CN106732567B - 一种复合金属氧化物负载活性金属催化剂及其制备方法 - Google Patents

一种复合金属氧化物负载活性金属催化剂及其制备方法 Download PDF

Info

Publication number
CN106732567B
CN106732567B CN201611008489.2A CN201611008489A CN106732567B CN 106732567 B CN106732567 B CN 106732567B CN 201611008489 A CN201611008489 A CN 201611008489A CN 106732567 B CN106732567 B CN 106732567B
Authority
CN
China
Prior art keywords
catalyst
solution
carrier
metal
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611008489.2A
Other languages
English (en)
Other versions
CN106732567A (zh
Inventor
李殿卿
刘雅楠
冯俊婷
贺宇飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201611008489.2A priority Critical patent/CN106732567B/zh
Publication of CN106732567A publication Critical patent/CN106732567A/zh
Application granted granted Critical
Publication of CN106732567B publication Critical patent/CN106732567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/896Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/66Silver or gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种复合金属氧化物负载活性金属催化剂及其制备方法,该催化剂是以复合金属氧化物为载体负载活性金属组分,其特点是活性金属组分高度且稳定分散在载体表面,晶形完整,尺寸均一,粒径为1~5nm,粒径分布范围窄。本发明所采用的制备方法是将两种或三种可溶性金属盐溶于去离子水中配成混合盐溶液,再与碱性沉淀剂溶液混合,经晶化、洗涤、干燥、焙烧即得到复合金属氧化物载体,该载体具有均匀的微球状结构,平均直径为0.3~3.0μm;再将该载体在浸渍液中浸渍上活性金属盐,经干燥、焙烧、还原,得到该催化剂。该催化剂可应用于石油化工、精细化工等领域的多种炔烃加氢反应过程中,催化性能突出,易于回收和重复利用。

Description

一种复合金属氧化物负载活性金属催化剂及其制备方法
技术领域
本发明涉及一种催化剂制备方法,具体涉及以微球形复合金属氧化物为载体,采用改性浸渍法制备的高分散负载型金属催化剂,该催化剂主要用于石油化工、精细化工等领域的多种炔烃加氢反应过程中。
背景技术
烯烃化合物是重要的精细化工及石油化工工业生产的重要原料之一,广泛用于药物中间体、染料及工业添加剂等,对国民经济具有重要的影响作用。目前工业上大规模制备烯烃的方法是裂解法。在裂解过程中,所生成的裂解气中通常含有少量的炔烃。少量的炔烃在烯烃聚合反应中属于有害物质,会使聚合反应的催化剂中毒,因此必须将馏分中的微量炔烃脱除。炔烃选择性加氢是目前去除裂解烯烃中微量炔烃最常用的方法,也是石油化工中的一个重要反应过程。早期,Lindlar催化剂(铅盐处理过的钯/碳酸钙)被用于催化炔烃选择性加氢反应。催化剂处理过程中Pb的添加提高了该类型催化剂的活性及选择性。然而,随着对环境可持续发展要求的日益严格,具有较高毒性的铅物种严重限制了Lindlar催化剂的使用。
