CN110085453A - 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用 - Google Patents

碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用 Download PDF

Info

Publication number
CN110085453A
CN110085453A CN201910283861.8A CN201910283861A CN110085453A CN 110085453 A CN110085453 A CN 110085453A CN 201910283861 A CN201910283861 A CN 201910283861A CN 110085453 A CN110085453 A CN 110085453A
Authority
CN
China
Prior art keywords
ldh
nscs
carbon nanotube
obtains
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910283861.8A
Other languages
English (en)
Other versions
CN110085453B (zh
Inventor
佟浩
金凤巧
孟晴
李婷婷
刘江
张校刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910283861.8A priority Critical patent/CN110085453B/zh
Publication of CN110085453A publication Critical patent/CN110085453A/zh
Application granted granted Critical
Publication of CN110085453B publication Critical patent/CN110085453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开一种核壳型Ni‑Co LDH@Ni‑Mn LDH/NSCS的制备方法及其应用,其具体步骤为:(a)制备碳纳米管溶液;(b)通过包覆碳管及火烧过程制备氮掺杂碳纳米管泡沫(NSCS);(c)将NSCS放入氯化镍、氯化钴、尿素、蒸馏水、甲醇的混合溶液中,水热反应并烘干后,得到Ni‑Co LDH/NSCS;(d)将Ni‑Co LDH/NSCS置入90℃的氯化锰、氯化镍、六亚甲基四胺、蒸馏水的混合溶液中化学沉积即得到所述核壳结构的复合材料;该复合材料可以应用于可穿戴、便携式储能设备;本发明制备的核壳结构复合材料与单层的LDH相比,增加了活性材料的比表面和电化学活性位点,使材料和电解液间的接触更加充分,同时也可以减少体积形变,同时,其可以充分发挥核、壳两部分各自的优势,提高材料整体的电化学性能。

Description

碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法 及应用
技术领域
本发明涉及电化学领域,特别是一种碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-MnLDH/NSCS的制备方法与应用。
背景技术
碳纳米管是一维的碳材料,是用碳原子包裹石墨烯薄片形成的,这些碳原子通过sp2杂化以共价键结合。根据包裹石墨烯层数的不同,碳纳米管分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)。碳纳米管因具有独特的内部结构、良好的物理和化学稳定性、低重量密度以及良好的导电性等特征被广泛地用于合成超级电容器电极的复合材料。由于其的重量和体积电容低于活性炭,因此将二者结合制备复合材料可以提高它们的电化学性能。Aurbach等(M.Noked,S.Okashy,T.Zimrin,and D.Aurbach,Carbon,2013,58(3),134-138.)通过聚合前将碳纳米管溶解在二氯乙烯单体中制备了CNT/AC,在碳化和活化后,碳材料被碳纳米管支撑,碳纳米管在复合材料中占有较高比重,因此活化后的复合材料具有较高的比表面积,循环稳定性和导电性能都很优异,这是一个对无定形碳的非常成功的改进,CNT/AC作为超级电容器的电极,在水系电解质中循环50000圈后容量损失忽略不计,而没有碳管的活性炭在循环30000圈后比容量开始下降。
层状双氢氧化物(LDH)以其特有的结构和灵活多变的组成而逐渐引起广泛关注。它具有极强的阴离子交换能力,高氧化还原活性,和层状结构。其中过渡金属离子一般由+2价和+3价的金属阳离子组成,+2价的金属阳离子有:Mg2+、Ni2+、Zn2+、Co2+、Ca2+、Fe2+和Mn2+;+3价的金属阳离子有:Al3+、Mn3+、Cr3+、Fe3+、Co3+、Ga3+和Ni3+等,它们可以根据各自的优点和缺陷相互组合,以优点提升材料的性能,缺点做到互相弥补。目前,Ni-Co LDH和Ni-Mn LDH的报道已屡见不鲜,Ni-Mn LDH与Ni(OH)2相比,部分Mn代替Ni形成层状双氢氧化物可以提高Ni的利用率,增强材料的稳定性。氢氧化钴的加入也可以改善氢氧化镍导电性差的缺点。
LDH具有优良的电化学性能,但是缓慢的电子转移速率限制了它们的发展,导致实际容量与理论比容量存在较大的偏差,且在充放电循环中容易发生形变。因此还需将LDH与碳材料结合。Yu等(T.Hao,W.Wang,and D.Yu,J.Mater.Sci.,2018,53(20),14485-14494.)在碳纳米管棉线上生长了Ni-Co LDH,制备了柔性的Ni-Co LDHs/CNT/cotton复合材料电极,该电极在0.1Ag-1的电流密度下,表现出811F g-1的质量比电容。Tang等(J.Zhou,M.Min,Y.Liu,J.Tang,and W.Tang,Sens.Actuator B-Chem.,2018,260,408-417.)用水热法制备了Ni-Mn LDH/GO复合材料电极作为传感器元件,具有优异的性能。Ma等(M.Yu,R.Liu,J.Liu,S.Li,and Y.Ma,Small,2017,13(44),1702616.)制备了Ni-Mn LDH/多孔碳电极在1Ag-1的电流密度下,表现出1634F g-1的质量比电容,比单纯的Ni-Mn LDH的电容(1095F g-11Ag-1)要高很多,此外经过3000圈循环,电容保持率为84.58%。可见与碳材料结合确实能提高LDH的电化学性能,但是它们的比电容较低,决定了组装成器件的能量密度会较低,限制了电极材料的应用领域。
目前将核壳结构的Ni-Co LDH@Ni-Mn LDH生长在三维氮掺杂单壁碳纳米管泡沫上来制备Ni-Co LDH@Ni-Mn LDH/NSCS复合材料超级电容器电极的方法尚未见报道。
发明内容
针对上述问题,本发明提供一种先在NSCS上水热生长Ni-Co LDH纳米片,再通过化学沉积的方法在Ni-Co LDH/NSCS上负载一层Ni-Mn LDH,最终制备出高比电容的Ni-CoLDH@Ni-Mn LDH/NSCS核壳复合材料电极。
本发明是通过如下技术方案实现的:
一种碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法,其具体步骤如下:
(a)将200mg单壁碳纳米管溶解在浓硫酸和浓硝酸的混合溶液中,70℃下回流2h,加入蒸馏水后抽滤(抽滤过程中不断用蒸馏水冲洗),并清洗至滤渣为中性,再加入蒸馏水获得酸化单壁碳纳米管分散液,上述酸化碳纳米管分散液步骤也可参见中国专利CN106315550A所公开的内容;
(b)将聚氨酯泡沫洗净后干燥,然后浸没于步骤(a)获得的酸化单壁碳纳米管分散液中,并用镊子挤压3-5s使碳纳米管溶液充分包覆在泡沫表面,取出置于70℃烘箱,干燥12h,重复上述浸没干燥步骤两次,最后得到包覆有碳管的聚氨酯泡沫;将包覆碳管的聚氨酯泡沫置于酒精灯上烧15-20s,烧去聚氨酯(最低15s保证聚氨酯能够完全除去,时间超过20s,会对碳纳米管泡沫产生破坏),得到碳纳米管泡沫。上述包覆碳管及火烧步骤也可参见中国专利CN108163837A所公开的内容。
(c)将氯化镍、氯化钴、尿素溶解于甲醇水溶液(甲醇与水的体积比为6:1)中,并充分搅拌,获得粉色溶液;所述粉色溶液中,氯化镍、氯化钴、尿素的终浓度依次为0.0024molL-1、0.0048mol L-1、0.1667mol L-1;将上述粉色溶液转移入50mL聚四氟乙烯反应釜中,并将碳纳米管泡沫浸入其中,120℃的条件下进行水热反应,然后待自然冷却至室温后,取出样品用蒸馏水和无水乙醇依次洗涤即得到Ni-Co LDH/NSCS;
(d)将氯化锰、氯化镍、六亚甲基四胺的终浓度依次为0.0035mol L-1、0.0055molL-1、0.0375mol L-1的40mL蒸馏水溶液转移入50mL聚四氟乙烯反应釜中,将步骤(c)获得的NiCo LDH/NSCS浸入溶液中,反应釜放入油浴锅内90℃下进行化学沉积,待冷却至室温后,取出样品用蒸馏水洗涤2~3次,60℃温度下干燥12h,即得到所述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH。
进一步,上述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法中,步骤(a)中,所述混合溶液中浓硫酸(质量分数98.0%)和浓硝酸(质量分数68.0%)的体积比为3:1;所获得的酸化单壁碳纳米管分散液浓度为1mg mL-1
进一步,上述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法中,步骤(b)中所述将聚氨酯泡沫洗净后干燥是指:将聚氨酯泡沫裁剪为1cm-3方块大小,依次用洗衣粉、蒸馏水、无水乙醇洗净后,放置于60℃干燥12h。
进一步,上述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法中,步骤(c)中,所述水热反应时间为4-8h。
进一步,上述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法中,步骤(d)中,所述化学沉积时间为20-60min。
其次,本发明还体用了上述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH在作为超级电容器电极中的应用。
本发明方法所制备的体积收缩的Ni-Co LDH@Ni-Mn LDH/NSCS复合材料,结构上是以碳纳米管泡沫为骨架,在上边负载核壳就结构的Ni-Co LDH@Ni-Mn LDH,下层NiCo LDH呈相互交叉纳米片状,每个片的尺寸大概在200nm左右。首先在导电基底上原位生长活性物质避免了有机粘结剂的使用,降低了二者之间的离子转移电阻。稀疏的壳层结构增加了电极材料的比表面和电化学活性位点,可以方便电解液浸润到里边的核层Ni-Co LDH,充分发挥材料的电化学性能,同时也可以减少体积形变,因此制备的沉积Ni-Mn LDH的溶液为低浓度溶液,并且沉积时间比较短,最终Ni-Mn LDH呈直径2μm左右的花球状且分布比较稀疏,花球由片叠成,增大了活性材料的比表面。稀疏的花球没有将核层物质覆盖,可以充分发挥各个组成部分的优点,并且方便电解液的进入,减小了离子的传输阻力。此外,核壳结构可以充分发挥核、壳两部分各自的优势,提高材料整体的电化学性能。
本发明获得的复合材料作为电极材料表现出极好的电化学性能,在1Ag-1电流密度下的质量比电容、面积比电容、体积比电容分别为4370F g-1、3.5F cm-2、537.5F cm-3;在5Ag-1的电流密度下循环10000圈,电容保持率仍为77%。
附图说明
图1为本发明实施例1制备的Ni-Co LDH/NSCS的SEM图。
图2为本发明实施例1制备的Ni-Co LDH/NSCS的充放电曲线图。
图3为本发明实施例2制备的Ni-Mn LDH/NSCS的SEM图。
图4为本发明实施例2制备的Ni-Mn LDH/NSCS的充放电曲线图。
图5为本发明实施例3制备的Ni-Co LDH@Ni-Mn LDH/NSCS的SEM图和EDS图。
图6为本发明实施例1、2、3制备的Ni-Co LDH/NSCS、Ni-Mn LDH/NSCS和Ni-Co LDH@Ni-Mn LDH/NSCS的XRD图谱。
图7为本发明实施例3制备的Ni-Co LDH@Ni-Mn LDH/NSCS的循环伏安曲线图。
图8为本发明实施例3制备的Ni-Co LDH@Ni-Mn LDH/NSCS的充放电曲线图。
图9为本发明实施例3制备的Ni-Co LDH@Ni-Mn LDH/NSCS的循环寿命图。
具体实施方案
实施例中所使用的单壁碳纳米管购买于深圳纳米港股份有限公司(SWNT-2);
实施例中所使用的聚氨酯泡沫购买于南通大工海绵有限公司。
其余试剂及材料若非特别说明,均是通过商业途径购买。
实施例1
(1)将200mg单壁碳纳米管超声分散在体积比为3:1的浓硫酸(质量分数98.0%)和浓硝酸(质量分数68.0%)的混合液中,70℃下回流2h,加入蒸馏水稀释并搅拌,抽滤并用蒸馏水洗至中性,最后用蒸馏水稀释,得到浓度为1mg mL-1的酸化单壁碳纳米管分散液。
(2)将聚氨酯泡沫切成1×1×1cm3的立方体(在具体实施过程中,可根据要求将泡沫切成所需要的大小以及形状),依次经洗衣粉、蒸馏水、乙醇超声洗涤(超声功率都为500W、时间都为20min)70℃干燥12h后,浸没到步骤(1)获得的酸化单壁碳纳米管分散液中,并用镊子挤压3-5s使碳纳米管溶液充分包覆在泡沫表面,取出海绵放置于70℃的烘箱中干燥12h,然后再次浸没到该酸化单壁碳纳米管分散液中,重复上述浸没-干燥步骤1次(即共浸润-干燥2次)获得包覆单壁碳纳米管的聚氨酯泡沫;
(3)将上述干燥后的泡沫复合物至于酒精灯火焰上烧掉聚氨酯(约15s左右,具体实施中,灼烧时间控制在15s-20s范围内,均可烧掉聚氨酯),即形成具有弹性的碳纳米管泡沫(NSCS),根据质量称重和体积计算其密度为1.5mg cm-3
(4)将氯化镍、氯化钴、尿素溶解在甲醇水溶液中(甲醇与水体积比为6:1),充分搅拌形成粉色溶液,该粉色溶液中氯化镍、氯化钴、尿素的浓度依次为0.0024mol L-1、0.0048mol L-1、0.1667mol L-1,将上述粉色溶液转移入50mL聚四氟乙烯反应釜中,并将步骤(2)获得的NSCS浸入其中,120℃水热反应6h;待冷却至室温后,取出样品用蒸馏水和无水乙醇洗涤,将样品放入60℃的烘箱中12h,得到Ni-Co LDH/NSCS。
图1为本实施例制备的NiCo LDH/NSCS的SEM图,从图中可以看出,Ni-Co LDH均匀地生长在基底NSCS上。Ni-Co LDH呈相互交叉的薄片,每个片的尺寸大概在200nm左右。
图2为本实施例制备的Ni-Co LDH/NSCS在不同电流密度下的充放电曲线图,根据曲线计算出在1Ag-1电流密度下该材料的质量比电容为1512F g-1(检测方法可参见SHYue,HTong,L Lu,WW Tang,WL Bai,and FQ Jin.J.Mater.Chem.A,2017,5(2),689-698.电化学测试部分)。
实施例2
本实施例中,步骤(1),(2),(3)同实施例1。
(4)将氯化锰、氯化镍、六亚甲基四胺溶解在40mL蒸馏水中,并搅拌30min,溶液中氯化锰、氯化镍、六亚甲基四胺的浓度依次为0.0035mol L-1、0.0055mol L-1、0.0375mol L-1。溶液转移入50mL聚四氟乙烯反应釜中,将NSCS浸入溶液中,反应釜放入油浴锅内90℃化学沉积40min,待冷却至室温后,取出样品用蒸馏水洗涤2~3次,60℃温度下干燥12h,即得到Ni-Mn LDH/NSCS。
图3为本实施例制备的Ni-Mn LDH/NSCS的SEM图,(a)和(b)两图为低倍下的Ni-MnLDH/NSCS的SEM图,可以观察到,Ni-Mn LDH呈球状且分布比较稀疏。(c)和(d)两图为Ni-MnLDH/NSCS的高倍SEM图,通过图片可以观察到,Ni-Mn LDH呈花球形,直径在2μm左右。稀疏的壳层结构可以方便电解液浸润到里边的核层物质,充分发挥材料的电化学性能。根据单一的LDH形貌,我们计划在片状Ni-Co LDH的上边负载一层稀疏的花球状Ni-Mn LDH构建核壳LDH结构。
图4为本实施例制备的Ni-Mn LDH/NSCS在不同电流密度下的充放电曲线图,检测方法同实施例1,根据曲线计算出在1Ag-1电流密度下该材料的质量比电容为1840F g-1
实施例3
本实施例中,步骤(1),(2),(3)同实施例1。
(4)将氯化镍、氯化钴、尿素溶解在甲醇水溶液中(甲醇与水体积比为6:1),充分搅拌形成粉色溶液,该粉色溶液中氯化镍、氯化钴、尿素的终浓度依次为0.0024mol L-1、0.0048mol L-1、0.1667mol L-1,将上述粉色溶液转移入50mL聚四氟乙烯反应釜中,并将步骤(3)获得的NSCS浸入其中,120℃水热反应6h;待冷却至室温后,取出样品用蒸馏水和无水乙醇洗涤,将样品放入60℃的烘箱中12h,得到Ni-Co LDH/NSCS。
(5)将氯化锰、氯化镍、六亚甲基四胺溶解在40mL蒸馏水中,并搅拌30min,获得水溶液;该水溶液中氯化锰、氯化镍、六亚甲基四胺的终浓度依次为0.0035mol L-1、0.0055molL-1、0.0375mol L-1。将该水溶液转移入50mL聚四氟乙烯反应釜中,将步骤(4)获得的NiCoLDH/NSCS浸入该水溶液中,反应釜放入油浴锅内90℃化学沉积40min,待冷却至室温后,取出样品用蒸馏水洗涤2次(具体实施例中,蒸馏水洗涤2-3次均可),60℃温度下干燥12h,即得到所述Ni-Co LDH@Ni-Mn LDH/NSCS。
图5为Ni-Co LDH@Ni-Mn LDH/NSCS的SEM图和EDS图,从低倍SEM图可以看出在均匀的Ni-Co LDH片层上生长了分布稀疏的Ni-Mn LDH花球,此外稀疏的球没有将核层物质覆盖,可以充分发挥各个组成部分的优点,并且方便电解液的进入,减小了离子的传输阻力。高倍SEM图可以观察到Ni-Co LDH仍呈薄纳米片状,Ni-Mn LDH仍为直径2μm左右的花球,花球由片叠成,增大了活性材料的比表面,它们的形貌并没有因为形成复合材料而发生改变。图(e)为Ni-Co LDH@Ni-Mn LDH/NSCS的EDS图,其中一部分Ni元素和Mn元素的信号来自材料外层,一部分Ni元素和Co元素的信号来自材料内层,C元素的信号来自基底层,Ni、Co、Mn、C元素分布均匀(Co元素左边分布不太均匀是因为上边有Ni-Mn LDH的覆盖,遮挡住了Co的信号)。
图6为Ni-Co LDH/NSCS、Ni-Mn LDH/NSCS和Ni-Co LDH@Ni-Mn LDH/NSCS的XRD图谱,从图中可以看出:在24.2°、26.7°、33.8°、59.9°的主要衍射峰分别对应于Ni-Co LDH(JCPDS Card No.48-0083)的(111)、(220)、(221)、(412)晶面,与标准图谱一致[122]。在22.7°、34.4°、38.8°和60.0°的主要衍射峰分别对应于Ni-Mn LDH(JCPDS Card No.38-0715)的(006)、(012)、(015)和(110)晶面,与标准图谱一致[118]。此外Ni-Co LDH的峰相对较弱,是因为Ni-Co LDH位于核层,上边有Ni-Mn LDH的覆盖遮挡。进一步证实了复合材料为Ni-Co LDH@Ni-Mn LDH/NSCS。
图7为不同扫描速度下Ni-Co LDH@Ni-Mn LDH/NSCS的循环伏安曲线图(检测方法可参见SH Yue,H Tong,L Lu,WW Tang,WL Bai,and FQ Jin.J.Mater.Chem.A,2017,5(2),689-698.电化学测试部分)。位窗口为-0.1-0.6V,从CV图中可以看到有一对明显的氧化还原峰,表现出典型的赝电容特性。随着扫速增加,阳极峰电位和阴极峰电位分别向更正和更负的方向移动,大概发生了0.1V的位移,表明Ni-Co LDH@Ni-Mn LDH/NSCS发生了快速的氧化还原反应,以及内部电阻的存在。
通过图8为Ni-Co LDH@Ni-Mn LDH/NSCS在不同电流密度下的充放电曲线(检测方法可参见SH Yue,H Tong,L Lu,WW Tang,WL Bai,and FQ Jin.J.Mater.Chem.A,2017,5(2),689-698.),在1Ag-1的电流密度下,其质量比电容为4370F g-1,电流密度在10Ag-1以内,其质量比电容几乎没有衰减,超过10Ag-1电容极具减小,这与LDH材料导电性较差有关,此外本实施例获得的核壳结构也在一定程度上影响了材料的倍率性能。根据实施例1和实施例2描述的,在1Ag-1电流密度下Ni-Co LDH/NSCS和Ni-Mn LDH/NSCS的质量比电容分别为1543F g-1和1840F g-1,可见核壳结构LDH的比容量与单层LDH相比实现了1+1>2的功效。
图9为本实施例制备的Ni-Co LDH@Ni-Mn LDH/NSCS复合材料的循环寿命图,在5Ag-1的电流密度下循环10000圈后,电容保持率仍为77%,表现出良好的循环稳定性。
由图7-图9可以看出,本实施例制备的Ni-Co LDH@Ni-Mn LDH/NSCS可以作为电极,应用于超级电容器中。
实施例4
本实施例中,步骤(1),(2),(3),(5)同实施例3,将步骤(4)的水热条件为120℃水热反应4h。
经检测,本实施例利获得的Ni-Co LDH@Ni-Mn LDH/NSCS在电流密度为1Ag-1下的质量比电容,测试所得的电容为3037F g-1
实施例5
本实施例中,步骤(1),(2),(3),(5)同实施例3,将步骤(4)的水热条件为120℃水热反应8h。
经检测,本实施例利获得的Ni-Co LDH@Ni-Mn LDH/NSCS在电流密度为1Ag-1下的质量比电容,测试所得的电容为2992F g-1
实施例6
本实施例中,步骤(1),(2),(3),(4)同实施例3,将步骤(5)的化学沉积条件为90℃化学沉积20min。
经检测,本实施例利获得的Ni-Co LDH@Ni-Mn LDH/NSCS在电流密度为1A g-1下的质量比电容,测试所得的电容为3170F g-1
实施例7
本实施例中,步骤(1),(2),(3),(4)同实施例3,将步骤(5)的化学沉积条件为90℃化学沉积60min。
经检测,本实施例利获得的Ni-Co LDH@Ni-Mn LDH/NSCS在电流密度为1Ag-1下的质量比电容,测试所得的电容为2950F g-1
以上实例仅以说明本发明的技术方案而非限制,尽管参照较佳实例对本发明进行了详细说明,本领域的普通技术人员应该理解,可以对本发明的技术方案进行修改,但其均应涵盖在本发明的权利要求范围中。

Claims (6)

1.一种碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法,其具体步骤如下:
(a)将氯化镍、氯化钴、尿素溶解于甲醇水溶液中,获得粉色溶液;将碳纳米管泡沫浸没于所述粉色溶液中,水热反应后洗涤干燥,获得Ni-Co LDH/NSCS;所述粉红溶液中,氯化镍、氯化钴、尿素的浓度依次为0.0024 mol L-1、0.0048 mol L-1、0.1667 mol L-1
(b)将Ni-Co LDH/NSCS浸没于混合水溶液中,进入沉积反应,将产物洗涤后干燥,即获得所述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH;所述混合水溶液中,氯化锰、氯化镍、六亚甲基四胺的浓度依次为0.0035 mol L-1 、0.0055 mol L-1、0.0375 mol L-1
2.根据权利要求1所述的碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法,其特征在于,步骤(a)所述水热反应是指,120 ℃水热反应4-8 h。
3.根据权利要求1所述的碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法,其特征在于,步骤(b)所述沉积反应是指,90 ℃沉积反应20-60 min。
4.如权利要求1-3任一所述碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法,其特征在于,所述碳纳米管泡沫是通过如下步骤获得的:将聚氨酯泡沫浸没于酸化单壁碳纳米管分散液中,然后取出干燥;重复上述浸没-干燥步骤两次,获得包覆有碳管的聚氨酯泡沫;然后将包覆碳管的聚氨酯泡沫置于酒精灯上灼烧15-20 s,获得即获得所述碳纳米管泡沫。
5.如权利要求4所述的制备方法,其特征在于,所述酸化单壁碳纳米管分散液的浓度为1 mg mL-1
6.如权利要求1-3任一所述制备方法获得的碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH在作为超级电容器电极中的应用。
CN201910283861.8A 2019-04-10 2019-04-10 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用 Active CN110085453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283861.8A CN110085453B (zh) 2019-04-10 2019-04-10 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283861.8A CN110085453B (zh) 2019-04-10 2019-04-10 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用

Publications (2)

Publication Number Publication Date
CN110085453A true CN110085453A (zh) 2019-08-02
CN110085453B CN110085453B (zh) 2021-06-22

Family

ID=67414619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283861.8A Active CN110085453B (zh) 2019-04-10 2019-04-10 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用

Country Status (1)

Country Link
CN (1) CN110085453B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111721A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN111517831A (zh) * 2020-05-07 2020-08-11 中国科学院苏州纳米技术与纳米仿生研究所 金属-碳纳米管泡沫复合材料及其制备方法与应用
CN111599603A (zh) * 2020-05-21 2020-08-28 南京理工大学 MXene/ZnMnNi LDH范德华异质结构及其制备方法和应用
CN114974928A (zh) * 2022-03-15 2022-08-30 合肥国轩高科动力能源有限公司 一种双壳层中空CNTs/Ni-Co LDH纳米复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527752A (zh) * 2017-06-29 2017-12-29 江苏大学 一种超级电容器复合电极材料的制备方法
CN107591251A (zh) * 2017-07-14 2018-01-16 电子科技大学 一种无粘结剂型NiCo2O4@NiMoO4核壳纳米片阵列材料及其制备方法
CN108163837A (zh) * 2017-12-29 2018-06-15 南京航空航天大学 一种快速制备氮掺杂碳纳米管泡沫的方法及应用
CN109148160A (zh) * 2018-08-06 2019-01-04 安徽师范大学 一种核壳结构锰钴氧化物@镍钴氧化物复合材料及其制备方法和应用
CN109411238A (zh) * 2018-10-26 2019-03-01 江苏大学 一种层状双氢氧化物复合电极材料及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527752A (zh) * 2017-06-29 2017-12-29 江苏大学 一种超级电容器复合电极材料的制备方法
CN107591251A (zh) * 2017-07-14 2018-01-16 电子科技大学 一种无粘结剂型NiCo2O4@NiMoO4核壳纳米片阵列材料及其制备方法
CN108163837A (zh) * 2017-12-29 2018-06-15 南京航空航天大学 一种快速制备氮掺杂碳纳米管泡沫的方法及应用
CN109148160A (zh) * 2018-08-06 2019-01-04 安徽师范大学 一种核壳结构锰钴氧化物@镍钴氧化物复合材料及其制备方法和应用
CN109411238A (zh) * 2018-10-26 2019-03-01 江苏大学 一种层状双氢氧化物复合电极材料及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAOYAN LIANG等: "Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111721A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN111111721B (zh) * 2020-01-19 2022-04-26 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN111517831A (zh) * 2020-05-07 2020-08-11 中国科学院苏州纳米技术与纳米仿生研究所 金属-碳纳米管泡沫复合材料及其制备方法与应用
CN111599603A (zh) * 2020-05-21 2020-08-28 南京理工大学 MXene/ZnMnNi LDH范德华异质结构及其制备方法和应用
CN111599603B (zh) * 2020-05-21 2022-03-18 南京理工大学 MXene/ZnMnNi LDH范德华异质结构及其制备方法和应用
CN114974928A (zh) * 2022-03-15 2022-08-30 合肥国轩高科动力能源有限公司 一种双壳层中空CNTs/Ni-Co LDH纳米复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110085453B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Wang et al. MOF-derived NiO/NiCo2O4 and NiO/NiCo2O4-rGO as highly efficient and stable electrocatalysts for oxygen evolution reaction
Tao et al. Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor
Wu et al. Core-shell structured Co3O4@ NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties
Zhong et al. Nickel cobalt manganese ternary carbonate hydroxide nanoflakes branched on cobalt carbonate hydroxide nanowire arrays as novel electrode material for supercapacitors with outstanding performance
CN110085453A (zh) 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用
Gao et al. Fabrication of metallic nickel–cobalt phosphide hollow microspheres for high-rate supercapacitors
Feng et al. Construction of 3D hierarchical porous NiCo2O4/graphene hydrogel/Ni foam electrode for high-performance supercapacitor
Yang et al. Defect engineering of cobalt microspheres by S doping and electrochemical oxidation as efficient bifunctional and durable electrocatalysts for water splitting at high current densities
Xu et al. A novel material NiOOH directly grown on in-situ etched Cu (OH) 2 nanowire with high performance of electrochemical energy storage
Xu et al. Hydrothermally synthesized FeCo2O4 nanostructures: Structural manipulation for high-performance all solid-state supercapacitors
Tang et al. Template-directed growth of hierarchically structured MOF-derived LDH cage hybrid arrays for supercapacitor electrode
Xue et al. Zeolitic imidazolate frameworks (ZIFs)-derived NixCo3− xO4/CNTs nanocomposites with enhanced electrochemical performance for supercapacitor
Wang et al. Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor
CN106876153A (zh) 一种自支撑结构的电极及其制备和应用
CN106298263B (zh) 一种铋/炭超级电容电池及其制备方法
CN105845448B (zh) 一种同质核壳结构四硫化三钴纳米材料、其制备方法及其作为超级电容器电极材料的应用
CN106252616A (zh) 一种硒化镍/中空碳纤维复合材料及其制备方法
CN102107909B (zh) 一种介孔纳米二氧化锰的制备方法
CN108364793A (zh) CoNiFe-LDH/多层石墨烯高性能复合储能材料及其制备方法
CN106669739A (zh) 一种过渡金属硫化物/碳纳米管复合材料及其制备方法与应用
Yao et al. A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode
CN104882298A (zh) 一种微波法制备NiCo2O4/石墨烯超级电容材料的方法
CN107481865B (zh) 一种基于gqd/氢氧化钴复合材料的全固态柔性微型超级电容器
CN108855145A (zh) 一种两步法制备硫化钴/硫化钼复合材料及在氢气析出反应应用
CN105826085A (zh) 一种炭/氯氧化铋超级电容电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant