CN106847915A - p型金属氧化物半导体材料与晶体管 - Google Patents

p型金属氧化物半导体材料与晶体管 Download PDF

Info

Publication number
CN106847915A
CN106847915A CN201610020655.4A CN201610020655A CN106847915A CN 106847915 A CN106847915 A CN 106847915A CN 201610020655 A CN201610020655 A CN 201610020655A CN 106847915 A CN106847915 A CN 106847915A
Authority
CN
China
Prior art keywords
type metal
oxide semiconductor
metal oxide
semiconductor material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610020655.4A
Other languages
English (en)
Other versions
CN106847915B (zh
Inventor
邱显浩
周子琪
赵文轩
郑信民
张睦东
黄天恒
蔡任丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN106847915A publication Critical patent/CN106847915A/zh
Application granted granted Critical
Publication of CN106847915B publication Critical patent/CN106847915B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
    • H10D30/6756Amorphous oxide semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种p型金属氧化物半导体材料,其组成为:AlxGe(1-x)Oy,其中0<x≤0.6,以及1.0≤y≤2.0。上述p型金属氧化物半导体材料可用于晶体管。晶体管可包括:栅极;通道层,与栅极之间隔有栅极绝缘层;以及源极与漏极,分别接触通道层的两侧,其中通道层是上述的p型金属氧化物半导体。

Description

p型金属氧化物半导体材料与晶体管
技术领域
本发明涉及p型金属氧化物半导体材料,特别涉及其组成与应用。
背景技术
随着显示技术的快速发展,各种新时代的产品及材料也应运而生。在这些产品中,透明显示器因具有可透光性、商品互动特性等特点,近年来其相关技术备受瞩目。用以制作透明薄膜晶体管的金属氧化物半导体材料,与利用非晶硅材料所制作的薄膜晶体管相比,可缩小薄膜晶体管尺寸、提高像素开口率、实现高精细化、提高分辨率、以及提供较快的载子(例如电子)迁移率。再者,亦可将简单的外部电路整合至显示器中,使电子装置更加轻薄并降低耗电量。
然而目前大部分的金属氧化物半导体材料为n型,而现有的p型金属氧化物半导体材料的特性较不稳定且再现性较差。因此,目前亟需开发其他的p型金属氧化物半导体材料,以搭配现有的n型金属氧化物半导体材料。
发明内容
本发明一实施例提供的p型金属氧化物半导体材料,其组成为:AlxGe(1-x)Oy,其中0<x≤0.6,以及1.0≤y≤2.0。
本发明一实施例提供的晶体管,包括:栅极;通道层,与栅极之间隔有栅极绝缘层;以及源极与漏极,分别接触通道层的两侧,其中通道层是p型金属氧化物半导体,其组成为:AlxGe(1-x)Oy,其中0<x≤0.6,以及1.0≤y≤2.0。
附图说明
图1A是本发明一实施例中,铝取代的氧化锗(AlxGe(1-x)O1)的模拟计算结果;
图1B是本发明一实施例中,铝取代的氧化锗(AlxGe(1-x)O2)的模拟计算结果;
图2是本发明一实施例中,晶体管的示意图。
【附图标记说明】
1 晶体管;
10 基板;
20 栅极;
30 栅极绝缘层;
40 通道层;
50 源极;
52 漏极;
60 保护层。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明的实施例是先借由模拟计算,得到将铝元素取代于氧化锗(GeO或GeO2)中以形成p型金属氧化物半导体材料的初步计算结果。接着以溅镀或软性化学法等方式,合成取代有铝的氧化锗的p型金属氧化物半导体材料。
模拟计算的过程说明如下。本发明利用全始量子分子动力学仿真软件套件(VASP,Vienna Ab-initio Simulation Package)计算在氧化锗中取代铝时,其能态密度(DOS,Density of States)对能量的变化关系,并将其结果绘示于图1A与图1B中。
图1A为铝取代的氧化锗(GeO)经VASP仿真所得的能态密度对能量关系图,经由模拟计算可知铝取代的氧化锗的费米能阶降至价电带处,故其应为p型金属氧化物半导体材料。需注意的是,图1A中设定氧化锗中的锗原子以1/16的比例被铝原子取代(即Al1Ge15O16),是因为实务上在进行模拟计算时,为避免计算机处理数据过于庞大、耗时过久等问题,通常会先以单一置换的条件针对选定的取代物进行初步的模拟计算,待确认此取代物的初步计算结果后,再实际合成并调整取代物比例,以验证模拟结果,并非代表此取代物需在单一置换的条件下才可使铝取代的氧化锗(GeO)具有p型半导体材料的特性。
图1B为铝取代的氧化锗(GeO2)经VASP仿真所得的能态密度对能量关系图,经由模拟计算可知铝取代的氧化锗的费米能阶降至价电带处,故其应为p型金属氧化物半导体材料。需注意的是,图1B中设定铝原子氧化锗中的锗原子以1/16的比例被铝原子取代(即Al1Ge15O32),是因为实务上在进行模拟计算时,为避免计算机处理数据过于庞大、耗时过久等问题,通常会先以单一置换的条件针对选定的取代物进行初步的模拟计算,待确认此取代物的初步计算结果后,再实际合成并调整取代物比例,以验证模拟结果,并非代表此取代物需在单一置换的条件下才可使铝取代的氧化锗(GeO2)具有p型半导体材料的特性。
实施例中,可根据上述模拟结果以溅镀法形成铝取代的氧化锗,以作为p型金属氧化物半导体材料。首先,将欲溅镀的工件置于溅镀腔室中。接着将氧气与氩气的混合气体通入溅镀腔室中,并溅镀锗靶材与铝靶材以形成铝取代的氧化锗。上述氧气与氩气的摩尔比例介于5:95至10:90之间,取决于最终形成的p型金属氧化物半导体材料中的氧含量。在一实施例中,溅镀锗及铝靶材的功率、以及锗靶材与铝靶材与工件之间的距离的选择取决于设定的Al与Ge间的相对组成比例关系,至于工件的温度则在于提供半导体材料的取代元素间扩散动能及较佳的沉积排列。
在另一实施例中,可依比例称取铝盐(硝酸盐或柠檬酸盐)、锗盐(硝酸盐或柠檬酸盐)与螯合剂(如酒石酸)后加于溶液中混合。接着升温蒸发溶液中的溶剂使其成为凝胶态,再干燥成粉状。接着烧结粉体使其氧化以形成金属氧化物粉体。之后,可进行陶瓷工艺的模压、射出、冷均压、注浆等相关工艺,并进行烧结和机械加工工艺,以制作铝取代的氧化锗的块材或靶材。在形成上述块材或靶材后,可借由溅镀等方法,形成铝取代的氧化锗的p型金属氧化物半导体材料薄膜,以应用于电子装置(如透明显示器、透明场效晶体管、发光二极管、透明集成电路半导体组件或其他电子装置)。
经上述方法形成的p型金属氧化物半导体材料的组成为AlxGe(1-x)Oy,其中0<x≤0.6,且1.0≤y≤2.0。若x或y超出上述范围,则不具p型半导体材料的特性。在一实施例中,上述p型金属氧化物半导体材料为非晶型,其电阻率介于10-3Ω·cm至103Ω·cm之间,其空穴迁移率介于0.5cm2V-1s-1至75cm2V-1s-1之间,且其载子浓度介于1013cm-3至1021cm-3之间。
在一实施例中,上述p型金属氧化物半导体材料用于电子装置如晶体管。如图2所示,可在基板10上形成栅极20,再在栅极20上形成栅极绝缘层30。接着可在栅极绝缘层30上并对应栅极20处形成通道层40,并在通道层40的中间部份上形成保护层60。接着在保护层60及通道层40上形成金属层,再在通道层40的两侧上图案化金属层以形成源极50与漏极52并与通道层40接触,以完成晶体管1。上述通道层40的材料即可为上述p型金属氧化物半导体材料(AlxGe(1-x)Oy)。可以理解的是,图2所示的晶体管1仅用以举例,p型金属氧化物半导体材料(AlxGe(1-x)Oy)可用于其他晶体管的信道层,或其他电子装置的p型半导体层。
为了让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举数实施例配合所附附图,作详细说明如下:
实施例
实施例1
试片制作是采用离轴式(Off-axis)反应式直流磁控溅镀法,使铝取代的氧化锗薄膜成长,靶材采用锗金属靶(纯度=99.999%、直径3吋、厚度6mm、邦杰公司制造),以及铝金属靶(纯度=99.9999%、直径2英吋、厚度6mm、邦杰公司制造)。反应气体为高纯度的氧气(O2、99.9995%)与氩气(Ar、99.999%)的混合气体。首先将3吋×3吋玻璃基板(购自康宁玻璃的Eagle XG)置于装卸密封腔室的夹具中并抽真空,再移至溅镀机台主腔体中抽真空。待真空达到5×10-6torr时,经由质量流量控制器(massflow controller、MFC)将氩气流入腔体内,进行预溅镀(pre-sputtering)10分钟以去除锗靶及铝靶表面的氧化物与污染物。待预溅镀后,经由MFC控制氧气与氩气混合后进入腔体中,开启挡板(shutter)开始溅镀,以得非晶型的铝取代的氧化锗薄膜(AlxGe(1-x)O1)。不同铝取代比例形成的薄膜的电阻率、空穴迁移率与空穴载子浓度如表1所示。在第1表中,薄膜的铝取代比例经由ICP-MS确认。薄膜的电阻率、空穴迁移率、空穴载子浓度等数值,均是以霍尔电路模块(NANO METRICS、HL5500PC)测量而得。镀膜所使用的基本参数如下:基板与锗靶及铝靶之间的距离分别为7.2cm及13.5cm、溅镀沉积时间为10分钟、氩气/氧气总流量为20sccm、氧气占混合气体的5%、溅镀压力控制在20mtorr、溅镀时的基材温度为约380℃,锗靶溅镀功率80W、且铝靶溅镀功率介于0~200W。
表1
由表1可知,铝取代的氧化锗薄膜(AlxGe(1-x)O1)为p型半导体。
实施例2
与实施例1类似,差别在于氧气占混合气体的10%。至于其他工艺参数与测量方法均与实施例1类似,在此不再赘述。此实施例形成铝取代的氧化锗薄膜(AlxGe(1-x)O2),其为非晶型的p型半导体。不同铝取代比例形成的薄膜的电阻率、空穴迁移率与空穴载子浓度如表2所示。
表2
由表2可知,铝取代的氧化锗薄膜(AlxGe(1-x)O2)为p型半导体。
虽然本发明已以多个实施例揭露如上,但是其并非用以限定本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种p型金属氧化物半导体材料,其特征在于,其组成为:
AlxGe(1-x)Oy
其中0<x≤0.6,以及
1.0≤y≤2.0。
2.根据权利要求1所述的p型金属氧化物半导体材料,其特征在于,其为非晶型。
3.根据权利要求1所述的p型金属氧化物半导体材料,其特征在于,其电阻率介于10-3Ω·cm至103Ω·cm之间。
4.根据权利要求1所述的p型金属氧化物半导体材料,其特征在于,其空穴迁移率介于0.5cm2V-1s-1至75cm2V-1s-1之间。
5.根据权利要求1所述的p型金属氧化物半导体材料,其特征在于,其空穴载子浓度介于1013cm-3至1021cm-3之间。
6.一种晶体管,其特征在于,包括:
一栅极;
一通道层,与该栅极之间隔有一栅极绝缘层;以及
一源极与一漏极,分别接触该通道层的两侧,
其中该通道层是一p型金属氧化物半导体,其组成为:
AlxGe(1-x)Oy
其中0<x≤0.6,以及
1.0≤y≤2.0。
7.根据权利要求6所述的晶体管,其特征在于,其中该p型金属氧化物半导体材料为非晶型。
8.根据权利要求6所述的晶体管,其特征在于,其中该p型金属氧化物半导体材料的电阻率介于10-3Ω·cm至103Ω·cm之间。
9.根据权利要求6所述的晶体管,其特征在于,其中该p型金属氧化物半导体材料的空穴迁移率介于0.5cm2V-1s-1至75cm2V-1s-1之间。
10.根据权利要求6所述的晶体管,其特征在于,其中该p型金属氧化物半导体材料的空穴载子浓度介于1013cm-3至1021cm-3之间。
CN201610020655.4A 2015-12-04 2016-01-13 p型金属氧化物半导体材料与晶体管 Expired - Fee Related CN106847915B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104140699A TWI566417B (zh) 2015-12-04 2015-12-04 p型金屬氧化物半導體材料與電晶體
TW104140699 2015-12-04

