导后在25℃下进行培养。由于发酵过程中产酸,实验通过补加氨水调节pH。图8为7L发酵罐上的分批发酵过程曲线。16h时生物量OD600达到最高,而GlcN、GlcNAc浓度要到20h后才达到最高,分别为3.93g/L、5.86g/L,二者在22h累计达到最高,为9.79g/L。
以上公开的仅为本发明的具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。
SEQUENCE LISTING
<110> 扬州日兴生物科技股份有限公司;江南大学
<120> 一种定向改造的氨基葡萄糖合酶突变体及其应用
<130> 1111
<160> 4
<170> PatentIn version 3.5
<210> 1
<211> 600
<212> PRT
<213> E.coli
<400> 1
Met Cys Gly Ile Val Gly Tyr Ile Gly Gln Leu Asp Ala Lys Glu Ile
1 5 10 15
Leu Leu Lys Gly Leu Glu Lys Leu Glu Tyr Arg Gly Tyr Asp Ser Ala
20 25 30
Gly Ile Ala Val Ala Asn Glu Gln Gly Ile His Val Phe Lys Glu Lys
35 40 45
Gly Arg Ile Ala Asp Leu Arg Glu Val Val Asp Ser Asn Val Glu Ala
50 55 60
Lys Ala Gly Ile Gly His Thr Arg Trp Ala Thr His Gly Glu Pro Ser
65 70 75 80
Tyr Leu Asn Ala His Pro His Gln Ser Ala Leu Gly Arg Phe Thr Leu
85 90 95
Val His Asn Gly Val Ile Glu Asn Tyr Val Gln Leu Lys Gln Glu Tyr
100 105 110
Leu Gln Asp Val Glu Leu Lys Ser Asp Thr Asp Thr Glu Val Val Ala
115 120 125
Gln Val Ile Glu Gln Phe Val Asn Gly Gly Leu Glu Thr Glu Glu Ala
130 135 140
Phe Arg Lys Thr Leu Thr Leu Leu Lys Gly Ser Tyr Ala Ile Ala Leu
145 150 155 160
Phe Asp Asn Asp Asn Arg Glu Thr Ile Phe Val Ala Lys Asn Lys Ser
165 170 175
Pro Leu Leu Val Gly Leu Gly Asp Thr Phe Asn Val Val Ala Ser Asp
180 185 190
Ala Met Ala Met Leu Gln Val Thr Asn Glu Tyr Val Glu Leu Met Asp
195 200 205
Lys Glu Met Val Ile Val Thr Asp Asp Gln Val Val Ile Lys Asn Leu
210 215 220
Asp Gly Asp Val Ile Thr Arg Ala Ser Tyr Ile Ala Glu Leu Asp Ala
225 230 235 240
Ser Asp Ile Glu Lys Gly Thr Tyr Pro His Tyr Met Leu Lys Glu Thr
245 250 255
Asp Glu Gln Pro Val Val Met Arg Lys Ile Ile Gln Thr Tyr Gln Asp
260 265 270
Glu Asn Gly Lys Leu Ser Val Pro Gly Asp Ile Ala Ala Ala Val Ala
275 280 285
Glu Ala Asp Arg Ile Tyr Ile Ile Gly Cys Gly Thr Ser Tyr His Ala
290 295 300
Gly Leu Val Gly Lys Gln Tyr Ile Glu Met Trp Ala Asn Val Pro Val
305 310 315 320
Glu Val His Val Ala Ser Glu Phe Ser Tyr Asn Met Pro Leu Leu Ser
325 330 335
Lys Lys Pro Leu Phe Ile Phe Leu Ser Gln Ser Gly Glu Thr Ala Ala
340 345 350
Ser Cys Ala Val Leu Val Gln Val Lys Ala Leu Gly His Lys Ala Leu
355 360 365
Thr Ile Thr Asn Val Pro Gly Ser Thr Leu Ser Arg Glu Ala Asp Tyr
370 375 380
Thr Leu Leu Leu His Ala Gly Pro Glu Ile Ala Val Ala Ser Thr Lys
385 390 395 400
Ala Tyr Thr Ala Gln Ile Ala Val Leu Ala Val Leu Ala Ser Val Ala
405 410 415
Ala Asp Lys Asn Gly Met Asn Ile Gly Phe Asp Leu Val Lys Glu Val
420 425 430
Gly Ile Ala Ala Asn Ala Met Glu Ala Leu Cys Asp Gln Lys Asp Glu
435 440 445
Met Glu Met Ile Ala Arg Glu Tyr Leu Thr Val Ser Arg Asn Ala Phe
450 455 460
Phe Ile Gly Arg Gly Leu Glu Tyr Phe Val Cys Val Glu Gly Ala Leu
465 470 475 480
Lys Leu Lys Glu Ile Ser Tyr Ile Gln Ala Glu Gly Phe Ala Gly Gly
485 490 495
Glu Leu Lys His Gly Thr Ile Ala Leu Ile Glu Gln Gly Thr Pro Val
500 505 510
Phe Ala Leu Ala Thr Gln Glu His Val Asn Leu Ser Ile Arg Gly Asn
515 520 525
Val Lys Glu Val Ala Ala Arg Gly Ala Asn Thr Cys Ile Ile Ser Leu
530 535 540
Lys Gly Leu Asp Asp Ala Asp Asp Arg Phe Val Pro Pro Glu Val Asn
545 550 555 560
Pro Ala Leu Ala Pro Leu Glu Ser Val Val Pro Leu Gln Leu Ile Ala
565 570 575
Tyr Tyr Ala Ala Leu His Arg Gly Cys Asp Val Asp Lys Pro Arg Asn
580 585 590
Leu Ala Lys Ser Val Thr Val Glu
595 600
<210> 2
<211> 1803
<212> DNA
<213> E.coli
<400> 2
atgtgcggca ttgtgggtta tatcggccag ctggatgcaa aagaaattct gctgaaaggt 60
ctggaaaaac tggaatatcg cggttacgat agcgcgggca ttgctgtcgc gaacgaacaa 120
ggtatccatg tgttcaaaga aaaaggccgt attgccgatc tgcgcgaagt ggttgactca 180
aacgtggaag ccaaagcagg catcggtcat acccgttggg caacgcacgg cgaaccgagt 240
tacctgaatg ctcatccgca ccagtccgcg ctgggtcgtt ttaccctggt gcacaacggc 300
gttattgaaa attatgtgca gctgaaacaa gaatacctgc aagatgttga actgaaaagc 360
gataccgaca cggaagtcgt ggctcaggtt atcgaacaat ttgtcaatgg cggtctggaa 420
accgaagaag cgttccgcaa aaccctgacg ctgctgaaag gttcttatgc tattgcgctg 480
tttgataacg acaatcgtga aacgatcttc gtggccaaaa acaaatcacc gctgctggtt 540
ggcctgggtg ataccttcaa tgtcgtggca tcggacgcga tggcgatgct gcaggtgacg 600
aacgaatatg ttgaactgat ggataaagaa atggttattg tcaccgatga ccaagttgtc 660
atcaaaaatc tggatggtga cgtgattacg cgtgcaagct acatcgctga actggatgcg 720
tctgacattg aaaaaggcac ctatccgcat tacatgctga aagaaacgga tgaacagccg 780
gtggttatgc gcaaaattat ccagacctat caagatgaaa acggtaaact gagcgttccg 840
ggcgatattg cggcggcagt cgctgaagcg gaccgtatct atattatcgg ctgtggcacg 900
tcttaccatg cgggtctggt gggcaaacag tatattgaaa tgtgggccaa cgtgccggtt 960
gaagtccacg tggcaagtga attttcctac aatatgccgc tgctgagtaa aaaaccgctg 1020
tttattttcc tgagccagtc tggcgaaacc gccgcttcct gcgcagttct ggtccaagtg 1080
aaagccctgg gtcataaagc actgaccatc acgaatgtgc cgggctcaac cctgtcgcgt 1140
gaagctgatt atacgctgct gctgcacgcg ggtccggaaa ttgccgttgc aagcaccaaa 1200
gcgtatacgg cacagatcgc agtcctggca gtgctggctt ctgtggctgc ggataaaaac 1260
ggtatgaata tcggctttga cctggttaaa gaagtgggca ttgccgcaaa cgcgatggaa 1320
gccctgtgcg atcagaaaga cgaaatggaa atgattgctc gtgaatatct gaccgtgagt 1380
cgcaatgcct ttttcatcgg ccgtggtctg gagtattttg tttgtgtcga aggtgccctg 1440
aaactgaaag aaatttccta catccaggct gaaggcttcg cgggcggtga actgaaacat 1500
ggtaccattg cgctgatcga acagggcacc ccggtctttg ctctggcgac gcaagaacac 1560
gttaacctgt caattcgcgg taatgttaaa gaagtcgctg cgcgtggcgc aaacacctgc 1620
attatctcgc tgaaaggtct ggatgacgcg gatgaccgct ttgtcccgcc ggaagtgaat 1680
ccggcactgg caccgctgga gagtgtcgtg ccgctgcagc tgatcgcgta ttacgccgca 1740
ctgcatcgcg gctgtgatgt tgacaaaccg cgtaacctgg ccaaaagcgt gaccgttgaa 1800
taa 1803
<210> 3
<211> 600
<212> PRT
<213> E.coli
<400> 3
Met Cys Gly Ile Val Gly Tyr Ile Gly Gln Leu Asp Ala Lys Glu Ile
1 5 10 15
Leu Leu Lys Gly Leu Glu Lys Leu Glu Tyr Arg Gly Tyr Asp Ser Ala
20 25 30
Gly Ile Ala Val Ala Asn Glu Gln Gly Ile His Val Phe Lys Glu Lys
35 40 45
Gly Arg Ile Ala Asp Leu Arg Glu Val Val Asp Ala Asn Val Glu Ala
50 55 60
Lys Ala Gly Ile Gly His Thr Arg Trp Ala Thr His Gly Glu Pro Ser
65 70 75 80
Tyr Leu Asn Ala His Pro His Gln Ser Ala Leu Gly Arg Phe Thr Leu
85 90 95
Val His Asn Gly Val Ile Glu Asn Tyr Val Gln Leu Lys Gln Glu Tyr
100 105 110
Leu Gln Asp Val Glu Leu Lys Ser Asp Thr Asp Thr Glu Val Val Val
115 120 125
Gln Val Ile Glu Gln Phe Val Asn Gly Gly Leu Glu Thr Glu Glu Ala
130 135 140
Phe Arg Lys Thr Leu Thr Leu Leu Lys Gly Ser Tyr Ala Ile Ala Leu
145 150 155 160
Phe Asp Asn Asp Asn Arg Glu Thr Ile Phe Val Ala Lys Asn Lys Ser
165 170 175
Pro Leu Leu Val Gly Leu Gly Asp Thr Phe Asn Val Val Ala Ser Asp
180 185 190
Ala Met Ala Met Leu Gln Val Thr Asn Glu Tyr Val Glu Leu Met Asp
195 200 205
Lys Glu Met Val Ile Val Thr Asp Asp Gln Val Val Ile Lys Asn Leu
210 215 220
Asp Gly Asp Val Ile Thr Arg Ala Ser Tyr Ile Ala Glu Leu Asp Ala
225 230 235 240
Ser Asp Ile Glu Lys Gly Thr Tyr Pro His Tyr Met Leu Lys Glu Thr
245 250 255
Asp Glu Gln Pro Val Val Met Arg Lys Ile Ile Gln Thr Tyr Gln Asp
260 265 270
Glu Asn Gly Lys Leu Ser Val Pro Gly Asp Ile Ala Ala Ala Val Ala
275 280 285
Glu Ala Asp Arg Ile Tyr Ile Ile Gly Cys Gly Thr Ser Tyr His Ala
290 295 300
Gly Leu Val Gly Lys Gln Tyr Ile Glu Met Trp Ala Asn Val Pro Val
305 310 315 320
Glu Val His Val Ala Ser Glu Phe Ser Tyr Asn Met Pro Leu Leu Ser
325 330 335
Lys Lys Pro Leu Phe Ile Phe Leu Ser Gln Ser Gly Glu Thr Ala Asp
340 345 350
Ser Arg Ala Val Leu Val Gln Val Lys Ala Leu Gly His Lys Ala Leu
355 360 365
Thr Ile Thr Asn Val Pro Gly Ser Thr Leu Ser Arg Glu Ala Asp Tyr
370 375 380
Thr Leu Leu Leu His Ala Gly Pro Glu Ile Ala Val Ala Ser Thr Lys
385 390 395 400
Ala Tyr Thr Ala Gln Ile Ala Val Leu Ala Val Leu Ala Ser Val Ala
405 410 415
Ala Asp Lys Asn Gly Ile Asn Ile Gly Phe Asp Leu Val Lys Glu Leu
420 425 430
Gly Ile Ala Ala Asn Ala Met Glu Ala Leu Cys Asp Gln Lys Asp Glu
435 440 445
Met Glu Met Ile Ala Arg Glu Tyr Leu Thr Val Ser Arg Asn Ala Phe