针对以上问题,研究者通过改变活性金属组成及结构,探索新的催化剂制备方法及选择合适的载体来提高负载型金属催化剂的催化性能。近年来,Pd,Ni,Cu,Au,Zn等金属由于具有良好的催化加氢活性及选择性,已被广泛应用于各类炔烃选择性加氢反应中。在Identification of non-precious metal alloy catalysts for selectivehydrogenation of acetylene,Science,2008,320,1320-1322中发现,相比于贵金属Pd催化剂,非贵金属NiZn合金更有利于催化炔烃加氢反应,研究认为合金中Ni和Zn间产生了明显的电子及几何效应,从而提高催化性能。随后,文献Gold Nanocluster-CatalyzedSemihydrogenation:A Unique Activation Pathway for Terminal Alkynes,J.Am.Chem.Soc.2014,136,11347-11354将球状及棒状的Au纳米簇浸渍在氧化物上制备具有不同结构的单金属Au催化剂。选择性加氢结果表明,在100%炔烃转化率下,该催化剂选择性大于>99%,远远高于Pd基催化剂的催化性能。
由于α-Al2O3具有良好的机械性能、热稳定性、优异的结构及低廉的价格,被用作工业上传统的炔烃加氢催化剂常采用的载体。然而,由于在高温下焙烧,α-Al2O3比表面积较低,孔道结构较少,导致金属纳米颗粒尺寸较大、分散不均匀。此外,α-Al2O3的不可还原性以及在传统方法制备过程中,活性金属前驱体易于集中吸附在载体表面,使得此种载体与活性金属间相互作用力比较弱,在反应过程中易发生迁移和团聚,不利于活性组分的稳定分散。
复合金属氧化物由于具有化学组成分布均匀、表面酸碱性可调、高的吸附性和较好的热稳定性等优点,已作为高性能催化材料,尤其作为催化剂载体在炔烃选择性加氢反应中得到广泛的应用。Francová等在Hydrogenation of 2-butyne-1,4-diol onsupported Pd catalysts obtained from LDH precursors,Appl.Catal.A,2009,353,160-165中,以复合氧化物MgAlOx为载体,制备了负载型Pd催化剂。将获得的催化剂应用于2-丁炔-1,4-二醇加氢反应中,催化评价结果表明,由于复合金属氧化物与活性组分间的相互作用,MgAlOx负载的Pd催化剂具有优异的2-丁烯-1,4-二醇选择性。但在制备过程中采用高温对催化剂进行处理,导致了载体比表面积的减小,不利于活性金属的有效分散。Wei等在Metal Phosphides Derived from Hydrotalcite Precursors toward the SelectiveHydrogenation of Phenylacetylene,ACS Catal.2015,5,5756-5765中,采用模板导向法合成了具有花球状的复合金属氢氧化物前驱体,在高温还原处理后,获得了花球状MgAlOx负载Ni基催化剂。构筑的具有多级结构的载体为活性组分提供了较大的载体表面积及丰富的孔道结构,使其均匀稳定分散在载体表面,并在苯乙炔加氢反应中表现出较高的炔烃转化率、选择性及催化稳定性。但在制备过程中需要将活性组分金属引入水滑石层板,因此该方法的普适性较差。
综上所述,工业上传统的炔烃加氢催化剂的载体比表面积小,孔道结构较少,导致金属纳米颗粒尺寸较大、分散不均匀;此外,由于传统载体氧化铝的不可还原性以及在传统方法制备过程中活性金属前驱体易于集中吸附在载体表面,使得载体与活性金属间相互作用力比较弱,在反应过程中易发生迁移和团聚,不利于活性组分的高度且稳定分散,从而造成活性、选择性降低及稳定性变差等问题。因此,开发一种比表面高,孔结构更加丰富的多级结构载体和分散性更好的负载型金属催化剂具有十分重要的意义。
发明内容
本发明的目的是提供一种复合金属氧化物负载活性金属组分的催化剂及其制备方法。该催化剂主要用于炔烃加氢反应过程。
本发明提供的催化剂,是以微球形复合金属氧化物为载体负载活性金属组分的催化剂,记为M/NO,其中M代表活性金属组分,为金属单质Pt、Cu、Ni、Pd、Ag、Au、Rh、Ir中一种或者两种,较佳的是Pd、Ir、Ag、Au,活性金属组分质量含量为0.5~5%;NO代表复合金属氧化物载体,为Al3+、Ti4+、Ce4+、Mg2+、Ni2+、Cu2+、Ga3+中的任意两种或三种金属的复合氧化物;该复合氧化物结构特征是具有均匀的微球状结构,较高的比表面和孔结构,平均直径为0.3~3.0μm之间;该催化剂的特征是活性金属组分高度且稳定分散在载体表面,晶形完整,尺寸均一,粒径为1~5nm,粒径分布范围窄。