Publications (2)

Publication Number Publication Date
CN106847915A true CN106847915A (zh) 2017-06-13
CN106847915B CN106847915B (zh) 2019-08-30

Family

ID=56411132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610020655.4A Expired - Fee Related CN106847915B (zh) 2015-12-04 2016-01-13 p型金属氧化物半导体材料与晶体管

Country Status (4)

Country Link
US (1) US9401433B1 (zh)
JP (1) JP6186042B2 (zh)
CN (1) CN106847915B (zh)
TW (1) TWI566417B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117751435A (zh) * 2021-07-30 2024-03-22 株式会社Flosfia 氧化物半导体及半导体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186486A (ja) * 1991-06-05 1993-07-27 Nikko Kyodo Co Ltd 高純度アルキルホスフィンの製造方法
CN1448515A (zh) * 2002-04-02 2003-10-15 浙江大学 基于基因组外显子芯片的数量性状基因位点定位新方法
US20050142769A1 (en) * 2003-12-25 2005-06-30 Yoshiki Kamata Semiconductor device and method for manufacturing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821707B2 (en) * 1996-03-11 2004-11-23 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
CN100492507C (zh) * 1996-03-11 2009-05-27 松下电器产业株式会社 光学信息记录媒体及其制造方法
JP2000228516A (ja) * 1999-02-08 2000-08-15 Tdk Corp 半導体積層薄膜、電子デバイスおよびダイオード
JP2003179242A (ja) 2001-12-12 2003-06-27 National Institute Of Advanced Industrial & Technology 金属酸化物半導体薄膜及びその製法
US7141489B2 (en) 2003-05-20 2006-11-28 Burgener Ii Robert H Fabrication of p-type group II-VI semiconductors
KR100711203B1 (ko) 2005-08-23 2007-04-24 한국과학기술연구원 산화아연을 이용한 p형-진성-n형 구조의 발광 다이오드제조방법
US20100183500A1 (en) 2009-01-17 2010-07-22 Henry Lee Germane gas production from germanium byproducts or impure germanium compounds
JP5506213B2 (ja) * 2009-03-06 2014-05-28 キヤノン株式会社 半導体素子の形成方法
US8124513B2 (en) * 2009-03-18 2012-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Germanium field effect transistors and fabrication thereof
US20110007426A1 (en) * 2009-07-13 2011-01-13 Seagate Technology Llc Trapezoidal back bias and trilayer reader geometry to enhance device performance
PT105039A (pt) 2010-04-06 2011-10-06 Univ Nova De Lisboa Ligas de óxidos tipo p baseados em óxidos de cobre, óxidos estanho, óxidos de ligas de estanho-cobre e respectiva liga metálica, e óxido de níquel, com os respectivos metais embebidos, respectivo processo de fabrico e utilização
JP2012216780A (ja) * 2011-03-31 2012-11-08 Ricoh Co Ltd p型酸化物、p型酸化物製造用組成物、p型酸化物の製造方法、半導体素子、表示素子、画像表示装置、及びシステム
JP5948581B2 (ja) * 2011-09-08 2016-07-06 株式会社Flosfia Ga2O3系半導体素子
US9012278B2 (en) * 2013-10-03 2015-04-21 Asm Ip Holding B.V. Method of making a wire-based semiconductor device
TWI534089B (zh) * 2013-12-31 2016-05-21 財團法人工業技術研究院 p型金屬氧化物半導體材料及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186486A (ja) * 1991-06-05 1993-07-27 Nikko Kyodo Co Ltd 高純度アルキルホスフィンの製造方法
CN1448515A (zh) * 2002-04-02 2003-10-15 浙江大学 基于基因组外显子芯片的数量性状基因位点定位新方法
US20050142769A1 (en) * 2003-12-25 2005-06-30 Yoshiki Kamata Semiconductor device and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGEHISA SHIBAYAMA ET AL: "Impacts of AlGeO formation by post thermal oxidation of Al2O3/Ge structure on interfacial properties", 《THIN SOLID FILMS》 *

Also Published As

Publication number Publication date
JP2017103446A (ja) 2017-06-08
US9401433B1 (en) 2016-07-26
TW201721875A (zh) 2017-06-16
TWI566417B (zh) 2017-01-11
CN106847915B (zh) 2019-08-30
JP6186042B2 (ja) 2017-08-23

Similar Documents

Publication Publication Date Title
JP5395994B2 (ja) 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ
WO2012118150A1 (ja) 酸化物焼結体およびスパッタリングターゲット
TWI503992B (zh) 氧化物半導體薄膜以及薄膜電晶體
WO2012118156A1 (ja) 酸化物焼結体およびスパッタリングターゲット
TW201333250A (zh) 原子層沈積之摻雜方法
JP2011205057A5 (zh)
CN106435490B (zh) 溅射靶及氧化物半导体膜以及其制备方法
JP5081959B2 (ja) 酸化物焼結体及び酸化物半導体薄膜
US9315389B2 (en) Hydrogen surface-treated graphene, formation method thereof and electronic device comprising the same
JP2010238770A (ja) 酸化物薄膜及びその製造方法
CN106847915B (zh) p型金属氧化物半导体材料与晶体管
JP5145228B2 (ja) 透明導電膜の成膜方法
TWI593807B (zh) 靶材
TWI484559B (zh) 一種半導體元件製程
JP2012188691A (ja) Ti合金配線膜および電極、並びにTi合金スパッタリングターゲット
JP2012189725A (ja) Ti合金バリアメタルを用いた配線膜および電極、並びにTi合金スパッタリングターゲット
CN104810387B (zh) p型金属氧化物半导体材料及其制造方法
JP2009168937A (ja) 密着性に優れた銅薄膜並びにこの銅薄膜からなる液晶表示装置用配線および電極
JP5702447B2 (ja) 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ
JP6305775B2 (ja) 酸化物焼結体、酸化物半導体膜及び薄膜トランジスタ
TWI881875B (zh) 電子零件用積層配線膜及被覆層形成用濺鍍靶材
JPWO2010143609A1 (ja) 電子装置の形成方法、電子装置、半導体装置及びトランジスタ
JP5750064B2 (ja) 酸化物焼結体およびスパッタリングターゲット
JP5367659B2 (ja) 酸化物焼結体及び酸化物半導体薄膜
CN115679259A (zh) Izo薄膜制备方法及物理气相沉积设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190830

CF01 Termination of patent right due to non-payment of annual fee