450 455 460
Phe Ile Gly Arg Gly Leu Asp Tyr Phe Val Cys Val Glu Gly Ala Leu
465 470 475 480
Lys Leu Lys Glu Ile Ser Tyr Ile Gln Ala Glu Gly Phe Ala Gly Gly
485 490 495
Glu Leu Lys His Gly Thr Ile Ala Leu Ile Glu Gln Gly Thr Pro Val
500 505 510
Phe Ala Leu Ala Thr Gln Glu His Val Asn Leu Ser Ile Arg Gly Asn
515 520 525
Val Lys Glu Val Ala Ala Arg Gly Ala Asn Thr Cys Ile Ile Ser Leu
530 535 540
Lys Gly Leu Asp Asp Ala Asp Asp Arg Phe Val Leu Pro Glu Val Asn
545 550 555 560
Pro Ala Leu Ala Pro Leu Val Ser Val Val Pro Leu Gln Leu Ile Ala
565 570 575
Tyr Tyr Ala Ala Leu His Arg Gly Cys Asp Val Asp Lys Pro Arg Asn
580 585 590
Leu Ala Lys Ser Val Thr Val Glu
595 600
<210> 4
<211> 1803
<212> DNA
<213> E.coli
<400> 4
atgtgcggca ttgtgggtta tatcggccag ctggatgcaa aagaaattct gctgaaaggt 60
ctggaaaaac tggaatatcg cggttacgat agcgcgggca ttgctgtcgc gaacgaacaa 120
ggtatccatg tgttcaaaga aaaaggccgt attgccgatc tgcgcgaagt ggttgacgca 180
aacgtggaag ccaaagcagg catcggtcat acccgttggg caacgcacgg cgaaccgagt 240
tacctgaatg ctcatccgca ccagtccgcg ctgggtcgtt ttaccctggt gcacaacggc 300
gttattgaaa attatgtgca gctgaaacaa gaatacctgc aagatgttga actgaaaagc 360
gataccgaca cggaagtcgt ggttcaggtt atcgaacaat ttgtcaatgg cggtctggaa 420
accgaagaag cgttccgcaa aaccctgacg ctgctgaaag gttcttatgc tattgcgctg 480
tttgataacg acaatcgtga aacgatcttc gtggccaaaa acaaatcacc gctgctggtt 540
ggcctgggtg ataccttcaa tgtcgtggca tcggacgcga tggcgatgct gcaggtgacg 600
aacgaatatg ttgaactgat ggataaagaa atggttattg tcaccgatga ccaagttgtc 660
atcaaaaatc tggatggtga cgtgattacg cgtgcaagct acatcgctga actggatgcg 720
tctgacattg aaaaaggcac ctatccgcat tacatgctga aagaaacgga tgaacagccg 780
gtggttatgc gcaaaattat ccagacctat caagatgaaa acggtaaact gagcgttccg 840
ggcgatattg cggcggcagt cgctgaagcg gaccgtatct atattatcgg ctgtggcacg 900
tcttaccatg cgggtctggt gggcaaacag tatattgaaa tgtgggccaa cgtgccggtt 960
gaagtccacg tggcaagtga attttcctac aatatgccgc tgctgagtaa aaaaccgctg 1020
tttattttcc tgagccagtc tggcgaaacc gccgattccc gcgcagttct ggtccaagtg 1080
aaagccctgg gtcataaagc actgaccatc acgaatgtgc cgggctcaac cctgtcgcgt 1140
gaagctgatt atacgctgct gctgcacgcg ggtccggaaa ttgccgttgc aagcaccaaa 1200
gcgtatacgg cacagatcgc agtcctggca gtgctggctt ctgtggctgc ggataaaaac 1260
ggtattaata tcggctttga cctggttaaa gaactgggca ttgccgcaaa cgcgatggaa 1320
gccctgtgcg atcagaaaga cgaaatggaa atgattgctc gtgaatatct gaccgtgagt 1380
cgcaatgcct ttttcatcgg ccgtggtctg gattattttg tttgtgtcga aggtgccctg 1440
aaactgaaag aaatttccta catccaggct gaaggcttcg cgggcggtga actgaaacat 1500
ggtaccattg cgctgatcga acagggcacc ccggtctttg ctctggcgac gcaagaacac 1560
gttaacctgt caattcgcgg taatgttaaa gaagtcgctg cgcgtggcgc aaacacctgc 1620
attatctcgc tgaaaggtct ggatgacgcg gatgaccgct ttgtcctgcc ggaagtgaat 1680
ccggcactgg caccgctggt gagtgtcgtg ccgctgcagc tgatcgcgta ttacgccgca 1740
ctgcatcgcg gctgtgatgt tgacaaaccg cgtaacctgg ccaaaagcgt gaccgttgaa 1800
taa 1803

Claims (6)

1.一种定向改造的氨基葡萄糖合酶突变体,其特征在于,其氨基酸序列如序列表SEQID No.1所示。
2.权利要求1所述定向改造的氨基葡萄糖合酶突变体的基因,其特征在于,其核苷酸序列如序列表SEQ ID No.2所示。
3.包含权利要求2所述氨基葡萄糖合酶突变体基因的工程菌。
4.权利要求1所述定向改造的氨基葡萄糖合酶突变体在氨基葡萄糖生物合成中的应用,其特征在于,将突变体通过共表达氨基葡萄糖乙酰化酶,将发酵体系中的氨基葡萄糖转化为乙酰化氨基葡萄糖,从而减少产物的抑制效应,提升氨基葡萄糖产量。
5.一种通过基因工程手段定向改造氨基葡萄糖合酶的方法,其特征在于,包括克隆表达氨基葡萄糖合酶基因,并采用连续易错PCR,建立突变体文库进行高通量筛选,获得发酵性能提升的氨基葡萄糖合酶突变体M15-9。
6.根据权利要求5所述的通过基因工程手段定向改造氨基葡萄糖合酶的方法,其特征在于,所述定向改造的氨基葡萄糖合酶编码基因相对于天然酶60位的丙氨酸变为丝氨酸,128位的缬氨酸变为丙氨酸,352位的天冬氨酸变成了丙氨酸,354位的精氨酸变成半胱氨酸,422位的异亮氨酸变成蛋氨酸,432位的亮氨酸变成了缬氨酸,471位的天冬氨酸变成了谷氨酸,556位的亮氨酸变成了脯氨酸,567位的的缬氨酸变为谷氨酸。
CN201710282955.4A 2017-04-26 2017-04-26 一种定向改造的氨基葡萄糖合酶突变体及其应用 Pending CN106929499A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710282955.4A CN106929499A (zh) 2017-04-26 2017-04-26 一种定向改造的氨基葡萄糖合酶突变体及其应用
US15/613,286 US10233439B2 (en) 2017-04-26 2017-06-05 Directed modification of glucosamine synthase mutant and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710282955.4A CN106929499A (zh) 2017-04-26 2017-04-26 一种定向改造的氨基葡萄糖合酶突变体及其应用

Publications (1)

Publication Number Publication Date
CN106929499A true CN106929499A (zh) 2017-07-07

Family

ID=59438395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710282955.4A Pending CN106929499A (zh) 2017-04-26 2017-04-26 一种定向改造的氨基葡萄糖合酶突变体及其应用

Country Status (2)

Country Link
US (1) US10233439B2 (zh)
CN (1) CN106929499A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588049A (zh) * 2018-05-16 2018-09-28 浙江中医药大学 一种氨基葡萄糖合成酶、工程菌及其应用
CN110129411A (zh) * 2019-05-27 2019-08-16 齐鲁工业大学 一种大肠杆菌内氨基葡萄糖合酶表达活性的检测方法
CN112899248A (zh) * 2021-01-20 2021-06-04 江南大学 氨基葡萄糖-6磷酸合成酶突变体及其应用
CN113151377A (zh) * 2021-04-08 2021-07-23 江苏澳新生物工程有限公司 一种从葡萄糖到氨基葡萄糖的酶法制备方法与酶用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589696A (zh) * 2013-09-30 2014-02-19 安徽丰原发酵技术工程研究有限公司 大肠杆菌氨基葡萄糖合成酶突变体及其应用
CN104498394A (zh) * 2014-11-27 2015-04-08 江南大学 一种乙酰氨基葡萄糖产量提高的重组枯草芽孢杆菌
CN105176903A (zh) * 2015-10-14 2015-12-23 江南大学 一种积累乙酰氨基葡萄糖的重组枯草芽孢杆菌及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003175A2 (en) * 2002-07-01 2004-01-08 Arkion Life Sciences Llc Process and materials for production of glucosamine and n-acetylglucosamine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589696A (zh) * 2013-09-30 2014-02-19 安徽丰原发酵技术工程研究有限公司 大肠杆菌氨基葡萄糖合成酶突变体及其应用
CN104498394A (zh) * 2014-11-27 2015-04-08 江南大学 一种乙酰氨基葡萄糖产量提高的重组枯草芽孢杆菌
CN105176903A (zh) * 2015-10-14 2015-12-23 江南大学 一种积累乙酰氨基葡萄糖的重组枯草芽孢杆菌及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MING-DE DENG等: "Directed Evolution and Characterization of Escherichia Coli Glucosamine Synthase", 《BIOCHIME》 *
MING-DE DENG等: "Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine", 《METAB ENG》 *
杨彪等: "氨糖合酶的定向改造及其在氨糖生物合成中的应用", 《基因组学与应用生物学》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588049A (zh) * 2018-05-16 2018-09-28 浙江中医药大学 一种氨基葡萄糖合成酶、工程菌及其应用
CN108588049B (zh) * 2018-05-16 2021-05-14 浙江中医药大学 一种氨基葡萄糖合成酶、工程菌及其应用
CN110129411A (zh) * 2019-05-27 2019-08-16 齐鲁工业大学 一种大肠杆菌内氨基葡萄糖合酶表达活性的检测方法
CN112899248A (zh) * 2021-01-20 2021-06-04 江南大学 氨基葡萄糖-6磷酸合成酶突变体及其应用
CN112899248B (zh) * 2021-01-20 2022-10-18 江南大学 氨基葡萄糖-6磷酸合成酶突变体及其应用
CN113151377A (zh) * 2021-04-08 2021-07-23 江苏澳新生物工程有限公司 一种从葡萄糖到氨基葡萄糖的酶法制备方法与酶用途
WO2022213477A1 (zh) * 2021-04-08 2022-10-13 江苏澳新生物工程有限公司 一种从葡萄糖到氨基葡萄糖的酶法制备方法与酶用途

Also Published As

Publication number Publication date
US20180312829A1 (en) 2018-11-01
US10233439B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
CN106929499A (zh) 一种定向改造的氨基葡萄糖合酶突变体及其应用
CN111548979B (zh) 合成乳酰n-新四糖的重组大肠杆菌及其构建方法与应用
CN114480240A (zh) 一种产岩藻糖基乳糖的基因工程菌及生产方法
CN109486734B (zh) 一种生产软骨素的基因工程菌及其构建方法和应用
CN104152505A (zh) 一种利用重组菌株转化制备4-羟基-l-异亮氨酸的方法
CN108034667A (zh) 一种红色红曲霉α-淀粉酶基因、其制备方法及应用
CN110184229B (zh) 一种提高重组枯草芽孢杆菌合成n-乙酰氨基葡萄糖效率的方法
Li et al. High-level production of pullulan from high concentration of glucose by mutagenesis and adaptive laboratory evolution of Aureobasidium pullulans
CN106916837A (zh) 高渗透压甘油蛋白激酶基因RkHog1及其重组表达载体
CN100392075C (zh) 谷氨酰胺合成酶及其专用表达工程菌与应用
Liu et al. Cloning, molecular properties and differential expression analysis of the isopentenyl diphosphate isomerase gene in Sanghuangporus baumii
CN114426961B (zh) 一种β-葡萄糖苷酶突变体、其编码基因、表达菌株及其应用
CN115948265A (zh) 一种马克斯克鲁维单倍体酵母及其构建方法与应用
CN109517777A (zh) 一株枯草芽孢基因工程菌及其在制备小分子透明质酸中的应用
CN104017767A (zh) 一种利用组合调控策略提高5-氨基乙酰丙酸产量的方法
Zhang et al. Construction of cordycepin high-production strain and optimization of culture conditions
CN111349569B (zh) 一种里氏木霉及其在木聚糖酶生产中的应用
CN109161489B (zh) 一种高产酸性蛋白酶的黑曲霉菌株
CN109251867B (zh) 一种酸性蛋白酶高产菌株及其应用
CN112921043A (zh) 突变的核酸、表达载体和制备高比活力漆酶突变体及其方法
CN106754829A (zh) 一种利用芽孢杆菌hs17发酵生产壳聚糖酶的方法及其应用
CN107916271B (zh) 一种重组腈水合酶的高效表达方法
CN110616161A (zh) 一种利用Y家族聚合酶Rev1调节酿酒酵母氧胁迫的方法
CN103757035B (zh) 鼠灰链霉菌amp脱氨酶基因的乳酸克鲁维酵母真核表达方法
CN106701724B (zh) 一种碱性果胶酶活性包涵体的制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170707