本发明提供的复合金属氧化物负载型活性金属催化剂的制备方法,具体制备步骤如下:
A.将两种或三种可溶性金属盐溶于去离子水中配成混合盐溶液;如果是两种金属盐的混合溶液,两种金属元素的摩尔比为1:5~5:1;如果是三种金属盐的混合溶液,则三种金属元素的摩尔比为5:1:1~1:5:5;
所述可溶性金属盐为:Al(NO3)3、TiCl4、Ce(NO3)3、Mg(NO3)2、Ni(NO3)2、Cu(NO3)2、Ga(NO3)3、AlCl3、MgCl2、CuCl2、NiCl2、Ti(SO4)2、TiO(SO4)2、Al2(SO4)3、MgSO4、NiSO4、CuSO4、(NH4)2Ce(NO3)6中的两种或三种。较好的是TiCl4、Ce(NO3)3、Mg(NO3)2、Ga(NO3)3中的任意两种。
B.将步骤A中的混合盐溶液与沉淀剂溶液同时加入反应釜中,沉淀剂溶液的加入量为使混合溶液的pH为8.5~12.5,于50~200℃下晶化12~36h,自然冷却至室温,将沉淀物过滤、洗涤至上清溶液pH值呈中性,过滤、将固体物于40~80℃干燥5~24h,再在空气气氛下以2~10℃·min-1的速率升温至200~600℃焙烧2~6h,得到复合金属氧化物NO载体。
所述的沉淀剂溶液是NaOH、KOH、氨水、Na2CO3或NaHCO3的水溶液中的一种,其浓度为0.05~5mol/L。
C.将可溶性活性金属盐溶于去离子水中,配制成浓度为10~60mmol/L的浸渍溶液,较好的浓度为30~50mmol/L;
所述的可溶性活性金属盐是:Pd(NH3)2Cl2、Pd(NO3)2、Na2PdCl4、Pd(CH3COO)2、H2PtCl4、H2PtCl6、K2PtCl4、K2PtCl6、Pt(NO3)2、[Pt(NH3)4]Cl2、HAuCl4、NaAuCl4、AgNO3、AgC2H3O2、Cu(NO3)2·9H2O、Ni(NO3)3·2H2O、RhCl3·3H2O、Rh(CH3COO)3、Rh(NO3)3、H2IrCl6和Na2IrCl6中的一种或两种。较好的是Na2PdCl4、H2IrCl6、HAuCl4和AgNO3中的任意一种。
D.搅拌条件下将步骤B制备的复合金属氧化物载体加到步骤C制备的浸渍溶液中,其中活性金属组分占载体质量含量的0.5~5.0%,持续搅拌下,再向其中加入步骤B所述的沉淀剂溶液,使M盐沉淀在载体上,浸渍沉淀完全后,滤去上层清液,置于60~120℃恒温干燥器中干燥2~20h,得到催化剂前驱体;
E.将步骤D中得到的前驱体在N2气氛下以2~10℃·min-1的速率升温至200~600℃焙烧,然后在10%的H2/Ar混合气中以2~10℃·min-1的速率升温至200~700℃还原,并保持2~6h,制备得到M/NO催化剂。
本方法由于采用复合金属氧化物为载体,其中纳米微晶二次堆积形成的微球状结构为活性组分提供了较大的表面积及丰富的孔道结构,使活性金属均匀分散在载体表面。改性后的浸渍法由于使用沉淀剂将金属盐均匀的沉淀在载体上,使得到的催化剂活性组分颗粒度比较小,载体与活性组分的相互作用较强,在反应过程中抑制了迁移和团聚的发生,有利于活性组分的稳定分散。
图1为实施例1制备的复合金属氧化物载体的X射线衍射(XRD)图。XRD曲线表明复合金属氧化物Mg5Ti5Ox形成。
图2为实施例1制备的复合金属氧化物载体的扫描电子显微镜(SEM)照片。从SEM照片可以看出Mg5Ti5Ox载体具有均匀的微球状结构,平均直径为1.4μm。
图3为实施例1制备的PdAg/Mg5Ti5Ox催化剂的高分辨透射电子显微镜(HRTEM)照片。从HRTEM照片可看出制备的负载型催化剂中,活性金属组分均匀地分散在载体表面,且颗粒尺寸范围为1.5~5.0nm,平均粒径为4.1nm。
图4为实施例1制备的PdAg/Mg5Ti5Ox催化剂在乙炔选择性加氢反应中的实验结果,a.为乙炔转化率对温度的曲线,b.为乙烯选择性对乙炔转化率的曲线。当反应温度为70℃,乙炔转化率接近100%,对应的乙烯选择性为83.8%。
图5为实施例1制备的PdAg/Mg5Ti5Ox催化剂在乙炔选择性加氢反应中的乙炔转化率的稳定性柱状图。该催化剂连续反应100h,每20h取点一次,乙炔转化率分别为83.8%、83.6%、83.0%、82.5%和81.9%,无明显变化。
本发明有益效果:
本发明以微球形复合金属氧化物为载体,采用改性浸渍法,选择合适的金属前驱体溶液和沉淀pH值,在温和条件下制备得到高度分散负载型催化剂。制备过程无需加入表面活性剂,工艺简便。
制备得到的活性纳米金属催化剂颗粒尺寸较小、分散度高且均匀,粒径分布较窄,解决了由于传统催化剂载体表面积低、孔道结构少、稳定性差以及传统金属催化剂的制备方法中存在的金属纳米颗粒大、分散度低等问题。
该催化剂可应用于石油化工、精细化工等领域的多种炔烃加氢反应过程中,催化性能突出,易于回收和重复利用。
附图说明:
图1为实施例1制备的复合金属氧化物载体的XRD图。
图2为实施例1制备的复合金属氧化物载体的SEM图。
图3为实施例1制备的PdAg/Mg5Ti5Ox催化剂的HRTEM照片。
图4为实施例1制备的PdAg/Mg5Ti5Ox催化剂在乙炔选择性加氢反应中的实验结果,a.为乙炔转化率对温度的曲线,b.为乙烯选择性对乙炔转化率的曲线。
图5为实施例1制备的PdAg/Mg5Ti5Ox催化剂在乙炔选择性加氢反应中的乙炔转化率的稳定性柱状图。
具体实施方式:
下面结合实施例,对本发明进行进一步的详细说明。
实施例1
A.将3.8460g Mg(NO3)2·6H2O和3.6000g Ti(SO4)2溶解到70mL的去离子水中配制成混合金属盐溶液。
B.将6.1950g尿素溶解到步骤A制备的混合金属盐溶液中,并将溶解均匀的溶液转移至100mL反应釜中,在150℃烘箱中反应6h。反应结束后,降至室温,将得到的产物经离心、洗涤至中性,烘干,在空气气氛下以10℃·min-1的速率升温至450℃焙烧并保持4h,即得到具有微球结构的Mg5Ti5Ox载体,其平均直径为1.8μm。
C.称取0.6440g PdCl2和0.4250g NaCl溶于去离子水中并定容至100mL,配制成Na2PdCl4溶液;称取0.8495g AgNO3溶于去离子水中并定容至100mL,配制成AgNO3溶液。
D.将560μL 36.3mmol/L Na2PdCl4溶液和400μL 50mmol/L AgNO3溶液添加到40μL去离子水中,搅拌条件下加入0.2148g Mg5Ti5Ox。滴加0.1mol/L NaOH调节悬浮液的pH至完全沉淀,滤去上层清液,置于70℃恒温干燥器中10h,得到催化剂前驱体。
E.将步骤D中获得的催化剂前驱体在N2气氛下以10℃·min-1的速率升温至450℃焙烧,然后在10%H2/Ar混合气中以2℃·min-1的速率升温至500℃还原,并保持4h,制备得到PdAg/Mg5Ti5Ox催化剂,其平均粒径为4nm。
将上述制备的催化剂用于乙炔选择性加氢反应实验:
称取0.1g催化剂与1.95mL粒径为20~40目的石英砂充分混合。将催化剂混合物或催化剂装入直径为7mm的石英反应管中。反应之前将样品在5%H2/N2混合气中活化1h,自然冷却到室温。催化剂性能测试温度为30~100℃,反应原料气中气体成分为0.35%乙炔/0.6%氢气/32.8%乙烯/氮气平衡气。测试压力为4bar,空速为10056h-1。反应物、产物的组成和含量通过气相色谱进行分析,数据处理方式为归一法。为保证测试精度,到达指定温度保持0.5h后开始记录结果,测试进行5组,平均值即为该温度下的催化性能数据,结果见图4;该催化剂连续反应100h,每20h取点5次,平均值即为该时间下的催化性能数据,结果见图5。
实施例2
A.将2.5640g Mg(NO3)2·6H2O和1.8757g Al(NO3)3·9H2O溶解到170mL的去离子水中配制成混合金属盐溶液。
B.将10g尿素溶解到步骤A制备的混合金属盐溶液中,并将溶解均匀的溶液转移至250mL反应釜中,在90℃烘箱中反应24h。反应结束后,降至室温,得到的产物经离心、洗涤至中性后,将下层所得沉淀烘干,将获得的前驱体在空气气氛下以5℃·min-1的速率升温至600℃焙烧2h,即得到具有微球形的Mg2Al1Ox载体,其平均直径为1.0μm。
C.称取1g PtCl2溶于去离子水中并定容至100mL,配制成H2PtCl4溶液。
D.将600μL 20mmol/L的H2PtCl4溶液添加到150μL去离子水中,搅拌条件下加入0.2g Mg2Al1Ox。滴加0.1mol/L尿素调节悬浮液的pH至完全沉淀,滤去上层清液,置于80℃恒温干燥器中12h,得到催化剂前驱体。
E.将步骤D中获得的催化剂前驱体在N2气氛下以10℃·min-1的速率升温至600℃焙烧,然后在10%H2/Ar混合气中以2℃·min-1的速率升温至200℃还原,并保持5h,制备得到Pt/Mg2Al1Ox催化剂,其平均粒径为3.2nm。
实施例3
A.将1.4505g Ni(NO3)2·6H2O,0.9378g Cu(NO3)2·3H2O和1.8757g Al(NO3)3·9H2O溶解到70mL的去离子水中配制成混合金属盐溶液。
B.将7.1556g Na2CO3溶解到步骤A制备的混合金属盐溶液中,并将溶解均匀的溶液转移至100mL反应釜中,在60℃烘箱中反应48h。反应结束后,降至室温,得到的产物经离心、洗涤至中性后,将下层所得沉淀烘干,将获得的前驱体在空气气氛下以10℃·min-1的速率升温至600℃焙烧4h,即得到具有微球形的NiCuAlOx载体,其平均直径为1.2μm。
C.称取0.35g RhCl3·3H2O溶于去离子水中并定容至100mL,配制成Rh的前驱体溶液。
D.将1.0ml 25mmol/L RhCl3溶液添加到150μL去离子水中,搅拌条件下加入0.1534g NiCuAlOx。滴加0.1mol/L Na2CO3调节悬浮液的pH至完全沉淀,滤去上层清液,置于80℃恒温干燥器中12h,得到催化剂前驱体。
E.将步骤D中获得的催化剂前驱体在N2气氛下以10℃·min-1的速率升温至450℃焙烧,然后在10%H2/Ar混合气中以2℃·min-1的速率升温至500℃还原,并保持3h,制备得到Rh/NiCuAlOx催化剂,其平均粒径为4.3nm。
实施例4
A.将2.1711g Ce(NO3)2·6H2O和3.6000g Ti(SO4)2溶解到70mL的去离子水中配制成混合金属盐溶液。
B.将8.5g尿素溶解到步骤A制备的混合金属盐溶液中,并将溶解均匀的溶液转移至100mL反应釜中,在100℃烘箱中反应18h。反应结束后,降至室温,得到的产物经离心、洗涤至中性后,将下层所得沉淀烘干,将获得的前驱体在空气气氛下以5℃·min-1的速率升温至400℃焙烧并保持6h,即得到具有微球形的Ce1Ti3Ox载体,其平均直径为2.4μm。
C.称取1g AuCl3溶于去离子水中并定容至100mL,配制成HAuCl4溶液。
D.将1000μL 50mmol/L的HAuCl4溶液添加到110μL去离子水中,搅拌条件下加入0.1g Ce1Ti3Ox。滴加0.1mol/L Na2CO3调节悬浮液的pH至完全沉淀,滤去上层清液,置于70℃恒温干燥器中10h,得到催化剂前驱体。
E.将步骤D中获得的催化剂前驱体在N2气氛下以10℃·min-1的速率升温至400℃焙烧,然后在10%H2/Ar混合气中以5℃·min-1的速率升温至500℃还原,并保持3h,制备得到Au/Ce1Ti3Ox催化剂,其平均粒径为2.3nm。
实施例5
A.将1.8756g Cu(NO3)2·9H2O和4.3422Ce(NO3)4·6H2O溶解到170mL的去离子水中配制成混合金属盐溶液。
B.将5g尿素溶解到步骤A制备的混合金属盐溶液中,并将溶解均匀的溶液转移至100mL反应釜中,在100℃烘箱中反应15h。反应结束后,降至室温,得到的产物经离心、洗涤至中性后,将下层所得沉淀烘干,将获得的前驱体在空气气氛下以10℃·min-1的速率升温至450℃焙烧并保持4h,即得到具有微球形的CuCeOx载体,其平均直径为0.4μm。
C.称取1g AuCl3溶于去离子水中并定容至100mL,配制成HAuCl4溶液;称取0.9532gNi(NO3)2溶于去离子水中并定容至100mL,配制成Ni(NO3)2溶液。
D.将650μL 33mmol/L的HAuCl4溶液和740μL 32mmol/L的Ni(NO3)2溶液添加到150μL去离子水中,搅拌条件下加入0.9616g CuCeOx,继续搅拌。滴加0.1mol/L NaOH调节悬浮液的pH至完全沉淀,滤去上层清液,置于70℃恒温干燥器中15h,得到催化剂前驱体。
E.将步骤D中获得的催化剂前驱体在N2气氛下以10℃·min-1的速率升温至550℃焙烧,然后在10%H2/Ar混合气中以10℃·min-1的速率升温至600℃还原,并保持2h,制备得到AuNi/CuCeOx催化剂,其平均粒径为1.9nm。
实施例6
A.将3.4572Ga(NO3)2·9H2O和4.3422Ce(NO4)2·6H2O溶解到170mL的去离子水中配制成混合金属盐溶液。
B.将10g NaOH溶解到步骤A制备的混合金属盐溶液中,并将溶解均匀的溶液转移至150mL反应釜中,在180℃烘箱中反应5h。反应结束后,降至室温,得到的产物经离心、洗涤至中性后,将下层所得沉淀烘干,将获得的前驱体在空气气氛下以10℃·min-1的速率升温至400℃焙烧并保持4h,即得到具有微球形的CeGaOx载体,其平均直径为0.8μm。
C.称取1g PdCl2和0.4250g NaCl溶于去离子水中并定容至100mL,配制成Na2PdCl4溶液;称取0.8495g Cu(NO3)2溶于去离子水中并定容至100mL,配制成Cu(NO3)2溶液。
D.将560μL 36.3mmol/L的Na2PdCl4溶液和800μL 25mmol/L的Cu(NO3)2溶液添加到100μL去离子水中,搅拌条件下加入0.1546g CeGaOx,继续搅拌。滴加0.1mol/L KOH调节悬浮液的pH至完全沉淀,滤去上层清液,置于80℃恒温干燥器中12h,得到催化剂前驱体。
E.将步骤D中获得的催化剂前驱体在N2气氛下以10℃·min-1的速率升温至400℃焙烧,然后在10%H2/Ar混合气中以2℃·min-1的速率升温至200℃还原,并保持5h,制备得到PdCu/CeGaOx催化剂,其平均粒径为1.8nm。

Claims (1)

1.一种复合金属氧化物负载活性金属催化剂的制备方法,具体步骤如下:
A.将两种或三种可溶性金属盐溶于去离子水中配成混合盐溶液;如果是两种金属盐的混合溶液,两种金属元素的摩尔比为1:5 ~ 5:1;如果是三种金属盐的混合溶液,则三种金属元素的摩尔比为5:1:1 ~ 1:5:5;
所述可溶性金属盐为:TiCl4、Ce(NO3)3、Mg(NO3)2、Ga(NO3)3、Ti(SO4)2、TiO(SO4)2、 (NH4)2Ce(NO3)6中的两种或三种;
B.将步骤A中的混合盐溶液与沉淀剂溶液同时加入反应釜中,沉淀剂溶液的加入量为使混合溶液的pH为8.5~12.5,于50~200 ℃下晶化12~36 h,自然冷却至室温,将沉淀物过滤、洗涤至上清溶液pH值呈中性,过滤、将固体物于40~80℃干燥5~24 h,再在空气气氛下以2~10 oC·min-1的速率升温至200~600 oC焙烧2~6 h,得到复合金属氧化物载体;
所述的沉淀剂溶液是NaOH、KOH、氨水、Na2CO3或NaHCO3的水溶液中的一种,其浓度为0.05~5 mol/L;
C.将可溶性活性金属盐溶于去离子水中,配制成浓度为10~60 mmol/L的浸渍溶液,
所述的可溶性活性金属盐是:Pd(NH3)2Cl2、Pd(NO3)2、HAuCl4、AgC2H3O2、Cu(NO3)2·9H2O、Ni(NO3)3·2H2O、RhCl3·3H2O、Rh(NO3)3中的一种或两种;
D.搅拌条件下将步骤B制备的复合金属氧化物载体加到步骤C制备的浸渍溶液中,其中活性金属组分占载体质量含量的0.5~5.0%,持续搅拌下,再向其中加入步骤B所述的沉淀剂溶液,使活性金属盐沉淀在载体上,浸渍沉淀完全后,滤去上层清液,置于60~120 oC恒温干燥器中干燥2~20 h,得到催化剂前驱体;
E.将步骤D得到的前驱体在N2气氛下以2~10 oC·min-1的速率升温至200~600 oC焙烧,再在10%的H2/Ar混合气中以2~10oC·min-1的速率升温至200~700 oC并保持2~6 h,得到复合金属氧化物负载的活性金属催化剂;其表示为M/NO,其中M代表活性金属组分,为金属单质Pd、Ag、Au、Cu、Ni、 Rh中的一种或者两种,活性金属组分质量含量为0.5~5%;NO代表复合金属氧化物载体,为Ti4+、Ce4+、Mg2+、Ga3+中的任意两种或三种金属的复合氧化物;该催化剂的活性金属组分高度且稳定分散在载体表面,晶形完整,尺寸均一,粒径为1~5 nm,粒径分布范围窄; 该催化剂具有微球状结构,平均直径为0.3~3.0 μm。
CN201611008489.2A 2016-11-16 2016-11-16 一种复合金属氧化物负载活性金属催化剂及其制备方法 Active CN106732567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611008489.2A CN106732567B (zh) 2016-11-16 2016-11-16 一种复合金属氧化物负载活性金属催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611008489.2A CN106732567B (zh) 2016-11-16 2016-11-16 一种复合金属氧化物负载活性金属催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106732567A CN106732567A (zh) 2017-05-31
CN106732567B true CN106732567B (zh) 2019-06-21

Family

ID=58968374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611008489.2A Active CN106732567B (zh) 2016-11-16 2016-11-16 一种复合金属氧化物负载活性金属催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106732567B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107199041A (zh) * 2017-06-08 2017-09-26 安徽星宇化工有限公司 Pt‑Ni 纳米催化剂的制备方法
CN107930644A (zh) * 2017-11-28 2018-04-20 西南化工研究设计院有限公司 一种高性能合成甲醇催化剂及其制备方法
CN109772291B (zh) * 2019-03-13 2020-07-10 西南化工研究设计院有限公司 一种选择性加氢脱炔催化剂及其制备方法与应用
CN110433797A (zh) * 2019-07-30 2019-11-12 北京氦舶科技有限责任公司 一种单原子Pd基催化剂及其制备方法和应用
CN112337509B (zh) * 2020-11-05 2023-05-26 北京化工大学 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法
CN112403474B (zh) * 2020-12-08 2021-10-22 东北大学 一种负载型co2加氢催化剂及其制备方法
CN113181930B (zh) * 2021-03-31 2023-08-08 北京化工大学 一种负载型PdAgCu三金属纳米催化剂的制备方法及应用
CN113368868A (zh) * 2021-07-13 2021-09-10 北京化工大学 一种负载型亚纳米贵金属催化剂及其制备方法
CN115138368B (zh) * 2022-05-31 2024-04-09 清华大学 一种用于焦油重整的铁基催化剂及其制备方法
CN115155558B (zh) * 2022-06-24 2024-05-28 西安近代化学研究所 一种固溶体载体及钌基催化剂的制备方法
CN115007161B (zh) * 2022-07-18 2023-10-27 中国五环工程有限公司 用于顺酐加氢制丁二酸酐的催化剂及其制备方法和使用方法
CN115155602B (zh) * 2022-08-02 2023-06-30 西部金属材料股份有限公司 一种金属氧化物-铜复合催化剂及其制备方法和应用
CN115282955B (zh) * 2022-08-16 2024-02-06 北京化工大学 一种炔烃选择性加氢用催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621151A (zh) * 2003-11-28 2005-06-01 中国石油化工股份有限公司 一种脱除乙烯原料中少量乙炔的方法
CN101716533A (zh) * 2009-11-13 2010-06-02 北京化工大学 一种整体式催化剂载体及其制备催化剂的方法
CN102319589A (zh) * 2011-07-14 2012-01-18 王萌 一种用于乙炔选择加氢的铜基聚合物杂化催化剂及其制备方法
CN103157469A (zh) * 2013-04-11 2013-06-19 北京化工大学 负载型双金属纳米晶催化剂及其制备方法
CN103977794A (zh) * 2014-04-29 2014-08-13 北京化工大学 一种负载型三维结构贵金属催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621151A (zh) * 2003-11-28 2005-06-01 中国石油化工股份有限公司 一种脱除乙烯原料中少量乙炔的方法
CN101716533A (zh) * 2009-11-13 2010-06-02 北京化工大学 一种整体式催化剂载体及其制备催化剂的方法
CN102319589A (zh) * 2011-07-14 2012-01-18 王萌 一种用于乙炔选择加氢的铜基聚合物杂化催化剂及其制备方法
CN103157469A (zh) * 2013-04-11 2013-06-19 北京化工大学 负载型双金属纳米晶催化剂及其制备方法
CN103977794A (zh) * 2014-04-29 2014-08-13 北京化工大学 一种负载型三维结构贵金属催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
复合金属氧化物负载双金属PdAg催化剂制备及其乙炔选择性加氢性能研究;刘雅楠等;《中国科技论文在线》;20160421;第3页的第1.2.1、1.2.5节以及第5页第2.1节第1段第2-7行

Also Published As

Publication number Publication date
CN106732567A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106732567B (zh) 一种复合金属氧化物负载活性金属催化剂及其制备方法
CN107694592A (zh) 超声辅助置换反应制备的单原子贵金属催化剂及其方法
CN101664682B (zh) 一种非贵金属负载型选择加氢催化剂及其制备方法和应用
CN108927156A (zh) 一种炔烃选择性加氢用负载型合金催化剂及其制备方法
CN109453773A (zh) 一种负载型双金属核壳结构催化剂及其制备方法
Trawczyński et al. Reduction of nitrate on active carbon supported Pd-Cu catalysts
CN107694594B (zh) 固载金属的氮掺杂碳材料及其制备方法和用途
CN106984320A (zh) 一种高分散负载型金属催化剂及其制备方法
CN101049561B (zh) 一氧化碳低温催化氧化的金催化剂及其制备方法
WO2021253712A1 (zh) 一种新型金属复合氧化物催化剂及其制备方法
CN109759133B (zh) 原子分散的复合材料、其制备方法及其应用
CN112044434A (zh) 一种单原子贵金属/过渡金属氧化物复合材料及其制备方法和用途
CN113231070B (zh) 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用
CN102631932A (zh) 用于室温下肼分解制氢的镍基金属催化剂及其制备和应用
CN109433192A (zh) 一种贵金属单原子分散型净化催化剂及其制备方法
CN106881110B (zh) 一种适用于水汽共存一氧化碳氧化的钯催化剂的制备方法
CN110270375B (zh) 一种不饱和碳-碳三键选择性加氢催化剂及其制备方法
CN108855132A (zh) 多级孔铈锆氧化物担载尖晶石型钯钴复合氧化物催化剂
CN104741118A (zh) 一种高分散负载型贵金属合金催化剂的制备方法
US20140031195A1 (en) Anionic gold-hydroxo complex solution and process for producing material loaded with gold nanoparticles
Chen et al. Novel AuPd nanostructures for hydrogenation of 1, 3-butadiene
CN109420515A (zh) 一种高分散负载型金属催化剂的制备方法
CN111905755B (zh) 一种用于2,2,4,4-四甲基-1,3-环丁二酮加氢的催化剂及其制备方法、应用
CN113209964A (zh) 一种负载型钯基催化剂及其制备方法和应用
CN113209958A (zh) 一种掺杂Zn元素的固溶体催化剂及制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant