CN106824183A - 负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用 - Google Patents

负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用 Download PDF

Info

Publication number
CN106824183A
CN106824183A CN201611238530.5A CN201611238530A CN106824183A CN 106824183 A CN106824183 A CN 106824183A CN 201611238530 A CN201611238530 A CN 201611238530A CN 106824183 A CN106824183 A CN 106824183A
Authority
CN
China
Prior art keywords
hollow mesoporous
carbon balls
preparation
nano carbon
load gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611238530.5A
Other languages
English (en)
Other versions
CN106824183B (zh
Inventor
路建美
陈冬赟
蒋军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910936647.8A priority Critical patent/CN110639515B/zh
Priority to CN201611238530.5A priority patent/CN106824183B/zh
Publication of CN106824183A publication Critical patent/CN106824183A/zh
Priority to US15/853,904 priority patent/US10232347B2/en
Application granted granted Critical
Publication of CN106824183B publication Critical patent/CN106824183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0627Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理CO中的应用,在引发剂存在下,将苯胺与吡咯在含有表面活性剂的去离子水中聚合,形成中空碳前驱,然后经过煅烧得到中空介孔碳纳米球;将中空介孔碳纳米球浸泡在含有氯金酸的溶液中,搅拌处理,然后离心分离,去除液体得到负载金纳米粒子的中空介孔碳纳米球复合材料。本发明公开的制备方法操作简单,克服了现有技术需要复杂的制备方法才可制备出介孔碳载体并负载催化剂的缺陷;尤其是如此简单的制备方法制备的产品具有优异的处理CO的性能,非常利于工业化应用。

Description

负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法 与在持续处理CO中的应用
技术领域
本发明涉及纳米复合材料技术领域,具体涉及一种负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理CO中的应用。
背景技术
随着近年来技术的迅速发展及快速的工业化,CO、SO2、NO2等有毒气体的排放严重超标,已经损坏了生态环境、危害了人类的身体健康。CO是常见且危害最大的有毒气体之一,CO气体的排放主要来自汽车尾气和煤炭等的不充分燃烧,它无色无味,且可迅速与人体中的血红蛋白结合,排挤氧气,造成人体缺氧,对人体的危害十分严重。因此处理CO气体的污染迫在眉睫,而利用金属纳米粒子催化氧化处理CO是一种有发展前途且应用广泛的气体处理方法。
金纳米粒子具有较高的稳定性和催化活性,但在实际应用中,金纳米粒子作为催化剂需要一个良好地载体。在以往的文献报道中,其常用的载体主要是TiO2、CeO2等,但是负载到氧化物上的金纳米粒子大小不可控,而且分布也不是太均匀,因此需要寻找一个更好的载体来负载金纳米粒子。
介孔碳材料是目前研究且应用广泛的一类载体材料;但无论是介孔碳材料还是将金纳米粒子均一负载其表面的制备方法都相对复杂,是目前面临的难题之一。因此,针对这种问题,很有必要研发一种简单且有效的制备方法来制备中空介孔碳球及负载型催化剂。
发明内容
本发明的目的是提供一种负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法,采用原位还原的方法,将金纳米粒子负载到中空介孔碳球的孔道中,以实现持续处理空气中以及发动机发动时排出的CO气体的目的。
为了达到上述目的,本发明采用如下具体技术方案:
一种负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,包括以下步骤:
(1)在引发剂存在下,将苯胺与吡咯在含有表面活性剂的去离子水中聚合,形成中空碳前驱,然后经过煅烧得到中空介孔碳纳米球;
(2)将中空介孔碳纳米球浸泡在含有氯金酸的溶液中,搅拌处理,然后离心分离,去除液体,最后还原处理得到负载金纳米粒子的中空介孔碳纳米球复合材料。
上述技术方案中,步骤(1)中,苯胺、吡咯、表面活性剂、引发剂、去离子水的质量比为13:9.3:2:63.5:2000;聚合的温度为0℃,时间为24小时;煅烧在氩气中进行,煅烧时升温速率为25℃/min,时间为20h,温度为800~900℃,优选900℃;优选的,先将苯胺、吡咯、表面活性剂与去离子水混合,然后加入预冷的引发剂进行聚合,优选在0℃预冷引发剂;引发剂优选过硫酸铵。
本发明首先采用简单的无模板的方法制备中空介孔碳纳米球,具有较大的比表面积、均一的孔径大小、良好的导电性、可控的结构,且重复性好,可以作为一个良好地容器负载金纳米粒子,而较大的比表面积可以促进催化性能,是一种良好的载体材料。
上述技术方案中,步骤(2)中,氯金酸溶液、中空介孔碳纳米球的用量比为1L∶10g;所述氯金酸溶液的浓度为18~25mmol/L,优选20 mmol/L;搅拌处理为真空条件下搅拌6小时;本发明采用简单的原位还原方法直接将Au纳米粒子负载到中空介孔碳球中,形成的Au纳米粒子极小,并且均一的负载到载体孔道中,利于持续的催化CO氧化。
本发明离心分离后直接将湿的负载金纳米粒子的中空介孔碳纳米球复合材料放入含有1%的CO环境中去,利用CO的弱还原性,将三价金离子还原成金纳米粒子,从而达到在制备催化剂的过程中以及制备完成之后持续催化CO的效果。
本发明进一步公开了上述负载金纳米粒子的中空介孔碳纳米球复合材料在持续处理CO中的应用。
本发明还公开了一种持续处理CO的方法,将上述负载金纳米粒子的中空介孔碳纳米球复合材料置入含有CO的环境中,即完成CO的处理。
本发明的优点:
1、本发明公开的负载金纳米粒子的中空介孔碳纳米球复合材料具有较大的比表面积、均一的孔径大小、良好的导电性、可控的结构;金纳米粒子均一地负载在容器中,较大的比表面积可以促进催化性能,是一种良好的负载型催化剂材料。
2、本发明公开的负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法中,中空介孔碳球制备简单,孔径均一,比表面积大,且重复性好;,形成的Au纳米粒子极小,均一的负载到载体孔道中;在催化剂形成的过程中以及形成之后,可以持续的催化CO氧化。
3、本发明公开的负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法操作简单,克服了现有技术需要复杂的制备方法才可制备出介孔碳载体并负载催化剂的缺陷;尤其是如此简单的制备方法制备的产品具有优异的处理CO的性能,非常利于工业化应用。
附图说明
图1为煅烧前聚合物碳前驱的透射电镜图;
图2为煅烧前聚合物碳前驱的扫描电镜图;
图3为900℃煅烧后中空介孔碳纳米球的透射电镜图;
图4为900℃煅烧后中空介孔碳纳米球的扫描电镜图;
图5为800℃煅烧后中空介孔碳纳米球的透射电镜图;
图6为800℃煅烧后中空介孔碳纳米球的扫描电镜图;
图7为20 mmol/L氯金酸溶液制备的Au/HCNs纳米粒子催化剂的透射电镜图;
图8为催化剂形成过程中的CO的转换图;
图9为20 mmol/L氯金酸溶液制备的Au/HCNs纳米粒子催化剂的催化效果图;
图10为25 mmol/L氯金酸溶液制备的Au/HCNs纳米粒子催化剂的透射电镜图;
图11为25 mmol/L氯金酸溶液制备的Au/HCNs纳米粒子催化剂的催化效果图。
具体实施方式
实施例一
中空介孔碳纳米球(HCNs)的制备,具体步骤如下:
将1.9ml苯胺、1.45ml吡咯、0.3g表面活性剂(TX-100)与300ml去离子水充分混合,然后将已准备好的预冷(0℃)的过硫酸铵快速加入,并在0℃下反应24h,然后反应产物聚合物碳前驱通过抽滤获得并用去离子水清洗。将聚合物碳前驱在真空干燥箱中烘干。
将烘干之后的前驱体放入管式炉中,在Ar气氛下进行煅烧,得到HCNs;升温速率5℃/min,煅烧时间20h,煅烧温度900℃,本发明通过煅烧从而获得比表面积较大的HCNs。
附图1为聚合物碳前驱的TEM图,附图2为聚合物碳前驱的SEM图,附图3为HCNs的TEM图,附图4为HCNs的SEM图。从图中可以看出中空球结构,且分布较均一,煅烧之后球的直径小于煅烧之前。
实施例二
中空介孔碳纳米球(HCNs)的制备,具体步骤如下:
将1.9ml苯胺、1.45ml吡咯、0.3g表面活性剂(TX-100)与300ml去离子水充分混合,然后将已准备好的预冷(0℃)的过硫酸铵快速加入,并在0℃下反应24h,然后反应产物聚合物碳前驱通过抽滤获得并用去离子水清洗。将聚合物碳前驱在真空干燥箱中烘干。将烘干之后的前驱体放入管式炉中,在Ar气氛下进行煅烧,得到HCNs;升温速率5℃/min,煅烧时间20h,煅烧温度800℃,本发明通过煅烧从而获得比表面积较大的HCNs。
附图5为HCNs的TEM图,附图6为HCNs的SEM图。从图中可以看出中空球结构,且分布较均一,煅烧之后球的直径小于煅烧之前,其比表面积小于900℃下煅烧的中空介孔碳球。
实施例三
将Au纳米粒子负载到中空介孔碳球的孔道中并持续催化CO氧化
将已准备好的200mg的HCNs(实施例一)分散到含有氯金酸的溶液中,为了得到分布相对均一的Au纳米粒子,采用了20 mmol/L的氯金酸溶液,取氯金酸溶液20ml,在真空条件下搅拌6h,然后用离心机分离(11000rpm 10min)。
将得到的含有氯金酸的HCNs分散到200ml水中,调节其PH至11,然后离心得到湿的HCNs,并将其直接放入1%的CO环境下进行还原并催化CO氧化。
附图7为负载Au纳米粒子后的催化剂的透射电镜图(TEM),从图中可以看出金纳米粒子成功负载到了HCNs的孔道中,而且分布相对均一。
具体的CO转换效果是通过气相色谱分析的。即通过标准气制定一条标准曲线,并把CO的浓度记录为1,然后随着催化的进行,浓度逐渐下降,从而得到具体的CO转换结果。
附图8为催化剂形成过程中的CO的转换图,附图9为催化剂形成之后的CO转换图。由图8可见,在催化剂的形成过程中CO的转换率大概为1%,证明CO的弱还原性可以将三价金离子还原成金纳米粒子,使持续催化氧化CO的技术效果得以实现,而一开始CO转换率陡升至0.5%左右是因为中空介孔碳球的吸附性能。图9中可以看出温度在150℃之前CO的转换率近乎不变,保持在1%左右,而在150℃之后,随着温度的升高,CO的转换率不断增加,最终达到65%左右。由附图9可知,本发明可应用于常温下CO的转化。大气中CO污染主要来源于汽车尾气的排放,CO转化率的计算方法如方程(1):
C0和C分别为实验中CO的初始浓度和测试浓度(每30分钟测试一次)。
实施例四
根据实施例三制备Au纳米粒子负载的中空介孔碳球,采用25 mmol/L的氯金酸溶液,制备的负载金纳米粒子的中空介孔碳纳米球复合材料,附图10为其透射电镜图片,从图中可以看出金纳米粒子分布相对不均一。附图11为催化效果,最终的转化率大致在50%。
通过以上分析,说明采用本发明的技术方案Au纳米粒子可以成功负载到中空介孔碳球的孔道中,且分布相对均一,并且对CO具有相对较好的催化活性。用中空介孔碳球作为载体,可以便于催化剂的回收,而且利用中空介孔碳球的吸附性能,此发明在合成催化剂的过程中以及合成以后可以持续的来进行CO的催化氧化。

Claims (10)

1.一种负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,其特征在于,包括以下步骤:
(1)在引发剂存在下,将苯胺与吡咯在含有表面活性剂的去离子水中聚合,形成中空碳前驱,然后经过煅烧得到中空介孔碳纳米球;
(2)将中空介孔碳纳米球浸泡在含有氯金酸的溶液中,搅拌处理,然后离心分离,去除液体,最后还原处理得到负载金纳米粒子的中空介孔碳纳米球复合材料。
2.根据权利要求1所述负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,其特征在于:步骤(1)中,苯胺、吡咯、表面活性剂、引发剂、去离子水的质量比为13∶9.3∶2∶63.5∶2000。
3.根据权利要求1所述负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,其特征在于:步骤(1)中,聚合的温度为0℃,时间为24小时;所述引发剂为过硫酸铵。
4.根据权利要求1所述负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,其特征在于:步骤(1)中,煅烧在氩气中进行,煅烧时升温速率为5℃/min,时间为20h,温度为800~900℃。
5.根据权利要求1所述负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,其特征在于:步骤(1)中,先将苯胺、吡咯、表面活性剂与去离子水混合,然后加入预冷的引发剂进行聚合。
6.根据权利要求1所述负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,其特征在于:步骤(2)中,氯金酸溶液、中空介孔碳纳米球的用量比为1L∶10g;所述氯金酸溶液的浓度为18~25mmol/L。
7.根据权利要求1所述负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法,其特征在于:步骤(2)中,搅拌处理为真空条件下搅拌6小时;还原处理在CO中进行。
8.根据权利要求1所述负载金纳米粒子的中空介孔碳纳米球复合材料的制备方法制备的负载金纳米粒子的中空介孔碳纳米球复合材料。
9.权利要求8所述负载金纳米粒子的中空介孔碳纳米球复合材料在持续处理CO中的应用。
10.一种持续处理CO的方法,其特征在于,包括以下步骤,将权利要求8所述负载金纳米粒子的中空介孔碳纳米球复合材料置入含有CO的环境中,即完成CO的处理。
CN201611238530.5A 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用 Active CN106824183B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910936647.8A CN110639515B (zh) 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及在持续处理co中的应用
CN201611238530.5A CN106824183B (zh) 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用
US15/853,904 US10232347B2 (en) 2016-12-28 2017-12-25 Hollow mesoporous carbon nanosphere composite material loaded with gold nanoparticles, and preparation method thereof and application in continuous processing of CO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611238530.5A CN106824183B (zh) 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910936647.8A Division CN110639515B (zh) 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及在持续处理co中的应用

