CN106876153A - 一种自支撑结构的电极及其制备和应用 - Google Patents

一种自支撑结构的电极及其制备和应用 Download PDF

Info

Publication number
CN106876153A
CN106876153A CN201510926386.3A CN201510926386A CN106876153A CN 106876153 A CN106876153 A CN 106876153A CN 201510926386 A CN201510926386 A CN 201510926386A CN 106876153 A CN106876153 A CN 106876153A
Authority
CN
China
Prior art keywords
electrode
metal oxide
self supporting
solution
supporting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510926386.3A
Other languages
English (en)
Other versions
CN106876153B (zh
Inventor
王美日
张华民
张洪章
黄安然
刘翠连
李先锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510926386.3A priority Critical patent/CN106876153B/zh
Publication of CN106876153A publication Critical patent/CN106876153A/zh
Application granted granted Critical
Publication of CN106876153B publication Critical patent/CN106876153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种自支撑结构的电极及其制备和应用。所述电极包括导电集流体、电极活性材料;电极活性材料以纳米棒阵列的形式原位生长于导电集流体表面,其中,电极活性材料为碳量子点包覆的金属氧化物,其在电极上的担量为0.5-30mg/cm2,其中优选1-10mg/cm2。本发明所提供的电极具有阻抗低,电子传输快,电极的比容量大的特点,制备过程简单具有广泛的应用性。

Description

一种自支撑结构的电极及其制备和应用
技术领域
本发明涉及超级电容器领域,尤其涉及超级电容器电极材料及其制备方法。
背景技术
超级电容器是一种介于电池与传统静电容器之间的新概念能量储存器件,它具有更高的比电容,可储存的能量密度为传统静电容器的10倍以上,而与电池相比,超级电容器具有更大的功率密度,且充放电效率高、循环寿命长等特性。由于具有以上诸多的优越性,超级电容器技术的开发一直受到研究者的追捧。但是,超级电容器所面临的主要问题是能量密度比较低。电极材料的电化学活性直接决定器件的电容性能,因此,活性电极材料的开发便成为超级电容器研究和应用的重点。用于超级电容器的电极材料包括碳材料、金属氧化物、导电聚合物三大类。碳材料电极通过电解液与电极的界面处形成的双电层存储能量;金属氧化物及导电聚合物材料电极则通过快速可逆的氧化还原反应获得法拉第电容。法拉第电容一般远大于双电层电容。尽管贵金属氧化物具有较好的法拉第电容,但其昂贵的价格和剧毒性大大制约其作为超级电容器电极材料的应用。研究者尝试采用不同方法制备过渡金属氧化物来替代贵金属氧化物。
由于法拉第电容反应主要发生在材料表层,具有较高比表面的材料将具有更高的实际比电容,大电流充放电性能也会更好,因此将金属氧化物制成纳米材料,利用纳米材料的大比表面特性来提高其电化学性能是一个行之有效的策略,纳米线、纳米棒、纳米片等多种纳米结构近年来都有报道,均表现出较高的超电容性能。
发明内容
本发明目的在于提供一种提高电容器能量密度的方法,制备一种具有自支撑结构的电极。
为实现上述目的,本发明采用的技术方案如下:
所述电极包括导电集流体、电极活性材料;电极活性材料以纳米棒阵列的形式原位生长于导电集流体表面,其中,电极活性材料为碳量子点包覆的金属氧化物,其在电极上的担量为0.5-30mg/cm2,其中优选1-10mg/cm2
所述导电集流体为碳布、碳纸、镍网、铜网、钛网中的一种,其厚度为10μm-1mm,孔隙率为10-90%。
所述电极活性材料为碳量子点包覆的金属氧化物纳米棒阵列;其中,碳量子点粒径0.7-5nm,晶面间距为0.1-0.5nm,孔径范围为0.7-3nm;金属氧化物纳米棒阵列直径为8-50nm,长度为0.5-2μm。
所述碳量子点与金属氧化物的质量比为(1:99)~(10:90)。
所述金属氧化物为氧化钴、氧化镍、氧化锰、氧化铁、氧化锌、氧化铜中的一种或二种以上。
所述自支撑结构电极可按如下过程制备而成:
1)取所需金属氧化物对应的盐与六次甲基四胺按摩尔比为1:1在溶剂中混合均匀后,加入碱溶液调PH值为8-10,搅拌0.5-5h后转移至水热反应釜中,形成溶液A;
2)将集流体以与液面呈45-90°角度放入溶液A中,其中优选90°,在80-120℃下反应12-48h,得到B;
3)将B清洗干净后加入至含有碳前躯体的溶液C中,C的添加量以浸没集流体为宜,50-100℃恒温12-48h,清洗干净后得C;
4)将C在Ar/N2条件下500-1000℃焙烧2-5h,得到目标产物D。
所述金属氧化物对应的盐为硝酸盐、醋酸盐、硫酸盐、碳酸盐、锰酸盐、氯化物中的一种;所述溶剂为水、乙醇、丙酮、异丙醇中的一种或两种以上;所述溶液A中固体物质浓度为1-50%;所述溶液C为N-N二甲基甲酰胺与水的混合物,其比例为(1:1)~(4:1);所述碳前躯体为间三苯甲酸、二甲基咪唑、环式糊腈中的一种;清洗剂为水、丙酮、N,N二甲基甲酰胺中的一种或二种以上;碱溶液为氨水、0.5-1M的氢氧化钠、0.5-1M氢氧化钾中的一种或两种以上。
所述电极及其制备方法可用于超级电容器中,也可用于超级电容器混合锂硫电池中。
本发明的有益结果为:
(1)本发明制备的自支撑结构的电极采用在导电基底表面原位生长碳量子点包覆的金属氧化物纳米线阵列,可有效提高活性物质利用率、增大活性表面、提高材料的扩散传质性能。一方面,与基底材料保持紧密接触的纳米结构阵列可为电子的快速传递提供有效的通道;传导电子可以从反应活性位沿着该通道迅速地转移到集流体上,而不会像粉体材料那样,电子在无序的纳米晶颗粒间任意的穿行。并且,碳量子点对金属氧化物的包覆大大增加了金属氧化物的导电性。另一方面,原位生长免去了添加剂材料的使用,省去了对电极的压制工序。
(2)本发明制备的自支撑结构的电极利用结构的有效设计,实现对电子传导的有效管理,达到提高电池能量密度的目的。
(3)本发明制备的自支撑结构的电极制备过程简单可控,重复性好,易于大规模放大。
(4)本发明制备的自支撑结构电极通过对反应条件的控制,制备了一种生长在导电基底上的金属氧化物纳米线阵列,该材料具有特殊的形貌,作为超级电容器电极使用时,具有高的比电容,大电流密度下的倍率性能以及长期的循环性能。
本发明制备的电极在电池充放电过程中具有良好的电子传输能力,制备工艺简单。以此复合电极材料作为超级电容器正极,表现出良好的综合性能,具有良好的应用前景。
附图说明
图1为本发明的自支撑结构电极制备机理图;
图2为本发明制备的自支撑结构电极形貌图;
图3本发明制备的自支撑结构电极在三电极体系条件下测试的的电容特性图。
测试条件为:以本发明制备的自支撑结构的电极为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1
按摩尔比1:1取硝酸镍与六次甲基四胺在水中混合均匀后,加入28%的氨水调PH值为8,搅拌0.5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质质量浓度为10%,将4×4cm的碳布(其厚度为1mm,孔隙率为10%)45°斜放入溶液A中,80℃反应12h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(1:1));C的添加量以浸没集流体为宜,100℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下500℃焙烧5h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为0.5mg/cm2。碳量子点粒径3nm,晶面间距为0.1nm,孔径范围为0.7nm;金属氧化物纳米棒阵列直径为8nm,长度为0.5μm。碳量子点与金属氧化物的质量比为(1:99)。
实施例2
按摩尔比1:1取硝酸钴与六次甲基四胺在乙醇中混合均匀后,加入28%的氨水调PH值为10,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的泡沫镍垂直放入溶液A中,其厚度为1mm,孔隙率为90%,100℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(4:1));C的添加量以浸没集流体为宜,50℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下1000℃焙烧2h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为30mg/cm2。碳量子点粒径2nm,晶面间距为0.5nm,孔径范围为3nm;金属氧化物纳米棒阵列直径为8nm,长度为50μm。碳量子点与金属氧化物的质量比为(10:90)。
实施例3
按摩尔比1:1取高锰酸钾与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的碳纸垂直放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为10mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(5:95)。
实施例4
按摩尔比1:1取硝酸锌与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的碳纸70°放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为5mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(10:90)。
实施例5
按摩尔比1:1取醋酸镍与六次甲基四胺在水中混合均匀后,加入28%氨水调PH值为9,搅拌1h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为10%将4×4cm的泡沫镍垂直放入溶液A中,其厚度为1mm,孔隙率为80%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温24h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为2mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为2nm;金属氧化物纳米棒阵列直径为10nm,长度为2μm。碳量子点与金属氧化物的质量比为(7:93)。
自支撑结构电极形貌如图1所示,电容性如附图2所示。
实施例6
按摩尔比1:1取氯化铜与六次甲基四胺在水中混合均匀后,加入28%氨水调PH值为9,搅拌1h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为10%将4×4cm的泡沫铜垂直放入溶液A中,其厚度为1mm,孔隙率为80%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温24h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为2mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为2nm;金属氧化物纳米棒阵列直径为10nm,长度为2μm。碳量子点与金属氧化物的质量比为(7:93)。
实施例8
按摩尔比1:1取碳酸钴与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的碳纸垂直放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用异丙醇清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为10mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(5:95)。
实施例9
按摩尔比1:1取硝酸锌与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%,将4×4cm的碳纸垂直放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为10mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(5:95)。
实施例10
按摩尔比1:1取硝酸铁与六次甲基四胺在水中混合均匀后,加入28%的氨水调PH值为8,搅拌0.5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为10%,将4×4cm的碳布(其厚度为1mm,孔隙率为10%)垂直放入溶液A中,80℃反应12h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(1:1));C的添加量以浸没集流体为宜,100℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下500℃焙烧5h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。
所得电极中金属氧化物在电极上的担量为0.5mg/cm2。碳量子点粒径3nm,晶面间距为0.1nm,孔径范围为0.7nm;金属氧化物纳米棒阵列直径为8nm,长度为0.5μm。碳量子点与金属氧化物的质量比为(1:99)。
自支撑结构电极形貌如图2所示。可见,所得电极中金属氧化物在集流体上呈纳米线阵列排列。碳量子点包覆在金属氧化物表面。
从图3可看出,所得电极中金属氧化物在电极上的担量为2mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为2nm;金属氧化物纳米棒阵列直径为10nm,长度为2μm。碳量子点与金属氧化物的质量比为(7:93)。
由结果可以看出,电极电容量能达到431F/g,是文献上报道的普通的氧化镍电极电容近10倍。这充分说明本发明制备的电极在一定程度上改善了活性物质的导电性,提高了活性物质的电化学可逆性,从而提高了电极的比电容。

Claims (8)

1.一种自支撑结构的电极,其特征在于:所述电极包括导电集流体、电极活性材料;电极活性材料以纳米棒阵列的形式原位生长于导电集流体表面,其中,电极活性材料为碳量子点包覆的金属氧化物,其在电极上的担量为0.5-30mg/cm2,其中优选1-10mg/cm2
2.权利要求1所述的自支撑结构的电极,其特征在于:所述导电集流体为碳布、碳纸、镍网、铜网、钛网中的一种,其厚度为10μm-1mm,孔隙率为10-90%。
3.权利要求1所述的自支撑结构的电极,其特征在于:所述电极活性材料为碳量子点包覆的金属氧化物纳米棒阵列;其中,碳量子点粒径0.7-5nm,晶面间距为0.1-0.5nm,孔径范围为0.7-3nm;金属氧化物纳米棒阵列直径为8-50nm,长度为0.5-2μm。
4.权利要求1或3所述的自支撑结构的电极,其特征在于:所述碳量子点与金属氧化物的质量比为(1:99)~(10:90)。
5.权利要求1或3所述的自支撑结构的电极,其特征在于:所述金属氧化物为氧化钴、氧化镍、氧化锰、氧化铁、氧化锌、氧化铜中的一种或二种以上。
6.一种权利要求1-5任一所述的自支撑结构的电极的制备方法,其特征在于:所述自支撑结构电极可按如下过程制备而成:
1)取所需金属氧化物对应的盐与六次甲基四胺按摩尔比为1:1在溶剂中混合均匀后,加入碱溶液调PH值为8-10,搅拌0.5-5h后转移至水热反应釜中,形成溶液A;
2)将集流体以与液面呈45-90°角度放入溶液A中,其中优选90°,在80-120℃下反应12-48h,得到B;
3)将B清洗干净后加入至含有碳前躯体的溶液C中,C的添加量以浸没集流体为宜,50-100℃恒温12-48h,清洗干净后得C;
4)将C在Ar和/或N2条件下500-1000℃焙烧2-5h,得到目标产物D。
7.按照权利要求6所述的制备方法,其特征在于:所述金属氧化物对应的盐为硝酸盐、醋酸盐、硫酸盐、碳酸盐、锰酸盐、氯化物中的一种;所述溶剂为水、乙醇、丙酮、异丙醇中的一种或两种以上;所述溶液A中固体物质质量浓度为1-50%;所述溶液C为N-N二甲基甲酰胺与水的混合物,其体积比例为(1:1)~(4:1);所述碳前躯体为间三苯甲酸、二甲基咪唑、环式糊腈中的一种;清洗剂为水、丙酮、N,N二甲基甲酰胺中的一种或二种以上;碱溶液为氨水、0.5-1M的氢氧化钠、0.5-1M氢氧化钾中的一种或两种以上。
8.一种权利要求1-5任一所述自支撑结构的电极的应用,其特征在于:所述电极可用于超级电容器中或也可用于超级电容器混合锂硫电池中。
CN201510926386.3A 2015-12-13 2015-12-13 一种自支撑结构的电极及其制备和应用 Active CN106876153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510926386.3A CN106876153B (zh) 2015-12-13 2015-12-13 一种自支撑结构的电极及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510926386.3A CN106876153B (zh) 2015-12-13 2015-12-13 一种自支撑结构的电极及其制备和应用

Publications (2)

Publication Number Publication Date
CN106876153A true CN106876153A (zh) 2017-06-20
CN106876153B CN106876153B (zh) 2018-09-28

Family

ID=59178504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510926386.3A Active CN106876153B (zh) 2015-12-13 2015-12-13 一种自支撑结构的电极及其制备和应用

Country Status (1)

Country Link
CN (1) CN106876153B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376613A (zh) * 2018-03-05 2018-08-07 苏州宝澜环保科技有限公司 一种用于染料敏化太阳能电池对电极的ZnO基复合材料及其制备方法
CN108695488A (zh) * 2018-05-22 2018-10-23 东南大学 氧化锌-金属锂复合负极及制备方法、金属锂二次电池
CN108831755A (zh) * 2018-06-25 2018-11-16 上海应用技术大学 一种电容器电极多元复合材料的制备方法
CN108963214A (zh) * 2018-06-28 2018-12-07 肇庆市华师大光电产业研究院 一种锂离子电池负极材料的制备方法
CN109494346A (zh) * 2018-10-25 2019-03-19 电子科技大学 一种碳量子点修饰锂硫电池正极材料的制备方法
CN110429273A (zh) * 2019-08-07 2019-11-08 福州大学 一种ZnO@NC@CP纳米阵列柔性电极材料的制备方法
CN110581264A (zh) * 2019-08-28 2019-12-17 复旦大学 一种高性能镍锌电池负极活性材料及其制备方法
CN111326348A (zh) * 2020-02-29 2020-06-23 北京工业大学 一种合成镍钴铁氧化物三维立式纳米片结构电极材料的方法和应用
CN112038629A (zh) * 2020-09-30 2020-12-04 合肥国轩高科动力能源有限公司 一种一体式高倍率磷酸铁锂正极材料及其制备方法和用途
CN112569997A (zh) * 2019-09-30 2021-03-30 中国石油化工股份有限公司 纳米氮碳材料及其制备方法和环烷烃的催化氧化方法
CN112811527A (zh) * 2021-01-06 2021-05-18 北京交通大学 基于金属基纤维材料的水处理复合电极
CN113270274A (zh) * 2021-04-23 2021-08-17 中国科学院合肥物质科学研究院 一种柔性蜂巢状双金属氮化物超级电容器电极及制备方法
WO2021187019A1 (ja) * 2020-03-16 2021-09-23 株式会社クオルテック 電池及び当該電池の製造方法
CN114864889A (zh) * 2022-04-07 2022-08-05 中南大学 一种碳点调控的金属氧化物-碳复合材料及其制备方法和应用
CN114974927A (zh) * 2022-01-17 2022-08-30 东华理工大学 一种碳纳米阵列自支撑电极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941077A (zh) * 2012-11-07 2013-02-27 复旦大学 一种具有可见光活性的二氧化钛纳米管薄膜的制备方法
WO2013065956A1 (en) * 2011-11-01 2013-05-10 Korea Institute Of Science And Technology Tunable light emitting diode using graphene conjugated metal oxide semiconductor-graphene core-shell quantum dots and its fabrication process thereof
CN103965867A (zh) * 2014-04-09 2014-08-06 上海大学 一种qd-led用石墨烯量子点包覆氧化锌的核壳结构量子点的制备方法
CN104993158A (zh) * 2015-05-21 2015-10-21 大连理工大学 一种石墨烯量子点-MnO2复合催化剂的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065956A1 (en) * 2011-11-01 2013-05-10 Korea Institute Of Science And Technology Tunable light emitting diode using graphene conjugated metal oxide semiconductor-graphene core-shell quantum dots and its fabrication process thereof
CN102941077A (zh) * 2012-11-07 2013-02-27 复旦大学 一种具有可见光活性的二氧化钛纳米管薄膜的制备方法
CN103965867A (zh) * 2014-04-09 2014-08-06 上海大学 一种qd-led用石墨烯量子点包覆氧化锌的核壳结构量子点的制备方法
CN104993158A (zh) * 2015-05-21 2015-10-21 大连理工大学 一种石墨烯量子点-MnO2复合催化剂的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD MAHDI TAVAKOLI等: ""Hybrid zinc oxide/grapheme electrodes for depleted heterojunction colloidal quantum-dot solar cells"", 《PHYS. CHEM. CHEM. PHYS》 *
YONGSUNG JI等: ""Resistive switching characteristics of ZnO-graphene quantum dots and their use as an active component of an organic memory cell with one diode-one resistor architecture"", 《ORGANIC ELECTRONICS》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376613A (zh) * 2018-03-05 2018-08-07 苏州宝澜环保科技有限公司 一种用于染料敏化太阳能电池对电极的ZnO基复合材料及其制备方法
CN108695488A (zh) * 2018-05-22 2018-10-23 东南大学 氧化锌-金属锂复合负极及制备方法、金属锂二次电池
CN108831755A (zh) * 2018-06-25 2018-11-16 上海应用技术大学 一种电容器电极多元复合材料的制备方法
CN108831755B (zh) * 2018-06-25 2020-06-19 上海应用技术大学 一种电容器电极多元复合材料的制备方法
CN108963214A (zh) * 2018-06-28 2018-12-07 肇庆市华师大光电产业研究院 一种锂离子电池负极材料的制备方法
CN109494346A (zh) * 2018-10-25 2019-03-19 电子科技大学 一种碳量子点修饰锂硫电池正极材料的制备方法
CN110429273A (zh) * 2019-08-07 2019-11-08 福州大学 一种ZnO@NC@CP纳米阵列柔性电极材料的制备方法
CN110429273B (zh) * 2019-08-07 2022-04-12 福州大学 一种ZnO@NC@CP纳米阵列柔性电极材料的制备方法
CN110581264B (zh) * 2019-08-28 2022-03-18 复旦大学 一种高性能镍锌电池负极活性材料及其制备方法
CN110581264A (zh) * 2019-08-28 2019-12-17 复旦大学 一种高性能镍锌电池负极活性材料及其制备方法
CN112569997B (zh) * 2019-09-30 2023-03-10 中国石油化工股份有限公司 纳米氮碳材料及其制备方法和环烷烃的催化氧化方法
CN112569997A (zh) * 2019-09-30 2021-03-30 中国石油化工股份有限公司 纳米氮碳材料及其制备方法和环烷烃的催化氧化方法
CN111326348B (zh) * 2020-02-29 2021-09-24 北京工业大学 一种合成镍钴铁氧化物三维立式纳米片结构电极材料的方法和应用
CN111326348A (zh) * 2020-02-29 2020-06-23 北京工业大学 一种合成镍钴铁氧化物三维立式纳米片结构电极材料的方法和应用
WO2021187019A1 (ja) * 2020-03-16 2021-09-23 株式会社クオルテック 電池及び当該電池の製造方法
CN112038629A (zh) * 2020-09-30 2020-12-04 合肥国轩高科动力能源有限公司 一种一体式高倍率磷酸铁锂正极材料及其制备方法和用途
CN112038629B (zh) * 2020-09-30 2022-07-05 合肥国轩高科动力能源有限公司 一种一体式高倍率磷酸铁锂正极材料及其制备方法和用途
CN112811527A (zh) * 2021-01-06 2021-05-18 北京交通大学 基于金属基纤维材料的水处理复合电极
CN113270274A (zh) * 2021-04-23 2021-08-17 中国科学院合肥物质科学研究院 一种柔性蜂巢状双金属氮化物超级电容器电极及制备方法
CN114974927A (zh) * 2022-01-17 2022-08-30 东华理工大学 一种碳纳米阵列自支撑电极材料的制备方法
CN114974927B (zh) * 2022-01-17 2023-06-27 东华理工大学 一种碳纳米阵列自支撑电极材料的制备方法
CN114864889A (zh) * 2022-04-07 2022-08-05 中南大学 一种碳点调控的金属氧化物-碳复合材料及其制备方法和应用
CN114864889B (zh) * 2022-04-07 2023-11-28 中南大学 一种碳点调控的金属氧化物-碳复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106876153B (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN106876153A (zh) 一种自支撑结构的电极及其制备和应用
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
Zhang et al. Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor
Abbasi et al. Facile template-free synthesis of 3D hierarchical ravine-like interconnected MnCo2S4 nanosheet arrays for hybrid energy storage device
Xu et al. α-Fe 2 O 3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention
CN105513831B (zh) 一种中空管状结构电极材料及其制备方法
Meng et al. Synthesis of SnO2 nanoflowers and electrochemical properties of Ni/SnO2 nanoflowers in supercapacitor
Wang et al. Construction of CoMoO4@ Ni3S2 core-shell heterostructures nanorod arrays for high-performance supercapacitors
Liu et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor
CN106298263B (zh) 一种铋/炭超级电容电池及其制备方法
CN102664107B (zh) 一种纳米二氧化锰电极的制备方法
Jiang et al. Optimized NiCo 2 O 4/rGO hybrid nanostructures on carbon fiber as an electrode for asymmetric supercapacitors
Zhang et al. Nickel particles supported on multi-walled carbon nanotubes modified sponge for sodium borohydride electrooxidation
CN107362812A (zh) 一种硒硫化铼复合二维材料、制备方法及其应用
Zhang et al. Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting
CN107481865B (zh) 一种基于gqd/氢氧化钴复合材料的全固态柔性微型超级电容器
Yu et al. Metal-organic frameworks derived carbon-incorporated cobalt/dicobalt phosphide microspheres as Mott–Schottky electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment
Zhu et al. Design of multidimensional nanocomposite material to realize the application both in energy storage and electrocatalysis
CN106450249A (zh) 一种铋/氢氧化镍二次碱性电池及其制备方法
CN109767924A (zh) 一种ldh基超级电容器复合电极材料及制备方法与用途
CN110518202A (zh) 一种自支撑的V2O5/rGO纳米阵列钠离子电池材料及其制备方法
CN107170589A (zh) 一种MnO2系三元复合超级电容器电极材料的制备方法
CN110085453A (zh) 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用
CN108039499B (zh) 一种氮掺杂剥离碳纳米管负载四氧化三钴材料的制备方法
Xiang et al. Electrochemical enhancement of carbon paper by indium modification for the positive side of vanadium redox flow battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant