CN1069112C - 形成铁电薄膜的方法及其设备 - Google Patents

形成铁电薄膜的方法及其设备 Download PDF

Info

Publication number
CN1069112C
CN1069112C CN96121174A CN96121174A CN1069112C CN 1069112 C CN1069112 C CN 1069112C CN 96121174 A CN96121174 A CN 96121174A CN 96121174 A CN96121174 A CN 96121174A CN 1069112 C CN1069112 C CN 1069112C
Authority
CN
China
Prior art keywords
reactant
gas
shower nozzle
collecting tubule
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96121174A
Other languages
English (en)
Other versions
CN1154422A (zh
Inventor
白鎔求
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019950033876A external-priority patent/KR0164071B1/ko
Priority claimed from KR1019950033877A external-priority patent/KR0180783B1/ko
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of CN1154422A publication Critical patent/CN1154422A/zh
Application granted granted Critical
Publication of CN1069112C publication Critical patent/CN1069112C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种在可涂敷性、结构精细度和组成的均匀性方面都是优越的铁电薄膜是通过由下列步骤组成的方法获得的:通过用RF能激发等离子体引发由多种元素组成的铁电反应物离解,使其能够参与沉积反应;建立最佳工艺条件,在该条件下,使通过激发等离子体由反应物的离解而得到的离子在高温低压下进行沉积作用;通过导管、集合管和喷头向反应器无损耗地供给反应物,集合管用于聚集反应物,喷头用于喷射混合的反应物;在反应器中沉积铁电薄膜,而从导管中清除残余气体。

Description

形成铁电薄膜的方法及其设备
本发明涉及形成半导体元件的方法,更具体的说,是涉及形成铁电体薄膜的方法以及用于形成它的设备。
在制造256M或1G DRAM或更大规模的高集成半导体元件时,一般用BST(barium strontium tetanode)、STO(strontium tetanode SrTiO3)、或BTO(barium tetanode SrTiO3)作为用于电容器薄层的铁电材料。此类铁电体薄膜的使用简化了生产过程,降低了生产成本,使得半导体元件可以大规模地集成。
一般为了制造高绝缘的BST、STO或BTO薄膜,通常使用阴极真空喷镀法或溶胶--凝胶法,在这些方法中用粗反应物在有机溶剂中的溶液进行涂敷。
然而这些常规方法是不值得推荐的,因为通过这些方法得到的薄层用于高集成半导体元件时,在许多方面都存在问题,包括在精细图案上的可涂敷性、结构的精细度和电可靠性。
对于BST薄层,近来已开发了化学蒸气沉积技术。然而它达不到适用于高集成半导体元件的铁电薄层所要求的目标。
因此,本发明的目的是克服上述现有技术的不足,提供一种形成具有优越的绝缘性的铁电薄膜的方法及其设备。
本发明的另一个目的是提供一种形成适用于制造高集成半导体元件的铁电薄膜的方法及其设备。
根据本发明的一个方面,形成铁电薄膜的方法包括下列步骤:通过用RF能激发等离子体引发由多种元素组成的铁电反应物离解,使其能够参与沉积反应;建立一工艺条件,在该条件下,使通过激发等离子体由反应物的离解而得到的离子在高温低压下进行沉积作用;通过导管、集合管和喷头向反应器无损耗地供给反应物,集合管用于聚集反应物,喷头用于喷射混合的反应物;在反应器中沉积铁电薄膜,而从导管中清除残余气体。
根据本发明的另一方面,形成铁电薄膜的方法包括下列步骤:通过用RF能激发等离子体引发由多种元素组成的铁电反应物离解,使其能够参与沉积反应;建立一工艺条件,在该条件下,使通过激发等离子体由反应物的离解而得到的离子在高温低压下进行沉积作用;使胺配位体与反应物化合,在高温低压下通过导管、集合管和喷头向反应器无损耗地供入化合的反应物,集合管用于聚集反应物,喷头用于喷射混合的反应物;控制导管、集合管和喷头的温度;在反应器中沉积铁电薄膜,而从导管中清除残余气体。
根据本发明的再一个方面,用于形成铁电薄膜的设备包括:确定沉积空间的腔体;腔体上面用于聚集反应物的集合管;用于将集合管中的反应物转化为气态并将其喷射到晶片上的喷头;围绕在喷头、晶片以及加热部件周围的阻挡导板,它用于阻止由喷头喷出的气体扩散得太宽以及阻止其过快地渗入真空部分;以及设置在薄膜上面作为RF电极的板(用于形成等离子体)。
参照附图通过下列实施方案的描述本发明的其它目的和方面将是显然的,其中:
图1是根据本发明第一实施方案用于形成BST铁电薄膜的的设备简图。
图2是根据本发明第二实施方案用于形成STO或BST铁电薄膜的设备简图。
参照附图最好地理解本发优选实施方式的应用。
首先参照图1,图1示出了根据本发明第一实施方案沉积BST薄膜的设备。
如图1所示,根据本发明沉积BST薄膜的设备包括腔体10,腔体10里有晶片1,并且腔体10确定了在晶片1上沉积的内部空间。在腔体10的上面有集合管2,通过该管将反应物装入腔10的内部空间。与集合管2相连的气体喷头3安装在腔体10的内部,以便喷射气态反应物。其实,气体喷头3把从集合管2出来的用于薄膜的反应物转化为气体,并将其喷射到晶片1上。在腔体10里晶片1和喷头3的周围还有圆柱形阻挡板4。该阻挡导板作用是阻止由喷头3喷出的气体扩散得太宽或阻止其过快地渗入真空口。晶片1上面有作为RF电极的板5,以便形成等离子体。
下面将描述用该设备沉积铁电BST薄膜的方法。
方便的是基本上分三个阶段来描述铁电BST薄膜的沉积方法:反应物以及它的供给;薄膜沉积;和薄膜沉积的再现。
首先描述反应物以及它的供给,该反应物是其中的胺基作为配位体就地合成的物质。
因为大部分Ba和Sr源本身在常温下保持固体状态,所以为了将其供给反应器,应该通过把它储存在等温室里将其加热到150-200℃。因此应想办法使源在热和化学方面稳定。为此将带有胺基的化学物质(BA,BC)例如NET3和NH3在某温度下加热。此时使该化学物质与Ba、Sr源接触,并且作为配位体通过用N2气(CA)鼓泡而与它们反应。这样带有胺基的Ba、Sr源升华并流入反应器。可以通过N2气(CA)、带有胺基的化学物质(BA,BC)和Ba、Sr源的加热温度控制Ba、Sr源的流速。
Ti本身可以用作Ti源,可以通过加热温度和N2气(CA)流速控制它流入反应器。
此外,向反应器供入选自N2O和O2气的氧化剂(CD)。
当升化的Ba、Sr、Ti源到达反应器时,为了使它们不再凝结,将它们在约200-300℃下加热,以便防止离解的反应物和用于清除的气体的再凝结。由各自的导管出来的Ba、Sr、Ti和N2O在集合管2混合在一起,然后被引入到喷头3。在喷头3里(通过它均匀地喷射升华的反应物),由于从加热器6传递过来的加热晶片1的热能可能发生气相反应,因此用冷却剂例如水、油、空气和N2气将喷头3的温度控制在200-250℃,以便防止所说的反应物进行气相反应而形成微粒,并且所说的RF能为交变型。
就薄膜的沉积过程而言,通过低压下等离子体激发作用将升华的多种反应物保持在高温,由此得到良好的铁电BST薄膜。
通过等离子激发技术可以降低反应物之间的反应活化能之差,在等离子激发技术中RF能被通到喷头3,并通过作为RF电极的板连杆传递给RF电极板5。因此在晶片1和RF电极之间产生等离子体,而与喷头3无关。
为了得到优质的BST薄膜,可以改变该方法的变量,包括例如喷头3和晶片1之间的距离,调节该距离使喷头3喷射出来的气体均匀地喷射到晶片1上。
此外,可以使RF电极板5离开晶片一定的距离,以便即使在较低的RF能下也很容易得到等离子体,而不考虑它与喷头3的距离。
当为了得到具有良好可涂敷性的沉积薄膜必须保持低压时,气体可能流动不均匀、产率将降低、等离子体扩散,为了防止这些现象,喷头3、加热器6周围的阻挡板4由电绝缘材料制成,例如陶瓷或石英。
因为大多数Ba、Sr、Ti源都含有大量的碳和水分,因此为了生产高质量的薄膜,必须将它们在约500℃或更高温度下从由N2O等离子体新生出来的高活性氧中除去。此时用直接与晶片1接触的加热块6在约500℃或更高温度下加热晶片1。
最后,将描述以晶片到晶片的方式再生产沉积的BST薄膜。
必须除去导管中的残余气体。为此,将抽吸的气体例如N2气或升华的带有胺基的化学物质鼓入Ba、Sr、Ti源的管路,然后用泵通过集合管2抽出来。此方法正好在BST薄膜沉积后进行,且抽吸的气体沿着下面的路线。
Sr管路的清除路线从N2气导管(CA)开始,其中带有胺基的化学物质(BA)被鼓入该管,通过Sr源的前体容器(BB)进入到集合管2,由集合管2通过清除线路7将气体抽出。
类似地,Ba管路的清除路线从另一个N2气导管(CA)开始,其中带有胺基的化学物质(BA)被鼓入该管。该清除气体流入Ba源的前体容器(BD),然后进入集合管2,最后通过清除线路7用泵抽出去。
对于Ti管路的清除路线来说,可以选用N2气导管(CA)、Ti源的前体容器(BE)、集合管2和清除线路7。
在所有的沉积过程中,可能在反应器的内表面上形成薄膜。为了使薄膜的沉积有更好的再生性,应根据,例如,就地等离子腐蚀原理除去不合要求的薄膜。
详细地说,把装在钢瓶(CB)中的CF4或C2F6或装在钢瓶(CE)中的O2充入反应器。把RF能施加到RF电极板上,以激发等离子体,然后用等离子体腐蚀可能沉积在加热器和RF电极板5上的薄膜。这样,用通过等离子体纯化的O2、CF4或C2F6、NF3和SF4腐蚀掉沉积在所说的反应器内不合要求的副产物。
此刻,使用胺配位体就地合成的作为反应物的Ba、Sr、Ti源前体与高温低压下的等离子体的激发作用一起大大地提高了铁电BST薄膜的质量。
与反应器无关,通过清除残余在气体路线里的反应物,可以提高再现性。
发现阻挡导板和RF电极板大大有助于增加沉积率。
参照图2,图2示出了根据本发明第一实施方案的沉积BST或STO薄膜的设备。
如图2所示,根据本发明的沉积BST或STO薄膜的设备包括:圆形或其它形状的腔体20。腔体20里有晶片1,并且腔体20确定了沉积晶片11的内部空间。在腔体20的上面有集合管12,通过该管将反应物装入腔体20的内部空间。与集合管12相连的气体喷头13安装在腔体20的内部,以便喷射气态反应物。其实气体喷头13把从集合管12出来的用于薄膜的反应物转化为气体并将其喷射到晶片11上。在腔体20里晶片11和喷头13的周围还有圆柱形阻挡导板14。该阻挡导板作用是阻止由喷头13喷出的气体扩散得太宽或阻止其过快地渗入真空部分。晶片11上面有作为RF电极的板15,以便形成等离子体。
在沉积薄膜的设备中,通过加热器16将晶片11加热到500-600℃,蒸发掉有机物和水分,得到稳定的STO薄膜。
在约为1乇或更低的真空条件下,阻挡板导14显示了控制气体流动、增加参与沉积的气体部分和阻止等离子扩散得太宽的多种功能。
RF电极板15是网状的(其中直径0.5到1.5mm的丝以2-3mm的间隔排列),它的作用是激发等离子体,而与从喷头13喷射出的气态反应物的流动无关。通过使用板15,在0.5-1W/cm2下就可以引发多种反应物的离解。
喷头13与RF电极板15之间的间隔是提高沉积在晶片11上的薄膜的均匀性的重要因素。最好使该间隔保持在约10-15mm。RF电极板15与晶片11距离也确定在3-10mm。
用本发明第二实施方案的设备,可以沉积可靠的铁电STO或TBO薄膜。方便的是基本上分三个阶段来描述该沉积方法:反应物以及它的供给;薄膜沉积;和薄膜沉积的再现。
首行描述反应物以及它的供给。
通常用Sr(thd)2或Sr(i-o-Pr)2作为Sr源,Ba(thd)3或Ba(i-o-Pr)3作为Ba源。Ti(i-o-Pr)4是Ti源的代表。其中,“thd”为四甲基庚二酮的缩写,“i-o-Pr”为异丙氧基的缩写。因为在常温下大部分Ba和Sr源本身保持固体状态,Ti源是液体状态,所以为了将其供给反应器,应该把前者变成流动状态。这可以通过在等温室里将其加热到150-200℃来实现。从而,使Sr源或Ba源升华。因此应想办法使这些源在热和化学方面稳定。为此将带有胺基的化学物质(BA,BC)例如NET3(三乙胺)、NH3或NH2R(其中R是烷基)在某温度下例如50-100℃下加热。该胺基是用NET3或NH2R作为载气就地合成的。此时使该化学物质与Ba或Sr源接触,并且通过用N2气(CA)鼓泡作为配位体与其反应。这样升华的带有胺基的Ba或Sr源即使在高温、高压下在热和化学方面也是稳定的。
STO或BTO薄膜的沉积率可以通过Ba或Sr源的量、N2气(CA)的流速以及带有胺基的化学物质(BA,BC)和Ba或Sr源的加热温度来控制。
Ti(i-o-Pr)4被用来提供Ti,并且可以通过加热温度和N2气(CA)流速控制它流入反应器。
此外,向反应器供入选自N2O和O2的氧化剂。
为了把升华的Ba或Sr源和升华的Ti源稳定地转移到反应器中,它们使用各自的气体导管,用于Ba或Sr源的导管在150-200℃下被加热,用于Ti源的导管在50-100℃下被加热。
当升化的Ba、Sr和Ti源到达反应器时,为了使它们不再凝结变成常温下在集合管中的其液相或固相,将它们在约200-300℃下加热,以便防止离解的反应物和用于清除的气体的再凝结。由各自的导管出来的Ba、Sr、Ti和N2BaO(或O2)在集合管12混合在一起,然后被引入喷头13。在喷头13里(通过它均匀地喷射升华的反应物),由于从加热器6传递过来的加热晶片11的热能可能发生气相反应,因此,喷头13必须保持在约200-250℃,以便防止所说的反应物进行气相反应而形成微粒,并且所说的RF能为交变型。此刻,使冷却剂例如水、油、空气和N2气沿着板的最外路线(18-19-18)流动。
关于薄膜沉积过程而言,通过低压等离子体激发作用将升华的多种反应物保持在高温下,借此得到具有良好可涂敷性、精细结构和均匀组成的铁电BST薄膜。
当使用由C、H和O元素组成的有机物时,它们之间的沉积活化能存在很大差别。此外,如果用纯热能引发沉积反应的话,某些元素被少量沉积。
通过等离子激发技术可以降低反应物之间的这种差别,在等离子激发技术中RF能用于等离子激发作用。例如,如果将0.5-1W/cm2的低密度和频率为13.56MH的RF能作用在喷头13上的话,那么RF电极的板导杆(2-R)的电势与RF电极板15的电势相等,因为它们都是与喷头13连接在一起的。在这种情况下,接地的加热器16在RF电极板15(包括晶片)与加热器16之间形成等离子体,而与喷头13无关。
为了得到优质的BST薄膜,可以改变该方法的变量,包括例如喷头13和晶片11之间的距离。
此外,可以使RF电极板15离开晶片11一定的距离,以便即使在较低的RF能下也很容易地得到等离子体,而不考虑它与喷头3的距离。
为了得到良好涂敷性和无有机物和水的精细结构薄膜,必须在约1乇或更低的压力下。在此低压下,气体在喷头13和晶片11之间的流动可能不均匀、参与沉积的有效气体部分降低、等离子体扩散使STO或BTO薄膜沉积到不合需要的位置。为了防止这些副作用,阻挡导板4由电绝缘材料制成的,例如陶瓷或石英,并且它离加热器为3-5mm。
因为大多数Ba、Sr、Ti源都含有大量的碳、氧、氢和水分,因此为了生产高质量的薄膜,必须将它们除去。这可以通过在约500℃或更高温度下加入氧化剂例如O2或N2O来简单地完成。此时用直接与晶片11接触的加热器6在约500℃或更高温度下加热晶片11。
最后,将描述以晶片到晶片或产品到产品的方式再生产STO或BTO薄膜。
必须除去粘附在气体导管中的残余气体和沉积在RF电极板15上的STO或BTO薄膜。首先,为了除去残余气体,把升华的带有胺基的化学物质鼓入Ba或Sr的管路,而Ti管路用N2气(CA)或N2载体气。清除气聚集在集合管2里,然后在预先确定的时间,例如,10秒或几分钟内通过清除线路17用泵将其抽出去,而不考虑反应器。即,所述清除是通过使用升华的带有胺基的化学物质或N2气进行的,所说的残余气用泵通过所说的集合管排除。清除气沿着下面的线路流动。
Ba或Sr管路的清除路线从N2气导管(CA)开始,其中带有胺基的化学物质(BA)被鼓入该管,通过Ba或Sr源的前体容器(BB)进入到集合管12,集合管12通过清除线路17将气体抽出。
类似地,Ti管路的清除路线从另一个N2气导管(CA)开始,其中带有胺基的化学物质(BA)被鼓入该管。该清除气流入到Ti源的前体容器(BC),然后进入到集合管12,最后通过清除线路7用泵抽出去。
在所有的沉积过程中,STO或BTO薄膜可能在RF电极板15上形成。为了使薄膜的沉积有更好的再生性,在未装入薄膜的情况下可以通过,例如,在RF电极板15和加热器16之间吹入CF4或C2F6、NF3、SF4、CCl4和O2除去不合要求的薄膜,同时激发等离子。这样,通过用通过等离子体纯化的O2、CF4或C2F6、NF3和SF4腐蚀掉沉积在所说的反应器内不合要求的副产物。
通过上述方法,沉积过程中在晶片11上形成的等离子体的电势可以保持恒定,并且可以保证良好的再现性。
如上所述,该形成铁电体薄膜的方法及其设备的特征在于,使用带有胺配位体的就地合成的作为反应物的Ba、Sr、Ti源前体与高温低压下的等离子体的激发作用一起大大提高了铁电BST、STO或BTO薄膜的质量,它们在结构精细度、可涂敷性、组成的均匀性和无杂质方面都是优越的。
根据本发明,不考虑反应器,通过清除残余在气路里的反应物,可以提高再现性。
本发明方法和设备的优点是,阻挡导板和RF电极板大大有助于增加沉积率。
此外,本发明的另一个优点是,可以防止由未完全反应而造成的副产品粘附在晶片上。
已经以举例的方式描述了本发明,应该理解所用的术语是为了说明本发明的实质而不是对它进行限制。
根据上述说明,本发明的许多改进和改变都是可能的。因此,应该理解,在所附权利要求书的范围内,本发明可以以除具体描述以外的其他方式实施。

Claims (19)

1、一种形成铁电薄膜的方法,该方法包括下列步骤:
通过用RF能激发等离子体引发由多种元素组成的铁电反应物离解,使其能够参与沉积反应;
建立一工艺条件,在该条件下,使通过激发等离子体由所说的反应物的离解而得到的离子在高温低压下进行沉积作用;
通过导管、集合管和喷头向反应器无损耗地供给所说的反应物,所说的集合管用于聚集所说的反应物,所说的喷头用于喷射混合的反应物;和
在所说的反应器中沉积铁电薄膜,而从导管中清除残余气体。
2、根据权利要求1的方法,其中所说的清除是通过用升华的带有胺基的化学物质或N2气进行的,所说的残余气用泵通过所说的集合管排出。
3、根据权利要求1的方法,其中将所说的导管在200-300℃下加热,以便防止离解的反应物和用于清除的气体的再凝结。
4、根据权利要求1的方法,其中将所说的喷头在200-250℃下加热,以便防止所说的反应物进行气相反应而形成微粒,并且所说的RF能为交变型。
5、根据权利要求1的方法,还包括下列步骤:用通过等离子体纯化的O2、CF4或C2F6、NF3和SF4腐蚀掉沉积在所说的反应器内不合要求的副产物。
6、根据权利要求1的方法,其中所说的反应物是其中的胺基作为配位体就地合成的物质。
7、根据权利要求6的方法,其中所说的胺基用NET3或NH2R作为载气就地合成的,其中NET3为三乙胺,R为烷基。
8、根据权利要求1的方法,其中所说的铁电薄膜是BST薄膜。
9、一种形成铁电薄膜的方法,该方法包括下列步骤:
通过用RF能激发等离子体引发由多种元素组成的铁电反应物离解,使其能够参与沉积反应;
建立一工艺条件,在该条件下,使通过激发等离子体由所说的反应物的离解而得到的离子在高温低压下进行沉积作用;
使胺配位体与所说的反应物化合,在高温低压下通过导管、集合管和喷头向反应器无损耗地供给化合的反应物,集合管用于聚集反应物,喷头用于喷射混合的反应物;
控制所说的导管、所说的集合管和所说的喷头的温度;和
在所说的反应器中沉积铁电薄膜,而从导管中清除残余气体。
10、根据权利要求9的方法,其中所说的铁电薄膜是STO薄膜。
11、根据权利要求9的方法,其中所说的铁电薄膜是BTO薄膜。
12、根据权利要求9的方法,其中所说的清除是通过使用升华的带有胺基的化学物质或N2气进行的,所说的残余气用泵通过所说的集合管排除。
13、根据权利要求12的方法,其中将所说的导管在200-300℃下加热,以便防止离解的反应物和用于清除的气体的再凝结。
14、根据权利要求9的方法,其中将所说的喷头在200-250℃下加热,以便防止所说的反应物进行气相反应而形成微粒,并且所说的RF能为交变型。
15、根据权利要求9的方法,还包括下列步骤:用通过等离子体纯化的O2、CF4或C2F6、NF3和SF4腐蚀掉沉积在所说的反应器内不合要求的副产物。
16、一种用于形成铁电薄膜的设备,该设备包括:
确定沉积空间的腔体;
腔体上面用于聚集反应物的集合管;
用于将集合管中的反应物转化为气态并将其喷射到晶片上的喷头;
围绕在喷头、晶片以及加热部件周围的阻挡导板;和
晶片上面用于形成等离子体的RF电极板。
17、根据权利要求16的设备,还包括将集合管保持或控制在预先确定的高温下的装置。
18、根据权利要求16的设备,其中所述的RF电极板(15)是网状的,其中直径为0.5-1.5mm的丝以2-3mm的间隔排列。
19、根据权利要求16的设备,其中所说的阻挡导板由绝缘材料制成,并且它离放置所说的晶片的板为3-10mm。
CN96121174A 1995-10-04 1996-10-04 形成铁电薄膜的方法及其设备 Expired - Fee Related CN1069112C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1019950033876A KR0164071B1 (ko) 1995-10-04 1995-10-04 고유전 특성을 가진 비.에스.티 박막제조방법
KR33877/95 1995-10-04
KR33877/1995 1995-10-04
KR1019950033877A KR0180783B1 (ko) 1995-10-04 1995-10-04 고유전 특성을 가진 에스.티.오 및 비.티.오 박막제조방법과 그 장치
KR33876/95 1996-10-04
KR33876/1995 1996-10-04

Publications (2)

Publication Number Publication Date
CN1154422A CN1154422A (zh) 1997-07-16
CN1069112C true CN1069112C (zh) 2001-08-01

Family

ID=26631306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96121174A Expired - Fee Related CN1069112C (zh) 1995-10-04 1996-10-04 形成铁电薄膜的方法及其设备

Country Status (5)

Country Link
US (1) US5670218A (zh)
JP (1) JP3218304B2 (zh)
CN (1) CN1069112C (zh)
DE (1) DE19641058C2 (zh)
GB (2) GB2336850B (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931645A (ja) * 1995-07-21 1997-02-04 Sharp Corp 誘電体薄膜素子の製造方法
KR0183868B1 (ko) * 1996-05-25 1999-04-15 김광호 강유전체막 및 그의 형성방법
JP3913296B2 (ja) * 1996-10-02 2007-05-09 フィルジェン株式会社 プラズマ成膜装置
US6074487A (en) * 1997-02-13 2000-06-13 Shimadzu Corporation Unit for vaporizing liquid materials
DE59900317D1 (de) * 1998-02-18 2001-11-22 Aixtron Ag Cvd-reaktor und dessen verwendung
KR100287174B1 (ko) * 1998-03-17 2001-04-16 윤종용 다원자계산화물 및 질화물의박막제조방법
US6444039B1 (en) 2000-03-07 2002-09-03 Simplus Systems Corporation Three-dimensional showerhead apparatus
KR100444149B1 (ko) * 2000-07-22 2004-08-09 주식회사 아이피에스 Ald 박막증착설비용 클리닝방법
US6886491B2 (en) * 2001-03-19 2005-05-03 Apex Co. Ltd. Plasma chemical vapor deposition apparatus
US20030173346A1 (en) * 2002-03-18 2003-09-18 Renken Wayne Glenn System and method for heating and cooling wafer at accelerated rates
JP3883918B2 (ja) * 2002-07-15 2007-02-21 日本エー・エス・エム株式会社 枚葉式cvd装置及び枚葉式cvd装置を用いた薄膜形成方法
US6886573B2 (en) 2002-09-06 2005-05-03 Air Products And Chemicals, Inc. Plasma cleaning gas with lower global warming potential than SF6
KR100473806B1 (ko) * 2002-09-28 2005-03-10 한국전자통신연구원 유기물 박막 및 유기물 소자를 위한 대면적 유기물 기상증착 장치 및 제조 방법
JP4680619B2 (ja) * 2005-02-09 2011-05-11 株式会社アルバック プラズマ成膜装置
US20060185591A1 (en) * 2005-02-18 2006-08-24 General Electric Company High temperature chemical vapor deposition apparatus
TWI306782B (en) * 2005-09-02 2009-03-01 Applied Materials Inc Suspension for showerhead in process chamber
US7883745B2 (en) 2007-07-30 2011-02-08 Micron Technology, Inc. Chemical vaporizer for material deposition systems and associated methods
US8673080B2 (en) 2007-10-16 2014-03-18 Novellus Systems, Inc. Temperature controlled showerhead
JP5211332B2 (ja) * 2008-07-01 2013-06-12 株式会社ユーテック プラズマcvd装置、dlc膜及び薄膜の製造方法
JP5497423B2 (ja) * 2009-12-25 2014-05-21 東京エレクトロン株式会社 成膜装置
JP5811092B2 (ja) * 2010-08-04 2015-11-11 株式会社島津製作所 表面処理装置および表面処理方法
US9441296B2 (en) 2011-03-04 2016-09-13 Novellus Systems, Inc. Hybrid ceramic showerhead
DE102011056589A1 (de) * 2011-07-12 2013-01-17 Aixtron Se Gaseinlassorgan eines CVD-Reaktors
CN103122456A (zh) * 2011-11-18 2013-05-29 沈阳拓荆科技有限公司 一种双腔室或多腔室薄膜沉积设备的气体混合分配结构
JP5884500B2 (ja) * 2012-01-18 2016-03-15 東京エレクトロン株式会社 成膜装置
CN102888579B (zh) * 2012-09-26 2014-08-06 中国人民解放军装甲兵工程学院 一种BaTiO3智能涂层的制备方法和BaTiO3智能涂层
US10741365B2 (en) * 2014-05-05 2020-08-11 Lam Research Corporation Low volume showerhead with porous baffle
DE102014115497A1 (de) * 2014-10-24 2016-05-12 Aixtron Se Temperierte Gaszuleitung mit an mehreren Stellen eingespeisten Verdünnungsgasströmen
JP6358064B2 (ja) * 2014-12-04 2018-07-18 トヨタ自動車株式会社 プラズマ成膜方法
US10378107B2 (en) 2015-05-22 2019-08-13 Lam Research Corporation Low volume showerhead with faceplate holes for improved flow uniformity
US10023959B2 (en) 2015-05-26 2018-07-17 Lam Research Corporation Anti-transient showerhead
WO2018121896A1 (en) * 2016-12-27 2018-07-05 Evatec Ag Rf capacitive coupled dual frequency etch reactor
US12100577B2 (en) * 2019-08-28 2024-09-24 Applied Materials, Inc. High conductance inner shield for process chamber
US20210285101A1 (en) * 2020-03-12 2021-09-16 Applied Materials, Inc. Methods and apparatus for conductance liners in semiconductor process chambers
CN112410880B (zh) * 2020-11-19 2022-04-19 中国科学院深圳先进技术研究院 自调控生长取向的柔性自支撑单晶Fe3O4薄膜材料的制备、薄膜材料及单晶结构
CN112795899B (zh) * 2020-12-30 2022-11-25 肇庆学院 一种电子薄膜材料的制备装置及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042793A (zh) * 1988-11-16 1990-06-06 中国科学院上海冶金研究所 温度传感器的铂薄膜制造方法
CN1090428A (zh) * 1993-01-15 1994-08-03 山东大学 钛酸铋铁电薄膜的制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282267A (en) * 1979-09-20 1981-08-04 Western Electric Co., Inc. Methods and apparatus for generating plasmas
US4718976A (en) * 1982-03-31 1988-01-12 Fujitsu Limited Process and apparatus for plasma treatment
EP0252755A1 (en) * 1986-07-11 1988-01-13 Unvala Limited Chemical vapour deposition
JPH02114530A (ja) * 1988-10-25 1990-04-26 Mitsubishi Electric Corp 薄膜形成装置
US5006363A (en) * 1988-12-08 1991-04-09 Matsushita Electric Industries Co., Ltd. Plasma assited MO-CVD of perooskite dalectric films
US5138520A (en) * 1988-12-27 1992-08-11 Symetrix Corporation Methods and apparatus for material deposition
JPH07110991B2 (ja) * 1989-10-02 1995-11-29 株式会社日立製作所 プラズマ処理装置およびプラズマ処理方法
US5139999A (en) * 1990-03-08 1992-08-18 President And Fellows Of Harvard College Chemical vapor deposition process where an alkaline earth metal organic precursor material is volatilized in the presence of an amine or ammonia and deposited onto a substrate
ATE138421T1 (de) * 1990-03-20 1996-06-15 Diamonex Inc Verbesserte glühfilament-cvd-anlage
JPH0423429A (ja) * 1990-05-18 1992-01-27 Mitsubishi Electric Corp 半導体装置のプラズマ処理装置及びプラズマ処理方法
US5104690A (en) * 1990-06-06 1992-04-14 Spire Corporation CVD thin film compounds
US5453494A (en) * 1990-07-06 1995-09-26 Advanced Technology Materials, Inc. Metal complex source reagents for MOCVD
US5288325A (en) * 1991-03-29 1994-02-22 Nec Corporation Chemical vapor deposition apparatus
JP3042127B2 (ja) * 1991-09-02 2000-05-15 富士電機株式会社 酸化シリコン膜の製造方法および製造装置
JP2989063B2 (ja) * 1991-12-12 1999-12-13 キヤノン株式会社 薄膜形成装置および薄膜形成方法
DE4304679C2 (de) * 1992-02-17 1996-03-21 Mitsubishi Electric Corp Verfahren zur Herstellung einer dünnen dielektrischen Schicht eines Oxid-Systems unter Verwendung des CVD-Verfahrens
AU3582793A (en) * 1992-02-21 1993-09-13 Radiant Technologies, Inc. Method for depositing a thin film on a semiconductor circuit
US5431958A (en) * 1992-03-09 1995-07-11 Sharp Kabushiki Kaisha Metalorganic chemical vapor deposition of ferroelectric thin films
EP0574075B1 (en) * 1992-06-09 1996-02-07 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device by means of a chemical vapour deposition
US5266355A (en) * 1992-06-18 1993-11-30 Eastman Kodak Company Chemical vapor deposition of metal oxide films
US5187638A (en) * 1992-07-27 1993-02-16 Micron Technology, Inc. Barrier layers for ferroelectric and pzt dielectric on silicon
US5487356A (en) * 1992-08-07 1996-01-30 Advanced Technology Materials, Inc. Chemical vapor deposition method of growing oxide films with giant magnetoresistance
EP0595054A1 (en) * 1992-10-30 1994-05-04 Applied Materials, Inc. Method for processing semiconductor wafers at temperatures exceeding 400 degrees C.
US5487785A (en) * 1993-03-26 1996-01-30 Tokyo Electron Kabushiki Kaisha Plasma treatment apparatus
US5433786A (en) * 1993-08-27 1995-07-18 The Dow Chemical Company Apparatus for plasma enhanced chemical vapor deposition comprising shower head electrode with magnet disposed therein
TW293983B (zh) * 1993-12-17 1996-12-21 Tokyo Electron Co Ltd
US5489548A (en) * 1994-08-01 1996-02-06 Texas Instruments Incorporated Method of forming high-dielectric-constant material electrodes comprising sidewall spacers
JPH08259386A (ja) * 1995-03-20 1996-10-08 Matsushita Electric Ind Co Ltd 酸化物薄膜の製造方法及びそれに用いる化学蒸着装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042793A (zh) * 1988-11-16 1990-06-06 中国科学院上海冶金研究所 温度传感器的铂薄膜制造方法
CN1090428A (zh) * 1993-01-15 1994-08-03 山东大学 钛酸铋铁电薄膜的制备方法

Also Published As

Publication number Publication date
GB2305940B (en) 2000-03-29
GB9620757D0 (en) 1996-11-20
GB9918955D0 (en) 1999-10-13
DE19641058C2 (de) 2001-03-08
CN1154422A (zh) 1997-07-16
DE19641058A1 (de) 1997-04-24
GB2336850A (en) 1999-11-03
JP3218304B2 (ja) 2001-10-15
US5670218A (en) 1997-09-23
GB2305940A (en) 1997-04-23
GB2336850B (en) 2000-03-29
JPH09134911A (ja) 1997-05-20

Similar Documents

Publication Publication Date Title
CN1069112C (zh) 形成铁电薄膜的方法及其设备
CN1324163C (zh) 化学汽相沉积设备
CN1184348C (zh) 选择性沉积铋基铁电薄膜的方法
CN1054702C (zh) 制造半导体器件电容器的方法
RU2342315C2 (ru) Вертикальные структуры полупроводниковых устройств с использованием нанотрубок и способы их формирования
CN1258805C (zh) 半导体处理室电极及其制作方法
TW201725281A (zh) 以peald於溝槽中沉積介電膜的方法
CN1295756C (zh) 在阻挡膜上形成钨膜的方法
US7589002B2 (en) Method of forming an oxygen- or nitrogen-terminated silicon nanocrystalline structure and an oxygen- or nitrogen-terminated silicon nanocrystalline structure formed by the method
CN1243367C (zh) 批量式原子层沉积设备
KR100800377B1 (ko) 화학기상증착설비
CN1379828A (zh) 使用配体交换耐蚀金属有机前体溶液的化学气相沉积过程的流出物的消除
CN1479805A (zh) 薄膜形成方法及薄膜形成装置
WO2000044033A1 (fr) Procede et appareil de depot de film
JPH0831454B2 (ja) 半導体装置の製造方法
CN1693535A (zh) 沉积薄膜的方法和具有用于喷洒清洁气体的单独喷射口的薄膜沉积系统
CN106237934B (zh) 由固体材料制备化合物或其中间体以及使用该化合物和中间体的设备和方法
CN1893081A (zh) 具有纳米复合电介质层的电容器及其制造方法
US20140251540A1 (en) Substrate supporter and substrate processing apparatus including the same
CN1322007A (zh) 等离子体处理装置
JP5330747B2 (ja) 半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法
CN1058534C (zh) 形成金刚石膜的方法
CN1580883A (zh) 具有边缘框架的设备及其使用方法
CN1737193B (zh) 利用氧化还原反应沉积贵金属电极的方法
CN1372302A (zh) Cvd方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1014845

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010801

Termination date: 20131004