Publications (2)

Publication Number Publication Date
CN106824183A true CN106824183A (zh) 2017-06-13
CN106824183B CN106824183B (zh) 2019-10-25

Family

ID=59114383

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910936647.8A Active CN110639515B (zh) 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及在持续处理co中的应用
CN201611238530.5A Active CN106824183B (zh) 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910936647.8A Active CN110639515B (zh) 2016-12-28 2016-12-28 负载金纳米粒子的中空介孔碳纳米球复合材料及在持续处理co中的应用

Country Status (2)

Country Link
US (1) US10232347B2 (zh)
CN (2) CN110639515B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108706568A (zh) * 2018-05-04 2018-10-26 青海泰丰先行锂能科技有限公司 一种氮掺杂多孔中空碳纳米胶囊材料的制备方法及制备的材料
CN109536583A (zh) * 2018-10-31 2019-03-29 华中科技大学同济医学院附属协和医院 一种基于金-碳纳米球构建的microRNA检测探针及其制备方法和应用
CN114210993A (zh) * 2021-12-18 2022-03-22 兰州大学 一种快速烧结制备中空金纳米球的方法
CN115193435A (zh) * 2022-04-29 2022-10-18 浙江大学 空心多孔碳球负载纳米镍复合材料及其制备方法和在储氢材料中的应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498821B (zh) * 2015-12-17 2018-06-12 苏州大学 一种用于催化降解氮氧化物的复合材料及其制备方法和用途
CN110407194B (zh) * 2019-08-02 2023-03-21 武汉理工大学 三维多孔氮掺杂中空碳纳米球及其可控制备方法和应用
CN111215152B (zh) * 2020-03-13 2022-11-18 烟台大学 磁性核壳导电聚合物负载纳米金催化剂的制备及其在对硝基苯酚加氢中的应用
CN111531182B (zh) * 2020-04-02 2023-04-07 西安工程大学 一种3d碳纳米球@金纳米纤维微纳结构的制备方法
CN112719285B (zh) * 2020-12-18 2022-12-13 黑龙江省能源环境研究院 一种牺牲模板剂包裹纳米金颗粒及其制备方法
CN113979439B (zh) * 2021-11-30 2022-12-20 陕西科技大学 一种Si5C3微纳米材料及其制备方法
CN115285972B (zh) * 2022-08-05 2023-07-04 湖南师范大学 一种多孔碳负载金属型纳米材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772363A (zh) * 2004-11-11 2006-05-17 中国科学院化学研究所 用模板法制备中空球和复合中空球的方法
US20080103064A1 (en) * 2006-06-13 2008-05-01 Antara Biosciences Inc. Microscale fluidic devices for electrochemical detection of biological molecules
CN102784654A (zh) * 2012-07-19 2012-11-21 上海师范大学 一种负载型中空纳米合金球催化剂及其制备方法和用途
CN105252015A (zh) * 2015-10-29 2016-01-20 中山大学 蛋黄-蛋壳结构Au@空心炭纳米球复合材料及其制备和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213475B1 (ko) * 2005-08-20 2012-12-20 삼성에스디아이 주식회사 중형 다공성 탄소 복합체, 그 제조방법 및 이를 이용한연료전지
CN101623634A (zh) * 2009-08-04 2010-01-13 厦门大学 包裹贵金属纳米颗粒的核壳纳米催化剂及其方法
CN102553583B (zh) * 2011-12-29 2013-11-13 浙江工业大学 介孔碳负载的金纳米催化剂及其应用
CN102600835A (zh) * 2012-03-16 2012-07-25 南京大学 空心碳纳米笼负载铂基纳米粒子复合催化剂的制备方法
KR20130113562A (ko) * 2012-04-06 2013-10-16 서울대학교산학협력단 전이금속 산화물-탄소 나노복합체 제조 방법
US20150232340A1 (en) * 2013-11-01 2015-08-20 The Board Of Trustees Of The Leland Stanford Junior University Microporous/Mesoporous Carbon
CN104591127B (zh) * 2015-01-09 2016-11-09 中山大学 一种超高比表面积中空炭纳米球及其制备方法与应用
CN105126838A (zh) * 2015-08-04 2015-12-09 上海应用技术学院 一种氧化锌掺杂的二氧化钛纳米金催化剂及其制备方法和应用
CN106587009B (zh) * 2016-12-21 2019-01-04 中山大学 一种超高比表面积介孔炭纳米球及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772363A (zh) * 2004-11-11 2006-05-17 中国科学院化学研究所 用模板法制备中空球和复合中空球的方法
US20080103064A1 (en) * 2006-06-13 2008-05-01 Antara Biosciences Inc. Microscale fluidic devices for electrochemical detection of biological molecules
CN102784654A (zh) * 2012-07-19 2012-11-21 上海师范大学 一种负载型中空纳米合金球催化剂及其制备方法和用途
CN105252015A (zh) * 2015-10-29 2016-01-20 中山大学 蛋黄-蛋壳结构Au@空心炭纳米球复合材料及其制备和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108706568A (zh) * 2018-05-04 2018-10-26 青海泰丰先行锂能科技有限公司 一种氮掺杂多孔中空碳纳米胶囊材料的制备方法及制备的材料
CN109536583A (zh) * 2018-10-31 2019-03-29 华中科技大学同济医学院附属协和医院 一种基于金-碳纳米球构建的microRNA检测探针及其制备方法和应用
CN114210993A (zh) * 2021-12-18 2022-03-22 兰州大学 一种快速烧结制备中空金纳米球的方法
CN114210993B (zh) * 2021-12-18 2023-04-11 兰州大学 一种快速烧结制备中空金纳米球的方法
CN115193435A (zh) * 2022-04-29 2022-10-18 浙江大学 空心多孔碳球负载纳米镍复合材料及其制备方法和在储氢材料中的应用

Also Published As

Publication number Publication date
CN106824183B (zh) 2019-10-25
CN110639515A (zh) 2020-01-03
US20180178197A1 (en) 2018-06-28
US10232347B2 (en) 2019-03-19
CN110639515B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN106824183A (zh) 负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用
CN107913674A (zh) 负载mof的3d钌/石墨烯气凝胶复合材料及其制备方法与在持续处理co中的应用
CN106000311B (zh) 负载铁/锌纳米粒子的生物炭及其制备方法和应用
CN108906036A (zh) 掺杂双核铑配合物的铂/中空介孔二氧化硅球复合材料及其制备方法与应用
CN107159068A (zh) 一种石墨烯复合气凝胶的制备方法
CN103861657B (zh) 纳米银负载多孔二氧化硅的制备方法
CN105879895A (zh) 氮掺杂多孔碳纳米片负载非贵金属催化剂及其制备方法
CN107281982B (zh) 一种亲疏水性可调的石墨烯/粘土复合弹性气凝胶及其制备方法
CN108097261A (zh) 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN108359462A (zh) 一种钒酸铋量子点及其制备方法、还原氧化石墨烯气凝胶材料及其制备方法以及光催化剂
CN108927185A (zh) 一种杂原子掺杂碳纳米管负载磷化铁纳米粒子的氧还原催化剂及其制备方法
CN112337461A (zh) 锶掺杂有序介孔锰酸镧负载贵金属钯的复合材料及其制备方法与在催化氧化甲苯中的应用
CN109433190B (zh) 负载铂纳米粒子的介孔氧化锆纳米管复合材料及其制备方法与在持续处理有机废气中的应用
CN108565435A (zh) 一种石墨烯多孔颗粒的制备方法
CN112844444A (zh) 一种利用载体孔道自吸附原理制备二氧化铈催化材料的方法
CN109728260A (zh) 氮硫掺杂碳包覆的碳化铁复合电极材料的制备方法
CN108553684A (zh) 一种复合气凝胶微球及其制备方法
CN107010674B (zh) α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用
CN113351177B (zh) 一种湿度捕获凝胶、制备方法及应用
CN110170328A (zh) 一种锰酸钴/n-掺杂石墨烯复合催化剂的制备方法及其应用
CN111943166B (zh) 一种无溶剂水热法碳材料的制备
CN112044392A (zh) 镁改性纳米二氧化硅中空球的制备方法
CN114870880A (zh) 一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用
CN110092377A (zh) 一种以乌贼墨为原料的氮掺杂纳米孔碳微球及其制备方法
CN115178243A (zh) Mof@cof复合多孔材料及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant