KR20130113562A - 전이금속 산화물-탄소 나노복합체 제조 방법 - Google Patents
전이금속 산화물-탄소 나노복합체 제조 방법 Download PDFInfo
- Publication number
- KR20130113562A KR20130113562A KR1020120035800A KR20120035800A KR20130113562A KR 20130113562 A KR20130113562 A KR 20130113562A KR 1020120035800 A KR1020120035800 A KR 1020120035800A KR 20120035800 A KR20120035800 A KR 20120035800A KR 20130113562 A KR20130113562 A KR 20130113562A
- Authority
- KR
- South Korea
- Prior art keywords
- transition metal
- carbon
- metal oxide
- precursor
- carbon nanocomposite
- Prior art date
Links
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 46
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 43
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 42
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000001354 calcination Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000007833 carbon precursor Substances 0.000 claims abstract description 14
- 239000002243 precursor Substances 0.000 claims abstract description 13
- 239000002105 nanoparticle Substances 0.000 claims abstract description 12
- 239000004094 surface-active agent Substances 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052738 indium Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 24
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 claims description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical group [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- 229920004890 Triton X-100 Polymers 0.000 claims description 2
- 239000013504 Triton X-100 Substances 0.000 claims description 2
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 claims description 2
- 229940063953 ammonium lauryl sulfate Drugs 0.000 claims description 2
- 229960000686 benzalkonium chloride Drugs 0.000 claims description 2
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 claims description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 claims description 2
- 239000007773 negative electrode material Substances 0.000 claims description 2
- 229960000502 poloxamer Drugs 0.000 claims description 2
- 229920001983 poloxamer Polymers 0.000 claims description 2
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- WPPGURUIRLDHAB-UHFFFAOYSA-M triethyl(hexadecyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](CC)(CC)CC WPPGURUIRLDHAB-UHFFFAOYSA-M 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 229960003872 benzethonium Drugs 0.000 claims 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 125000000168 pyrrolyl group Chemical group 0.000 claims 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 claims 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 claims 1
- 229940080350 sodium stearate Drugs 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 abstract 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 52
- 241000257465 Echinoidea Species 0.000 description 21
- 239000002245 particle Substances 0.000 description 11
- 229910006540 α-FeOOH Inorganic materials 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910000314 transition metal oxide Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 5
- 229920000128 polypyrrole Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229910002588 FeOOH Inorganic materials 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005287 template synthesis Methods 0.000 description 2
- -1 transition metal sulfide Chemical class 0.000 description 2
- HBTWDIFUKOFPAX-UHFFFAOYSA-N 1-(furan-2-ylmethyl)pyrrole;1h-pyrrole Chemical compound C=1C=CNC=1.C1=CC=CN1CC1=CC=CO1 HBTWDIFUKOFPAX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910021381 transition metal chloride Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J6/00—Heat treatments such as Calcining; Fusing ; Pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 전이금속 산화물-탄소 나노복합체 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 (i) 전이금속 전구체와 계면활성제의 혼합물을 가열하여 전이금속 옥시수산화물 나노입자를 제조하는 단계; (ii) 상기 (i)단계에서 얻은 생성물 혼합용액에 탄소 전구체를 첨가하여 상기 전이금속 옥시수산화물 나노입자 표면 상에 탄소 전구체층을 형성하는 단계; 및 (iii) 상기 (ii)단계에서 얻은 생성물 혼합용액을 하소하는 단계를 포함하는, 전이금속 산화물-탄소 나노복합체 제조 방법에 대한 것이다.
Description
본 발명은 전이금속 산화물-탄소 나노복합체 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 (i) 전이금속 전구체와 계면활성제의 혼합물을 가열하여 전이금속 옥시수산화물 나노입자를 제조하는 단계; (ii) 상기 (i)단계에서 얻은 생성물 혼합용액에 탄소 전구체를 첨가하여 상기 전이금속 옥시수산화물 나노입자 표면 상에 탄소 전구체층을 형성하는 단계; 및 (iii) 상기 (ii)단계에서 얻은 생성물 혼합용액을 하소하는 단계를 포함하는, 전이금속 산화물-탄소 나노복합체 제조 방법에 대한 것이다.
리튬 이온 충전지(rechargeable lithium ion battery (LIB))는 디지털 카메라, 휴대폰 및 랩탑 등 다양한 휴대용 전자기기에 대한 주된 전력공급원으로서 널리 사용되고 있다. 최근에, LIB는 하이브리드 자동차, 이식형 의료기기 및 청정 에너지 저장장치의 중요한 요소로서도 큰 주목을 받고 있다. LIB에 대한 폭발적인 시장의 수요로 인하여 더 높은 에너지 및 전력 밀도, 더 향상된 사이클 안정성 및 저비용에 대한 요구가 증가하고 있다.
이러한 요구를 만족시키기 위하여, 향상된 전기화학적 성능을 갖는 새로운 전극 물질이 필요하다. 리튬 이온과의 전환반응(conversion reaction) 큰 충전용량(rechargeable capacity)을 갖는 전이금속 산화물이 고성능 리튬 이온 전지용으로 유망한 음극 물질로서 연구되고 있다.
그러나 대부분의 전이금속 산화물은 대개, 급속한 용량 감소(capacity fading) 및 열악한 사이클능(cycling ability)을 갖게하는 리튬 이온 삽입(insertion) 및 추출(extraction)과 관련된 큰 부피 팽창/축소라는 문제점을 갖고 있다.
이러한 문제점을 해결하기 위하여, 다양한 접근법이 개발되고 있다. 이들 중 하나는 나노입자, 나노쉬트(nanosheet) 및 나노와이어(nanlwire)와 같은 물질을 연구하는 것이다(P. G. Bruce, B. Scrosati, J.-M. Tarascon Angew . Chem . Int . Ed . 2008, 47, 2930; A. Salvatore Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk Nat . Mater . 2005, 4 , 366; L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang Energy Environ . Sci . 2011, 4, 2682; C. Liu, F. Li, L.-P. Ma, H.-M. Cheng Adv . Mater . 2010, 22, E28).
나노물질은 효과적으로 부피 변화에 의한 응력변형(strain)을 수용하고 사이클능을 향상시킬 수 있다. 또한, 나노스케일로 크기를 줄이면 전극/전해질 접촉 면적을 현저히 증가시키고 리튬 이온의 이동 거리를 현저히 감소시킴으로써, 전지가 더 큰 전력에서 작동할 수 있게 한다.
나노크기의 물질 뿐만 아니라 다공성 구조의 물질도 나노물질과 동일한 이점을 갖는다(N. Du, H. Zhang, B. Chen, J. Wu, X. Ma, Z. Liu, Y. Zhang, D. Yang, X. Huang, J. Tu Adv . Mater . 2007, 19, 4505; T. Yoon, C. Chae, Y.-K. Sun, X. Zhao, H. H. Kung, J. K. Lee J. Mater . Chem. 2011, 21, 17325; K. Zhong, B. Zhang, S. Luo, W. Wen, H. Li, X. Huang, L. Chen J. Power Sources 2011,196, 6802). 다공성 구조체 내의 빈 공간(void space)은 리튬 이온 삽입/방출 과정의 국소적 부피 변화를 완충함으로써, 사이클 성능(cycling performance)을 향상시킨다.
음극의 성능을 향상시키기 위한 또 다른 전략은, 활성 물질을 탄소로 코팅 또는 캡슐화하는 것인데, 탄소는 완충층(buffer layer)으로서의 역할을 하며 상기 완충층은 이의 탄성에 의해 부피 팽창/축소에 기인한 응력을 완화시켜 더 낳은 용량 유지(capacity retention)를 가능하게 한다. 이와 동시에, 상기 완충층은 전극의 전자전도도(electronic conductivity)를 증가시키고 전극물질의 미분화(pulverization) 및 응집(aggregation)을 경감시킬 수 있다(W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, L.-J. Wan Adv . Funct . Mater . 2008, 18, 3941; Y. Piao, H. S. Kim, Y.-E. Sung, T. Hyeon Chem . Commun . 2010, 46, 118; J. Kim, M. K. Chung, B. H. Ka, J. H. Ku, S. Park, J. Ryu, S. M. Oh J. Electrochem . Soc. 2010, 157, A412; X. H. Huang, J. P. Tu, C. Q. Zhang, J. Y. Xiang Electrochem. Commun . 2007, 9,1180; N. Jayaprakash, W. D. Jones, S. S. Moganty, L. A. Archer J. Power Sources 2012,200, 53).
다양한 전이금속 산화물 중에, 산화철은 이의 풍부한 매장량, 친환경성, 저비용 및 높은 이론 용량(Fe3O4의 경우 928 mAh/g 및 α-Fe2O3의 경우 1007 mAh/g)으로 인하여 LIB 전극으로서 가장 매력적인 물질들 중 하나이다(T. Yoon, C. Chae, Y.-K. Sun, X. Zhao, H. H. Kung, J. K. Lee J. Mater . Chem. 2011, 21, 17325; W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, L.-J. Wan Adv . Funct . Mater . 2008, 18, 3941; Y. Piao, H. S. Kim, Y.-E. Sung, T. Hyeon Chem . Commun . 2010, 46, 118; J. Kim, M. K. Chung, B. H. Ka, J. H. Ku, S. Park, J. Ryu, S. M. Oh J. Electrochem . Soc . 2010, 157, A412; J. Chen, L. Xu, W. Li, X. Gou Adv . Mater. 2005, 17, 582; M. V. Reddy, Ting Yu, Chorng-Haur Sow, Ze Xiang Shen, Chwee Teck Lim, G. V. Subba Rao, B. V. R. Chowdari Adv . Funct . Mater . 2007, 17, 2792; H. S. Kim, Y. Piao, S. H. Kang, T. Hyeon, Y.-E. Sung Electrochem . Commun. 2010, 12, 382; X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff ACS nano 2011, 5, 3333; S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao, L. Ling J. Power Sources 2011, 196, 3887; B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou J. Am . Chem . Soc . 2011, 133, 17146; S. Wang, J. Zhang, C. Chen J. Power Sources, 2010, 195, 5379). 그러나 산화철 전극은 다른 대부분의 산화금속과 마찬가지로 열악한 사이클 성능 문제를 갖고 있다.
최근에, 이러한 문제점을 극복하기 위하여, 다양한 나노/마이크로구조의 산화철이 합성되어 음극 후보로서 시험되고 있다. 그러나 대부분의 논문에서, 상기 산화철은 테플론으로 라이닝된 스테인레스 스틸 재질의 오토클레이브(autoclave)를 사용하여 고온 및 고압하에서 합성되었다(P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon Nature, 2000, 407, 496; W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, L.-J. Wan Adv . Funct . Mater . 2008, 18, 3941; S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao, L. Ling J. Power Sources 2011, 196, 3887; B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou J. Am . Chem . Soc. 2011, 133, 17146; S. Wang, J. Zhang, C. Chen J. Power Sources, 2010, 195, 5379; L.-P. Zhu, H.-M. Xiao, X.-M. Liu, S.-Y. Fu J. Mater . Chem . 2006, 16, 1794).
산업적 관점에서 볼 때, 오토클레이브가 고가이고 고온 및 고압 조건은 과도한 에너지 소비 및 안전 문제가 존재한다는 점에서, 오토클레이브는 경제적으로 불리하다. 또한, 오토클레이브의 경우에 반응을 관찰하거나 반응 도중에 반응물을 추가하는 것이 불가능하다.
다공성 구조의 측면에서 메조세공성(mesoporous) 실리카, 알루미노-실리케이트와 비교하여, 메조세공성 전이금속 산화물을 제조하는 것이 훨씬 더 어렵다.
최근에, 다공성 금속산화물을 제조하기 위하여 경질 주형 합성법(hard template synthesis)(T. Yoon, C. Chae, Y.-K. Sun, X. Zhao, H. H. Kung, J. K. Lee J. Mater . Chem. 2011, 21, 17325; J. Chen, L. Xu, W. Li, X. Gou Adv . Mater. 2005, 17, 582; X. Sun, Y. Shi, P. Zhang, C. Zheng, X. Zheng, F. Zhang, Y. Zhang, N. Guan, D. Zhao, G. D. Stucky J. Am . Chem . Soc . 2011, 133, 14542; F. Jiao, J.-C. Jumas, M. Womes, A. V. Chadwick, A. Harrison, P. G. Bruce J. Am. Chem . Soc . 2006, 128, 12905), 연질 주형 합성법(soft template synthesis)(B. Z. Tian, X. Y. Liu, B. Tu,; C. Z. Yu,; J. Fan,; L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao Nat . Mater . 2003, 2, 159) 및 금속 전구체의 열분해법(Z.-A. Zang, H.-B. Yao, Y.-X. Zhou, W.-T. Yao, S.-H. Yu Chem . Mater . 2008, 20, 4749; M. Hu, J.-S. Jiang, Y. Zeng Chem . Commun . 2010, 46, 1133)과 같은 몇가지 방법들이 개발되었다.
연질 주형 합성법은 TiO2, ZrO2, Nb2O5 및 WO3와 같은 일부 전이금속 산화물의 경우에 이용될 수 있지만, 산화철에 관한 보고는 거의 없다. 경질 주형 합성법은 다양한 정렬(ordered) 및 결정성 금속산화물 합성에 성공적이지만, 이 방법은 주형의 합성 및 제거 단계를 포함하는 복잡한 반응 단계를 필요로 한다. 또한 일부 금속 전구체의 열분해법은 다공성 구조체를 제조할 수 있게 하지만, 금속 전구체는 가격이 비싸다. 따라서 이들 방법 중 어느 것도 특정 형상의 다공성 물질을 합성하기에 적합하지 아니하다.
전술한 종래 기술의 단점을 극복하기 위하여, 본 발명자들은 오토클레이브를 필요로 하지 아니하며 간단하고 경제적이며 확장성 있는(scalable) 성게상(sea urchin-like) 전이금속 산화물-탄소 나노복합체 합성 방법을 개발하였다.
본 발명의 목적은 (i) 전이금속 전구체와 계면활성제의 혼합물을 가열하여 전이금속 옥시수산화물 나노입자를 제조하는 단계; (ii) 상기 (i)단계에서 얻은 생성물 혼합용액에 탄소 전구체를 첨가하여 상기 전이금속 옥시수산화물 나노입자 표면 상에 탄소 전구체층을 형성하는 단계; 및 (iii) 상기 (ii)단계에서 얻은 생성물 혼합용액을 하소하는 단계를 포함하는, 전이금속 산화물-탄소 나노복합체 제조 방법을 제공하는 것이다.
전술한 본 발명의 목적은 (i) 전이금속 전구체와 계면활성제의 혼합물을 가열하여 전이금속 옥시수산화물 나노입자를 제조하는 단계; (ii) 상기 (i)단계에서 얻은 생성물 혼합용액에 탄소 전구체를 첨가하여 상기 전이금속 옥시수산화물 나노입자 표면 상에 탄소 전구체층을 형성하는 단계; 및 (iii) 상기 (ii)단계에서 얻은 생성물 혼합용액을 하소하는 단계를 포함하는, 전이금속 산화물-탄소 나노복합체 제조 방법을 제공함으로써 달성될 수 있다.
본 명세서에서 "전이금속 산화물-탄소 나노복합체"란 전이금속 산화물 나노입자가 탄소층으로 피복된 코어-쉘 구조의 나노복합체를 의미한다.
본 발명에 따른 방법의 전이금속 전구체는, Fe, Mn, Ni, Co, Cr 또는 In과 같은전이금속의 전구체로서, 전이금속 염화물, 전이금속 수산화물, 전이금속 황화물, 전이금속 산화물 등일 수 있다.
상기 계면활성제는 소듐 도데실 설페이트(sodium dodecy sulfate), 소듐 도데실벤젠설포네이트(sodium dodecybenzenesulfonate), 암모늄 라우릴 설페이트(ammonium lauryl sulfate) 또는 소듐 스테아레이트(sodium stearate)와 같은 음이온성 계면활성제, 세틸트리메틸암모늄 브로마이드(cetyltrimethylammonium bromide), 세틸트리에틸암모늄 클로라이드(cetyltriethylammonium chloride), 벤잘코늄 클로라이드(benzalkonium chloride) 또는 벤제토늄 클로라이드(benzethonium chloride)와 같은 양이온성 계면활성제, 또는 폴록사머(poloxamer) 또는 트리톤 X-100(Triton X-100)과 같은 중성 계면활성제일 수 있다.
본 발명에 따른 방법의 (i)단계의 가열 온도는 20℃ 내지 300℃이고, 그 가열 시간은 30분 내지 24시간인 것이 바람직하다.
본 발명에 따른 방법의 (i)단계에서 생성되는 전이금속 옥시수산화물의 크기는 0.1 μm 내지 1 μm일 수 있다.
본 발명에 따른 방법의 (ii)단계의 탄소 전구체는 피롤(pyrrole), 자당(sucrose), 퍼퍼릴 알콜(furfuryl alcohol), 티오펜(thiophene), 아닐린(aniline), 1-퍼퍼릴 피롤(1-furfuryl pyrrole), 또는 이들의 중합체일 수 있다.
본 발명에 따른 방법의 (iii)단계의 하소 온도는 250℃ 내지 350℃이고, 하소 시간은 2시간 내지 10시간일 수 있다. 상기 하소에 의해 탄소전구체층이 탄소층으로 변환되고, 상기 탄소층의 두께는 5 nm 내지 20 nm일 수 있다.
본 발명의 방법에 따르면, 고온 및 고압 조건을 사용하지 아니하면서 전이금속 옥시수산화물을 제조할 수 있기 때문에, 전이금속 산화물-탄소 나노복합체 제조 비용이 적게 소요된다.
또한, 탄소 전구체의 중합에 의해 탄소층을 형성하는 단계에서 전이금속 옥시수산화물의 전이금속이온이 촉매 역할을 하기 때문에, 별도의 중합 촉매를 필요로 하지 아니한다.
더욱이, 본 발명의 방법은 하나의 반응기만으로 전이금속 산화물-탄소 나노복합체를 제조할 수 있기 때문에 제조 설비 투자 비용을 절감할 수 있다.
또한, 본 발명의 방법은 스케일업이 용이하기 때문에, 전이금속 산화물-탄소 나노복합체의 대량 생산에 적합하다.
도 1은 본 발명의 실시예 1에서 합성된 성게상 FeOOH(도 1a, 삽입도는 고배율), 성게상의 폴리피롤로 코팅된 FeOOH(도 1b), 하소 후의 성게상 Fe3O4-C 나노복합체(도 1c, 삽입도는 고배율) 및 절단된 Fe3O4-C 나노복합체에 대한 TEM 사진이다.
도 2a는 본 발명의 실시예 1에서 합성된 (i) 성게상 FeOOH 및 (ii) Fe3O4-C 나노복합체에 대한 XRD 패턴을 보여 주고, 도 2b는 상기 Fe3O4-C 나노복합체의 N2 흡착-탈착 등온선(삽입도는 기공 크기 분포 곡선)을 보여 준다.
도 3은 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체의 라만 스펙트럼을 보여 준다.
도 4는 본 발명의 실시예 1에서 합성된, 탄소 쉘이 없는 성게상 Fe3O4 입자의 TEM 사진이다.
도 5는 본 발명의 실시예 1에서 합성된 성게상 α-Fe2O3 입자의 TEM 사진(도 5a) 및 XRD 스펙트럼(도 5 b)을 보여 준다.
도 6a는 100 mA/g의 전류 밀도에서 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체의 충전-방전 프로파일이고, 도 6b는 0.1 mV/s의 스캔 속도에서 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체의 순환전압전류곡선(cyclic voltammogram)이다.
도 7은, 100 mA/g의 전류 밀도(도 7a) 및 다양한 전류 밀도(도 7b)에서, 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체(사각형, 청색), 탄소 쉘이 없는 Fe3O4(원, 적색) 및 Fe2O3(삼각형, 녹색)의 사이클 성능을 보여 준다.
도 2a는 본 발명의 실시예 1에서 합성된 (i) 성게상 FeOOH 및 (ii) Fe3O4-C 나노복합체에 대한 XRD 패턴을 보여 주고, 도 2b는 상기 Fe3O4-C 나노복합체의 N2 흡착-탈착 등온선(삽입도는 기공 크기 분포 곡선)을 보여 준다.
도 3은 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체의 라만 스펙트럼을 보여 준다.
도 4는 본 발명의 실시예 1에서 합성된, 탄소 쉘이 없는 성게상 Fe3O4 입자의 TEM 사진이다.
도 5는 본 발명의 실시예 1에서 합성된 성게상 α-Fe2O3 입자의 TEM 사진(도 5a) 및 XRD 스펙트럼(도 5 b)을 보여 준다.
도 6a는 100 mA/g의 전류 밀도에서 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체의 충전-방전 프로파일이고, 도 6b는 0.1 mV/s의 스캔 속도에서 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체의 순환전압전류곡선(cyclic voltammogram)이다.
도 7은, 100 mA/g의 전류 밀도(도 7a) 및 다양한 전류 밀도(도 7b)에서, 본 발명의 실시예 1에서 합성된 성게상 Fe3O4-C 나노복합체(사각형, 청색), 탄소 쉘이 없는 Fe3O4(원, 적색) 및 Fe2O3(삼각형, 녹색)의 사이클 성능을 보여 준다.
이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.
실시예
1.
Fe
3
O
4
-C 나노복합체의 합성
염화철(III)과 소듐 도데실 설페이트(계면활성제)를 대기압하의 70℃에서 가열하여 전구체로서 α-FeOOH를 합성하였다. 상기 α-FeOOH 입자는 성게상 구형 입자이고 이의 직경은 200 nm 내지 500 nm이다(도 S1). 상기 α-FeOOH 입자는, 약 2.5 nm 두께 및 약 45 nm 길이의 침상형 물질(needles)로 둘러싸여 있다.
분리 공정이나 세척 공정을 거치지 아니하고, 탄소원으로서 피롤 단량체(pyrrole monomer)를 상기 반응 용액에 첨가하였다. 이 과정에서, 상기 용액 내의 Fe3 +는 상기 피롤 단량체의 중합 촉매로서 작용하였다.
도 1b에 나타난 바와 같이, 피롤은 상기 α-FeOOH 입자 표면상에서 중합되었다. 상기 피롤의 중합 반응 도중에 추가로 피롤 단량체를 첨가할 수 있었고, 성게상 α-FeOOH의 합성 및 폴리피롤(polypyrrole) 코팅을 하나의 반응기 내에서 정제 과정 없이 차례로 진행할 수 있었다. 상기 반응은 비교적 낮은 온도인 70℃ 및 대기압하에서 진행되었다.
여과 및 건조 과정 이후, 폴리피롤로 코팅된 α-FeOOH 입자를 아르곤 흐름 조건 하에서 하소(calcination)하여 Fe3O4-C 나노복합체를 얻었다. 상기 하소 과정 후에도 성게상 구조가 유지되었다(도 1c).
상기 Fe3O4-C 나노복합체의 XRD 패턴(도 2a)에 따르면, 상기 α-FeOOH가 고도의 결정성 마그네타이트(magnetite)로 변하였음을 알 수 있다. 상기 Fe3O4-C 나노복합체의 라만 스펙트럼(도 3)에 따르면, 탄소에 대한 기본적인 D 및 G 밴드에 해당하는 1350 cm-1 및 1590 cm-1에서 두 개의 밴드가 나타났다.
생성되는 Fe3O4-C 나노복합체의 화학적 조성은 피롤 단량체의 양에 따라 조절될 수 있고, 본 실시예에서, 12 wt%의 탄소를 함유하는 Fe3O4-C 나노복합체를 조사하였다. 피롤을 첨가하지 아니한 경우, 탄소 쉘(carbon shell)이 없는 성게상 Fe3O4를 얻었다(도 4). 아르곤 분위기 대신에 공기 분위기에서 하소 과정을 진행하 경우, 성게상 α-Fe2O3 입자를 얻었다(도 5). 그러나 탄소 쉘이 없는 성게상 Fe3O4 및 의 α-Fe2O3 입자경우, 입자 표면상의 침상형 물질이 두꺼워졌다.
상기 질소 흡착-탈착 등온선 및 상응하는 BJH(Barrett-Joyner-Halenda) 기공 크기 분포를 각 단계마다 확인하였다. 성게상 α-FeOOH, 폴리피롤로 코팅된 α-FeOOH 및 하소 후의 Fe3O4-C 나노복합체의 표면적은 각각 149.41 m2/g, 51.29 m2/g 및 77.73 m2/g이다. 성게상 α-FeOOH의 표면적은 얇은 침상형 물질 및 내부 기공에 기인하고, 폴리피롤 코팅 후에 감소하였다. 하소 후에는, 입자 주변의 얇은 침상형 물질이 여전히 탄소층에 내포되어 있을지라도, 계면활성제의 제거 및 3 g/cm3의 작은 밀도를 갖는 α-FeOOH의 5 g/cm3의 큰 밀도를 갖는 마그네타이트로의 전환에 의해 표면적이 증가하였다. 이러한 부피 감소로 인하여 상기 Fe3O4-C 나노복합체 내부에 8.7 nm 크기의 기공들이 생성되었고 다공성 구조는 마이크로톰(microtome)을 사용하여 절단된 나노복합체의 TEM 사진으로 확인할 수 있었다(도 1d). 따라서 간단한 단일 반응기 반응 및 하소 과정에 의해 마이크로미터 이하의 크기를 갖는 메조세공성 Fe3O4 나노구조체를 용이하게 합성하였다.
실시예
2.
Fe
3
O
4
-C 나노복합체의
LIB
음극 물질로서의 성능
실시예 1에서 합성한 성게상 Fe3O4-C 나노복합체의 LIB 음극 물질로서의 용도에 관하여 조사하였다. 100 mA/g의 전류 밀도에서 10 mV 내지 3.0 V의 정전류적(galvanostatic) 충전-방전 사이클 방법을 사용하여 상기 나노복합체의 전기화학적 테스트를 수행하였다(도 6a). 첫번째 사이클에서, 상기 방전 곡선은 약 0.8 V(vs. Li/Li+)에서 고평부(plateau)를 보였는데, 이는 Fe3O4, 탄소-Fe3O4 복합체 및 그래핀-Fe3O4 복합체에 대한 문헌의 결과와 잘 일치한다. 상기 성게상 Fe3O4-C 나노복합체 전극은 첫번째 방전 용량 및 충전 용량이 각각 1228 mAh/g 및 821 mAh/g이다. 상기 첫번째 사이클에서의 쿨롱 효율(Coulombic efficiency)은 약 67%이다. 상기 첫번째 사이클에서의 비가역적 용량 손실은 고체 전해질 계면층(solid electrolyte interface (SEI) layer)의 형성에 기인한다. 상기 성게상 Fe3O4-C 나노복합체 전극에서 발생하는 전기화학적 반응을 추가로 조사하기 위하여, 0.1 mV/s의 스캔 속도로 순환전압전류법(cyclic voltammetry, CV)을 수행하였다(도 6b). 그 결과, 환원 전위와 산화 전위 간의 차이가 큰 것으로 나타났다. 이는 Fe와 O 간의 불균질(heterogeneous) 반응에 본질적인 느린 반응 속도와 결합을 끊기 위한 큰 활성화 장벽(activation barrier)에 기인한 것일 수 있다. 상기 첫번째 사이클에서, 0.64 V에서의 큰 음극 피크(cathodic peak)는, SEI 층 형성과 함께 Fe3 + 및 Fe2 +의 Fe0로의 환원에 상응한다. 이후, 1.6 V 내지 1.9 V 사이의 다중 음극 피크들(multiple anodic peaks)은 Fe0의 Fe2 + 및 Fe3 +로의 산화에 기인한다. 두번째 사이클 이후에, 상기 Fe3O4-C 나노복합체의 CV 곡선은 잘 일치하는데, 이는 전기화학적 가역성이 양호하다는 것을 의미한다.
도 7a는 100 mA/g의 전류 밀도에서 40 사이클까지의 상기 Fe3O4-C 나노복합체의 사이클 성능을 나타내고, 이 결과와 탄소 쉘이 없는 성게상 Fe3O4 및 α-Fe2O3 입자의 CV 곡선을 도 7에서 비교하였다. 그러나 상기 첫번째 사이클에서, α-Fe2O3의 용량이 세 전극의 용량 중 가장 크다. 그러나 상기 α-Fe2O3의 용량은 사이클 과정에서의 큰 부피 변화로 인하여, 30 사이클 이후에 안정화되기 전에 매우 빠르게 감소한다. 이와 유사하게, Fe3O4의 용량은, 20 사이클 이후에 안정화되기 전에 비교적 서서히 감소한다. 이러한 사실은 일반적인 현상은 아니지만, Fe3O4, 탄소 나노튜브-Fe3O4 복합체 및 그래핀-Fe3O4 복합체에 대한 종래의 보고에서 관찰된 사실이다. 상기 현상은, 낮은 전위에서 전해질의 분해에 의한 고분자/겔-유사 필름의 가역적 성장에 기인한다. 도 7b는 다양한 전류 밀도에서 성게상 Fe3O4-C 나노복합체, 탄소 쉘이 없는 Fe3O4 및 α-Fe2O3의 사이클 성능을 보여 준다. 상기 Fe3O4-C 나노복합체는 400 mA/g의 전류 밀도에서 약 745 mAh/g의 충전 용량을 보이는데, 이는 100 mA/g의 전류 밀도에서의 충전 용량의 약 90%이다. 이와 비교하여, 400 mA/g의 전류 밀도에서, Fe3O4 및 α-Fe2O3는 각각, 100 mA/g의 전류 밀도에서의 충전 용량의 약 56% 및 37%를 보인다. 상기 Fe3O4-C 나노복합체는 상기 Fe3O4 및 α-Fe2O3와 비교하여 보다 좋은 속도능(rate performance)을 보인다. 이러한 사이클 성능 및 데이터는, 탄소 쉘이 뛰어난 사이클 안정성 및 높은 속도능을 제공한다는 점을 입증한다.
Claims (8)
- (i) 전이금속 전구체와 계면활성제의 혼합물을 가열하여 전이금속 옥시수산화물 나노입자를 제조하는 단계;
(ii) 상기 (i)단계에서 얻은 생성물 혼합용액에 탄소 전구체를 첨가하여 상기 전이금속 옥시수산화물 나노입자 표면 상에 탄소 전구체층을 형성하는 단계; 및
(iii) 상기 (ii)단계에서 얻은 생성물 혼합용액을 하소하는 단계를 포함하는, 전이금속 산화물-탄소 나노복합체 제조 방법. - 제1항에 있어서, 상기 전이금속 전구체는 Fe, Mn, Ni, Co, Cr 및 In으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 전이금속 산화물-탄소 나노복합체 제조 방법.
- 제1항에 있어서, 상기 계면활성제는 소듐 도데실 설페이트, 소듐 도데실벤젠설포네이트, 암모늄 라우릴 설페이트, 소듐 스테아레이트, 세틸트리메틸암모늄 브로마이드, 세틸트리에틸암모늄 클로라이드, 벤잘코늄 클로라이드, 벤제토늄 클로라이드, 폴록사머 및 트리톤 X-100로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 전이금속 산화물-탄소 나노복합체 제조 방법.
- 제1항에 있어서, 상기 (i)단계의 가열 온도는 20℃ 내지 300℃이고, 가열 시간은 30분 내지 24시간인 것임을 특징으로 하는 전이금속 산화물-탄소 나노복합체 제조 방법.
- 제1항에 있어서, 상기 탄소 전구체는 피롤, 자당, 퍼퍼릴 알콜, 티오펜, 아닐린, 1-퍼퍼릴 피롤 및 이들의 중합체로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 전이금속 산화물-탄소 나노복합체 제조 방법.
- 제1항에 있어서, 상기 (iii)단계의 하소 온도는 250℃ 내지 350℃이고, 하소 시간은 2시간 내지 10시간인 것임을 특징으로 하는 전이금속 산화물-탄소 나노복합체 제조 방법.
- 제1항에 있어서, 상기 전이금속 산화물-탄소 나노복합체가 리튬 이온 전지의 음극 물질로서 사용되는 것임을 특징으로 하는 전이금속 산화물-탄소 나노복합체 제조 방법.
- 제1항에 있어서, 상기 탄소층의 두께는 5 nm 내지 20 nm인 것임을 특징으로 하는 전이금속 산화물-탄소 나노복합체 제조 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120035800A KR20130113562A (ko) | 2012-04-06 | 2012-04-06 | 전이금속 산화물-탄소 나노복합체 제조 방법 |
PCT/KR2013/002664 WO2013151282A1 (ko) | 2012-04-06 | 2013-04-01 | 전이금속 산화물-탄소 나노복합체 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120035800A KR20130113562A (ko) | 2012-04-06 | 2012-04-06 | 전이금속 산화물-탄소 나노복합체 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130113562A true KR20130113562A (ko) | 2013-10-16 |
Family
ID=49300723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120035800A KR20130113562A (ko) | 2012-04-06 | 2012-04-06 | 전이금속 산화물-탄소 나노복합체 제조 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20130113562A (ko) |
WO (1) | WO2013151282A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12027700B2 (en) | 2019-02-13 | 2024-07-02 | Lg Energy Solution, Ltd. | Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110639515B (zh) * | 2016-12-28 | 2022-04-15 | 苏州大学 | 负载金纳米粒子的中空介孔碳纳米球复合材料及在持续处理co中的应用 |
CN108636338B (zh) * | 2018-05-11 | 2020-09-29 | 杭州诚洁环保有限公司 | 一种Fe/C复合固体吸附剂及其制备方法和应用 |
CN114180620B (zh) * | 2021-11-30 | 2023-07-28 | 陕西科技大学 | 一种聚吡咯为模板制备二氧化钛/碳负极的制备方法 |
CN114534742A (zh) * | 2022-02-24 | 2022-05-27 | 海南大学 | 一种高熵单原子催化剂及其制备方法 |
-
2012
- 2012-04-06 KR KR1020120035800A patent/KR20130113562A/ko not_active Application Discontinuation
-
2013
- 2013-04-01 WO PCT/KR2013/002664 patent/WO2013151282A1/ko active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12027700B2 (en) | 2019-02-13 | 2024-07-02 | Lg Energy Solution, Ltd. | Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same |
Also Published As
Publication number | Publication date |
---|---|
WO2013151282A1 (ko) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gan et al. | Morphology-dependent electrochemical performance of Ni-1, 3, 5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries | |
Cao et al. | Hierarchical three-dimensional flower-like Co 3 O 4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries | |
An et al. | Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes | |
Lee et al. | Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes | |
Qu et al. | Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries | |
Chen et al. | Design and synthesis of hollow NiCo 2 O 4 nanoboxes as anodes for lithium-ion and sodium-ion batteries | |
Xie et al. | Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance | |
Zhang et al. | Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials | |
Tong et al. | One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance | |
Fan et al. | Carbon encapsulated 3D hierarchical Fe 3 O 4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries | |
Aghamohammadi et al. | A comprehensive review study on pure titanium niobium oxide as the anode material for Li-ion batteries | |
Liu et al. | Superior lithium storage in a 3D macroporous graphene framework/SnO 2 nanocomposite | |
Shi et al. | Fe3O4 nanoflakes-RGO composites: a high rate anode material for lithium-ion batteries | |
Shi et al. | Box-implanted Nb2O5 nanorods as superior anode materials in lithium ion batteries | |
Fang et al. | Synthesis of unique hierarchical mesoporous layered-cube Mn2O3 by dual-solvent for high-capacity anode material of lithium-ion batteries | |
Chen et al. | Hierarchically-structured hollow NiO nanospheres/nitrogen-doped graphene hybrid with superior capacity retention and enhanced rate capability for lithium-ion batteries | |
Li et al. | Facile synthesis of nanocrystalline-assembled nest-like NiO hollow microspheres with superior lithium storage performance | |
Zhang et al. | Hierarchical bead chain ZnFe2O4-PEDOT composites with enhanced Li-ion storage properties as anode materials for lithium-ion batteries | |
Wu et al. | Ultrathin mesoporous Co3O4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries | |
Li et al. | Construction of hollow Co 3 O 4 cubes as a high-performance anode for lithium ion batteries | |
Zhai et al. | Synthesis of Ni (OH) 2/graphene composite with enhanced electrochemical property by stirring solvothermal method | |
Wei et al. | Facile synthesis of hollow MnO microcubes as superior anode materials for lithium-ion batteries | |
WO2013151282A1 (ko) | 전이금속 산화물-탄소 나노복합체 제조 방법 | |
Chen et al. | Morphology–controlled synthesis of the porous Co3O4 with rugby–shaped and spherical structures and theirs electrochemical properties as negative materials for Li–ion batteries | |
Zhang et al. | Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |