CN112337509B - 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法 - Google Patents

一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法 Download PDF

Info

Publication number
CN112337509B
CN112337509B CN202011220716.4A CN202011220716A CN112337509B CN 112337509 B CN112337509 B CN 112337509B CN 202011220716 A CN202011220716 A CN 202011220716A CN 112337509 B CN112337509 B CN 112337509B
Authority
CN
China
Prior art keywords
transition metal
catalyst
uio
carbon
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011220716.4A
Other languages
English (en)
Other versions
CN112337509A (zh
Inventor
刘雅楠
茹威
李殿卿
冯俊婷
贺宇飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202011220716.4A priority Critical patent/CN112337509B/zh
Publication of CN112337509A publication Critical patent/CN112337509A/zh
Application granted granted Critical
Publication of CN112337509B publication Critical patent/CN112337509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种碳‑碳三键选择性加氢用MOF基过渡金属单原子催化剂及其制备方法,所提供的催化剂表示为M1 δ+/UiO‑A‑NH2,该催化剂的结构特征是:过渡金属M负载在UiO‑A‑NH2载体上,原子级均匀分散,活性金属分散度100%;且通过气氛处理诱导的载体晶格应变使过渡金属单原子处于电子富集的正价态,同时具有良好的稳定性。本发明所采用的制备方法是将一种过渡金属盐溶于去离子水中配成混合盐溶液,与载体混合,通过有机配体将活性金属单原子锚定在载体表面。经反应气氛再处理,制备获得具有最佳局域电子结构且稳定性良好的M1/UiO‑A‑NH2‑R过渡金属单原子催化剂。该催化剂应用于多种碳‑碳三键选择性加氢反应过程中,催化性能突出,具有高活性和C=C双键选择性。

Description

一种碳-碳三键选择性加氢用MOF基过渡金属单原子催化剂及 其制备方法
技术领域
本发明属于石油化工和精细化工领域,具体涉及一种用于碳-碳三键选择性加氢催化剂及其制备方法。
背景技术
碳-碳三键选择性加氢是化工工业一个极其重要且富有挑战性的反应。负载型Pd基催化剂由于优异的活性被广泛用于工业生产中,但在反应过程中易形成次表面H物种和积碳,大幅度降低其烯烃选择性和稳定性。因此研制兼具高活性、高选择性和稳定性的催化剂尤为迫切。早前,为了提高选择性,研究者采用醋酸铅和喹啉等物质修饰单金属Pd催化剂(Lindlar催化剂),然而具有毒性的铅物种不仅对环境造成极大的破坏,而且降低了Pd原子的利用率,从而提高生产成本。
针对以上问题,研究人员通过调控活性组分尺寸和结构,选择合适载体以及探索新的合成方法来提高其催化活性、选择性和稳定性。文献Effect of Pd NanoparticleSize on the Catalytic Hydrogenation of Allyl Alcohol,J.Am.Chem.Soc.2006,128,4510-4511中以Pd等为活性组分,探究了其尺寸对催化性能的影响。研究发现,相比于块体的催化剂,小尺寸的Pd颗粒更有利于烯丙醇的催化加氢。负载型金属催化剂分散的极限是金属以单原子的形式均匀分布在载体上,这不仅是负载型金属催化剂的理想状态,而且也将催化科学带入到一个更小的研究尺度。2011年中科院大连化物所张涛院士研究团队在文献Single-atom catalysis of CO oxidation using Pt1/FeOx,Nat.Chem.2011,3,634-640提出“单原子催化”概念,且成功合成的单原子催化剂Pt1/FeOx在CO氧化反应表现出优越的性能。单原子催化不仅可以实现金属原子利用率的最大化,降低催化剂成本,而且催化活性位结构均一,有利于催化活性和选择性的提高。然而随着金属颗粒尺寸减小,表面能急剧增大,在制备和反应过程中金属原子易于迁移和团聚,从而使催化剂稳定性降低。因此选择合适的载体对提高单原子催化剂的活性和稳定性具有重要意义。
金属有机框架材料(MOFs)是由金属离子或团簇与有机配体通过配位作用形成的一类长程有序的多孔晶体材料,由于具有超高的比表面积、明确的分子结构单元以及结构的可调节性和修饰性,因此已成为制备单原子催化剂的理想载体之一。中国科技大学江海龙教授团队在文献Single Pt Atoms Confined into a Metal-Organic Framework forEfficient Photocatalysis,Adv.Mater.,2018,30,1705112中将Pt原子引入到MOFs结构中,通过N原子与Pt的强相互作用制备获得稳定的Pt单原子,该催化剂在光催化裂解水产氢反应中展现出超高的活性。然而,关于“单原子活性是否真的优于纳米颗粒”一直存在相当大的争议。这些研究工作都集中在金属原子排列的影响,没有考虑其氧化态的作用。近期,Hyunjoo Lee和Jeong Woo Han等在Controlling Oxidation State of Pt Single-Atomsfor Maximizing Catalytic Activity,Angew.Chem.Int.Ed.,2020,DOI:10.1002/anie.202009776中将Pt单原子固定在缺陷CeO2-Al2O3载体上并通过高温还原控制其氧化态,探究单原子高氧化态(16.6%Pt0)到高金属态(83.8%Pt0)对CO、CH4和NO氧化反应性能的影响。研究发现,相比于Pt纳米颗粒,价态接近于富集电子的金属态有利于反应物分子的扩散和吸附以及产物的脱附,实现了活性和选择性的共同提升。然而,通过调控单原子局域电子结构来提高催化剂在碳-碳三键选择性加氢反应中性能的研究未见相关报道。
综上所述,构筑富集电子的单原子催化位点是提高负载型催化剂在加氢反应中催化性能的有效手段,但以传统高温还原方法调控单原子氧化态的同时,由于其较大的表面能,金属原子之间的凝聚作用使其化学键处于非定域化状态,高温处理过程中极易发生团聚耦合,从而严重影响催化活性和稳定性。本发明以MOFs为催化剂载体,系列过渡金属(Ni、Co、Fe、Cu、Pt、Au、Pd)为活性组分,拟采用气氛处理诱导载体晶格应变,从而构筑富集电子的正价单原子催化剂,并对其进行调控,获得具有最佳局域电子结构且稳定性良好的过渡金属单原子催化剂,从而实现炔烃分子向烯烃分子的定向转化。
发明内容
本发明的目的是提供一种MOF基过渡金属单原子催化剂及其制备方法,该催化剂主要用于碳-碳三键选择性加氢反应。
本发明提供的催化剂,表示为M1 δ+/UiO-A-NH2,其中M1代表过渡金属单原子,M代表过渡金属颗粒,是过渡金属Pd、Au、Pt、Ni、Fe、Cu、Co中的一种,较好的是Pd、Ni或Fe;δ代表氧化态,δ=0~2;过渡金属质量占催化剂总质量的0.05~0.5wt.%,较佳的是0.1~0.2wt.%。UiO-A-NH2为孔径可调的金属有机框架材料(Metal Organic Frameworks,简称MOFs),其中UiO代表具有相同拓扑结构的Zr基MOFs,A代表MOFs结构中有机配体所包含的苯环数目,A=-66、-67、-68,其中-66表示一个苯环,-67表示两个苯环,-68表示三个苯环;-NH2代表MOFs结构中有机配体中苯环上的氨基取代基。
上述催化剂的结构特征是:M负载在UiO-A-NH2载体上,原子级均匀分散,活性金属分散度100%,热处理气氛诱导载体晶格应变形成电子富集的MOFs基过渡金属M1单原子催化剂,且具有高稳定性。
该催化剂的制备方法是以孔径可调的金属有机框架材料作为载体,过渡金属为活性组分,在氢气与炔烃和烯烃混合气氛诱导下,经过热处理诱导其晶格应变,得到电子富集的MOFs基过渡金属正价氧化态单原子催化剂。
本发明提供的上述碳-碳三键选择性加氢用MOF基过渡金属单原子催化剂的制备方法,具体步骤如下:
A.将可溶性ZrCl4和有机配体加入N,N-二甲基甲酰胺中,超声使其完全溶解得到混合溶液A,其中有机配体与金属盐的质量比为1:1.0~1:1.5,N,N-二甲基甲酰胺溶液与有机配体的质量比为45~50:1;
所述的有机配体是2-氨基对苯二甲酸、2-氨基-4,4'-联苯二甲酸、2′-氨基-[1,1′:4′,1″-三联苯基]-4,4″-二羧酸中的一种;
B.将混合溶液A与酸溶液以5~15:1体积比均匀混合,并转移至反应釜中,于80~200℃下晶化16~32h,自然冷却至室温,将沉淀物过滤,并用N,N-二甲基甲酰胺溶液和无水乙醇清洗至pH值呈中性,将固体物于60~100℃干燥6~18h,得到孔径在0.5~2nm范围内的金属有机框架材料,表示为UiO-A-NH2
所述的酸溶液是盐酸、冰醋酸中的一种;
C.将可溶性过渡金属盐溶于去离子水,配成浓度为20~50mmol/L的浸渍溶液,较佳的是20~30mmol/L;取1mL过渡金属盐溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌0.5~2h;
所述的过渡金属盐是Na2PdCl4、Pd(O2CCH3)2、NaAuCl4、HAuCl4、Na2PtCl4、H2PtCl6、Ni(NO3)2、Fe(NO3)3、Cu(NO3)2、Co(NO3)2中的一种;较佳的是Na2PdCl4、Ni(NO3)2、Fe(NO3)3中的一种;
D.在室温下,按照过渡金属占载体质量的0.05~0.5wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌48~80h,过滤,经无水甲醇和二氯乙烷洗涤,并于60~120℃恒温干燥8~16h,得到了过渡金属原子级分散的金属有机框架材料,表示为M1/UiO-A-NH2-R,M1代表过渡金属单原子;
E.将步骤D中得到的M1/UiO-A-NH2置于反应器中,通入气氛进行处理,流速10~50mL/min,并以2~10℃·min-1的速率升温至50~150℃,保持5~12h后降至室温取出。在预处理过程中,通过反应气诱导UiO-A-NH2发生晶格应变,从而使UiO-A-NH2上的N原子向具有正价态的活性金属转移电子得到由晶格应变诱导富集电子的M1 δ+/UiO-A-NH2单原子催化剂;所述的处理气氛是H2与炔烃/烯烃的混合气;所述的炔烃/烯烃是C2H2/C2H4、C3H4/C3H6、C4H6/C4H8中的一种;其中,炔烃与烯烃的摩尔比为0.01~0.1,炔烃与H2的摩尔比为0~1;较佳的处理气氛是C2H2/C2H4/H2,其中乙炔与乙烯的摩尔比为0.01~0.05,乙炔与H2的摩尔比为0.3~0.5。
该制备方法的特点是:以MOF为载体,通过有机配体锚定活性金属单原子后,通过反应气氛诱导载体晶格发生应变,促使金属单原子的局域电子环境改变,通过调控有机配体和孔结构、诱导气氛种类及比例,形成活性金属电子环境及价态可控的M1 δ+/UiO-A-NH2,有利于反应物分子的扩散和吸附,因此具有较高的活性和产物选择性;此外,载体对金属原子的配位锚定作用抑制了催化活性金属原子在反应过程中的迁移和团聚,有利于活性组分的稳定分散,具有优异的稳定性。
由图1的球差矫正-扫描透射电子显微镜(Spherical Aberration CorrectedScanning Transmission Electron Microscope,AC-STEM)照片可以看出,实施例1催化剂的活性金属组分以原子级水平均匀地分散在载体表面,金属分散度为100%。
从图2的Pd K边X射线吸收近边缘结构(XANES)谱图中可以看出活性金属价态在0~2之间。
从图3可以看出,a为乙炔转化率对反应温度的曲线,b为乙烯选择性对反应温度的曲线。当反应温度为200℃,乙炔转化率接近100%,对应的乙烯选择性为91%。
由图4可以看出该催化剂连续反应25h,每5h取点一次,乙炔转化率为100%,乙烯选择性为91%±3%,无明显变化。
由图5的球差矫正-扫描透射电子显微镜(Spherical Aberration CorrectedScanning Transmission Electron Microscope,AC-STEM)照片可以看出,实施例2催化剂的活性金属单原子分散在载体表面,金属分散度为100%。
本发明的有益效果:
本发明所提供的制备方法特点是:以孔径可调的金属有机框架材料作为载体,采用载体配位法,负载上过渡金属活性组分后,在氢气与炔烃/烯烃混合气氛诱导下,经过热处理诱导载体晶格应变,得到电子富集的MOF基过渡金属正价态单原子催化剂。制备条件温和,制备过程无需加入表面活性剂,工艺简便。
制备得到的活性金属组分以原子级水平分散在载体表面,且通过气氛处理诱导的载体晶格应变使过渡金属单原子处于电子富集的正价态,同时具有良好的稳定性,解决了由于传统方法构筑的金属单原子价态及稳定性难以精准控制等问题。
该催化剂可应用于多种碳-碳三键选择性加氢反应过程中,具有优异的C≡C键加氢活性和C=C键选择性,催化性能突出,易于回收和重复利用,具有良好的稳定性。
附图说明:
图1为实施例1在C2H2/C2H4/H2气氛下制备的Pd1 δ+/UiO-66-NH2催化剂的球差矫正-扫描透射电子显微镜(AC-STEM)照片。
图2为实施例1在C2H2/C2H4/H2气氛下制备的Pd1 δ+/UiO-66-NH2催化剂的Pd K边X射线吸收近边缘结构(XANES)谱图。
图3为实施例1制备的Pd1 δ+/UiO-66-NH2催化剂在乙炔选择性加氢反应中的实验结果,a为乙炔转化率对反应温度的曲线,b为乙烯选择性对反应温度的曲线。
图4为实施例1制备的Pd1 δ+/UiO-66-NH2催化剂在乙炔选择性加氢反应中的稳定性曲线。
图5为实施例2在H2气氛下制备的Pd1 δ+/UiO-66-NH2催化剂的球差校正扫描透射电子显微镜(AC-STEM)照片。
具体实施方式:
实施例1
A.将1.18g可溶性ZrCl4和0.9g的2-氨基对苯二甲酸溶于60mLN,N-二甲基甲酰胺中超声溶解;
B.将步骤A中的混合溶液与冰醋酸溶液以6:1体积比均匀混合,并转移至反应釜中,于120℃下晶化24h,自然冷却至室温,将沉淀物过滤,并用N,N-二甲基甲酰胺溶液和无水乙醇清洗至pH值呈中性,将固体物于60℃干燥12h,得到了平均孔径为1.0nm的金属有机框架材料,表示为UiO-66-NH2
C.将可溶性过渡金属盐PdCl2溶于去离子水,配成浓度为50mmol/L的Na2PdCl4溶液;取1mL Na2PdCl4溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌1h;
D.在室温下,按照过渡金属占载体质量的0.1wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌72h,过滤,经无水甲醇和二氯乙烷洗涤,并于60℃恒温干燥12h,得到Pd1/UiO-66-NH2
E.将步骤D中得到的Pd1/UiO-66-NH2置于反应器中,通入H2/C2H2/C2H4气氛进行处理,其中炔烃与烯烃的摩尔比为0.01,炔烃与H2的摩尔比为0.5,流速10mL/min,并以10℃·min-1的速率升温至150℃,每20℃保持2h后降至室温取出,得到由晶格应变诱导富集电子的Pd1 δ+/UiO-66-NH2单原子催化剂。
将上述制备的催化剂用于乙炔选择性加氢反应实验:
称取0.1g催化剂与1.7mL粒径为20~40目的石英砂充分混合后,装入直径为7mm的石英反应管中。反应原料气中气体成分为0.3%乙炔/0.45%氢气/33%乙烯/氮气平衡气,催化性能测试温度为150~200℃,测试温度间隔10℃,测试压力为4bar。为保证测试精度,到达指定温度保持5h,每0.5h取点1次,结果见图3;该催化剂连续反应25h,每0.5h取点1次,结果见图4。
实施例2
A、B同实施例1;
C.将可溶性过渡金属盐PdCl2溶于去离子水,配成浓度为50mmol/L的Na2PdCl4溶液;取1mL Na2PdCl4溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌1h;
D.在室温下,按照过渡金属占载体质量的0.1wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌72h,过滤,经无水甲醇和二氯乙烷洗涤,并于60℃恒温干燥12h,得到Pd1/UiO-66-NH2
E.将步骤D中得到的Pd1/UiO-66-NH2置于反应器中,通入H2/C2H2/C2H4气氛进行处理,其中炔烃与烯烃的摩尔比为0.01,炔烃与H2的摩尔比为0,流速10mL/min,并以10℃·min-1的速率升温至150℃,每20℃保持2h后降至室温取出,得到Pd1 δ+/UiO-66-NH2单原子催化剂。
实施例3
A.将1.18g可溶性ZrCl4和1.28g 2-氨基-4,4'-联苯二甲酸溶于60mL N,N-二甲基甲酰胺中超声溶解;
B.将步骤A中的混合溶液与冰醋酸溶液以6:1体积比均匀混合,并转移至反应釜中,于120℃下晶化24h,自然冷却至室温,将沉淀物过滤,并用N,N-二甲基甲酰胺溶液和无水乙醇清洗至pH值呈中性,将固体物于60℃干燥12h,得到了平均孔径为1.5nm的金属有机框架材料,表示为UiO-67-NH2
C.将可溶性过渡金属盐PtCl2溶于去离子水,配成浓度为50mmol/L的Na2PtCl4溶液;取1mL Na2PtCl4溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌1h;
D.在室温下,按照过渡金属占载体质量的0.5wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌72h,过滤,经无水甲醇和二氯乙烷洗涤,并于60℃恒温干燥12h,得到Pt1/UiO-67-NH2
E.将步骤D中得到的Pt1/UiO-67-NH2置于反应器中,通入H2/C2H2/C2H4气氛进行处理,其中炔烃与烯烃的摩尔比为0.01,炔烃与H2的摩尔比为0.5,流速10mL/min,并以10℃·min-1的速率升温至150℃,每20℃保持1h后降至室温取出,得到由晶格应变诱导富集电子的Pt1 δ+/UiO-67-NH2单原子催化剂。
实施例4
A、B同实施例3;
C.将可溶性过渡金属盐PdCl2溶于去离子水,配成浓度为50mmol/L的Na2PdCl4溶液;取1mL Na2PdCl4溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌1h;
D.在室温下,按照过渡金属占载体质量的0.1wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌60h,过滤,经无水甲醇和二氯乙烷洗涤,并于60℃恒温干燥12h,得到Pd1/UiO-67-NH2
E.将步骤D中得到的Pd1/UiO-67-NH2置于反应器中,通入H2/C3H4/C3H6气氛进行处理,其中炔烃与烯烃的摩尔比为0.01,炔烃与H2的摩尔比为0.2,流速10mL/min,并以10℃·min-1的速率升温至150℃,每20℃保持2h后降至室温取出,得到由晶格应变诱导富集电子的Pd1 δ+/UiO-67-NH2单原子催化剂。
实施例5
A、B同实施例1;
C.将可溶性过渡金属盐Fe(NO3)3溶于去离子水,配成浓度为50mmol/L的Fe(NO3)3溶液;取1mL Fe(NO3)3溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌1h;
D.在室温下,按照过渡金属占载体质量的0.2wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌72h,过滤,经无水甲醇和二氯乙烷洗涤,并于60℃恒温干燥12h,得到Fe1/UiO-66-NH2
E.将步骤D中得到的Fe1/UiO-66-NH2置于反应器中,通入H2/C2H2/C2H4气氛进行处理,其中炔烃与烯烃的摩尔比为0.01,炔烃与H2的摩尔比为0.5,流速10mL/min,并以10℃·min-1的速率升温至150℃,每20℃保持2h后降至室温取出,得到由晶格应变诱导富集电子的Fe1 δ+/UiO-66-NH2单原子催化剂。
实施例6
A、B同实施例1;
C.将可溶性过渡金属盐Ni(NO3)2溶于去离子水,配成浓度为20mmol/L的Ni(NO3)2溶液;取1mL该溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌1h;
D.在室温下,按照过渡金属占载体质量的0.3wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌48h,过滤,经无水甲醇和二氯乙烷洗涤,并于60℃恒温干燥12h,得到Ni1/UiO-66-NH2
E.将步骤D中得到的Ni1/UiO-66-NH2置于反应器中,通入H2/C2H2/C2H4气氛进行处理,其中炔烃与烯烃的摩尔比为0.1,炔烃与H2的摩尔比为0.2,流速10mL/min,并以10℃·min-1的速率升温至150℃,每20℃保持2h后降至室温取出,得到由晶格应变诱导富集电子的Ni1 δ+/UiO-66-NH2单原子催化剂。

Claims (4)

1.一种碳-碳三键选择性加氢用MOF基过渡金属单原子催化剂的制备方法,具体步骤如下:
A.将可溶性ZrCl4和有机配体加入N,N-二甲基甲酰胺中,超声使其完全溶解得到混合溶液A,其中有机配体与金属盐的质量比为1:1.0~1:1.5,N,N-二甲基甲酰胺溶液与有机配体的质量比为45~50:1;
所述的有机配体是2-氨基对苯二甲酸、2-氨基-4,4'-联苯二甲酸、2′-氨基-[1,1′:4′,1″-三联苯基]-4,4″-二羧酸中的一种;
B.将混合溶液A与酸溶液以5~15:1体积比均匀混合,并转移至反应釜中,于80~200C下晶化16~32 h,自然冷却至室温,将沉淀物过滤,并用N,N-二甲基甲酰胺溶液和无水乙醇清洗至pH值呈中性,将固体物于60~100C干燥6~18 h,得到孔径在0.5~2 nm范围内的金属有机框架材料,表示为UiO-A-NH2
所述的酸溶液是盐酸、冰醋酸中的一种;
C.将可溶性过渡金属盐溶于去离子水,配成浓度为20~50 mmol/L的浸渍溶液;取1mL过渡金属盐溶液加入到含有2-吡啶甲醛的无水甲醇中,在室温下持续搅拌0.5~2h;
所述的过渡金属盐是Na2PdCl4、Pd(O2CCH3)2、NaAuCl4、HAuCl4、Na2PtCl4、H2PtCl6、Ni(NO3)2、Fe(NO3)3、Cu(NO3)2、Co(NO3)2中的一种;
D.在室温下,按照过渡金属占载体质量的0.05~0.5 wt.%,将步骤B中的载体充分分散到步骤C的浸渍溶液中,持续搅拌48~80h,过滤,经无水甲醇和二氯乙烷洗涤,并于60~120C恒温干燥8~16h,得到了过渡金属原子级分散的金属有机框架材料,表示为M/UiO-A-NH2-R,M代表过渡金属单原子;
E.将步骤D中得到的M/UiO-A-NH2置于反应器中,通入气氛进行处理,流速10~50 mL/min,并以2~10C·min-1的速率升温至50~150C,保持5~12h后降至室温取出;
所述的处理气氛是H2与炔烃/烯烃的混合气;所述的炔烃/烯烃是C2H2/C2H4、C3H4/C3H6、C4H6/C4H8中的一种;其中,炔烃与烯烃的摩尔比为0.01~0.1,炔烃与H2的摩尔比为0~1。
2.根据权利要求1所述的一种碳-碳三键选择性加氢用MOF基过渡金属单原子催化剂的制备方法,其特征是步骤B所述的浸渍溶液的浓度为20~30 mmol/L;所述的过渡金属盐是Na2PdCl4、Ni(NO3)2和Fe(NO3)3中的一种;步骤E所述的处理气氛是C2H2/C2H4/H2,其中乙炔与乙烯的摩尔比为0.01~0.05,乙炔与H2的摩尔比为0.3~0.5。
3.根据权利要求1所述的方法制备的碳-碳三键选择性加氢用MOF基过渡金属单原子催化剂,表示为M1 δ+/UiO-A-NH2,其中M1代表过渡金属单原子, M代表过渡金属颗粒,是过渡金属Pd、Au、Pt、Ni、Fe、Cu、Co中的一种,δ代表氧化态,δ=0~2;过渡金属质量占催化剂总质量的0.05~0.5 wt.%;UiO-A-NH2为孔径可调的金属有机框架材料,其中UiO代表具有相同拓扑结构的Zr基MOFs,A代表结构中有机配体所包含的苯环数目,A=-66、-67、-68,其中-66表示一个苯环,-67表示两个苯环,-68表示三个苯环;-NH2代表结构中有机配体中苯环上的氨基取代基;
该催化剂的结构特征是:M负载在UiO-A-NH2载体上,原子级均匀分散,活性金属分散度100%。
4.根据权利要求3所述的碳-碳三键选择性加氢用MOF基过渡金属单原子催化剂,其特征是所述的M是过渡金属Pd、Ni或Fe,其中过渡金属质量占催化剂总质量的0.1~0.2 wt.%。
CN202011220716.4A 2020-11-05 2020-11-05 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法 Active CN112337509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011220716.4A CN112337509B (zh) 2020-11-05 2020-11-05 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011220716.4A CN112337509B (zh) 2020-11-05 2020-11-05 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN112337509A CN112337509A (zh) 2021-02-09
CN112337509B true CN112337509B (zh) 2023-05-26

Family

ID=74428757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011220716.4A Active CN112337509B (zh) 2020-11-05 2020-11-05 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112337509B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209992B (zh) * 2021-04-30 2023-12-15 北京化工大学 一种碳-碳三键选择性加氢用含硫Ni基原子簇合物催化剂及其制备方法
CN113198511B (zh) * 2021-05-10 2022-08-02 南京大学 高效活化过硫酸盐的氮掺杂碳载Fe-Co双金属单原子催化剂及其制备方法
CN113262820B (zh) * 2021-05-19 2023-05-26 北京单原子催化科技有限公司 一种具有M1@MOFs结构催化剂,制备方法及用途
CN113952985B (zh) * 2021-07-07 2023-06-16 中国科学技术大学 一种微波辅助高效制备高性能mof基非贵金属单原子复合材料的方法及复合材料、应用
CN113683532B (zh) * 2021-10-27 2022-01-18 山东新和成药业有限公司 一种香茅腈的制备方法及所采用的催化剂
CN115532318B (zh) * 2022-10-20 2023-07-21 江南大学 一种mof负载的金属催化剂及其制备方法与应用
CN115814858A (zh) * 2022-10-31 2023-03-21 电子科技大学长三角研究院(湖州) 一种mof基单原子催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624160A (zh) * 2015-01-21 2015-05-20 北京科技大学 一种导热增强型金属有机框架气体存储材料的制备方法
CN105669779A (zh) * 2016-03-08 2016-06-15 山东师范大学 一种提高基于Zr(IV)离子的金属有机框架Pd含量的合成方法
CN106732567A (zh) * 2016-11-16 2017-05-31 北京化工大学 一种复合金属氧化物负载活性金属催化剂及其制备方法
CN107148422A (zh) * 2014-03-18 2017-09-08 加利福尼亚大学董事会 包含微孔金属有机骨架的有序超晶格的介观材料
CN108786921A (zh) * 2018-04-26 2018-11-13 上海理工大学 一种单原子Pd@UiO-66催化剂及其制备方法和应用
CN110270375A (zh) * 2019-07-01 2019-09-24 北京化工大学 一种不饱和碳-碳三键选择性加氢催化剂及其制备方法
CN110368931A (zh) * 2019-07-31 2019-10-25 合肥工业大学 一种共价有机框架材料衍生碳骨架负载金属单原子复合材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259117A1 (en) * 2009-06-19 2012-10-11 The Regents Of The University Of California Organo-metallic frameworks and methods of making same
WO2017066328A1 (en) * 2015-10-12 2017-04-20 The University Of Chicago Stabilization of active metal catalysts at metal-organic framework nodes for highly efficient organic transformations
KR101856709B1 (ko) * 2016-05-03 2018-05-10 한국화학연구원 Mof-808 계열의 유기금속골격체로 이루어진, 이동 수소화반응용 촉매

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148422A (zh) * 2014-03-18 2017-09-08 加利福尼亚大学董事会 包含微孔金属有机骨架的有序超晶格的介观材料
CN104624160A (zh) * 2015-01-21 2015-05-20 北京科技大学 一种导热增强型金属有机框架气体存储材料的制备方法
CN105669779A (zh) * 2016-03-08 2016-06-15 山东师范大学 一种提高基于Zr(IV)离子的金属有机框架Pd含量的合成方法
CN106732567A (zh) * 2016-11-16 2017-05-31 北京化工大学 一种复合金属氧化物负载活性金属催化剂及其制备方法
CN108786921A (zh) * 2018-04-26 2018-11-13 上海理工大学 一种单原子Pd@UiO-66催化剂及其制备方法和应用
CN110270375A (zh) * 2019-07-01 2019-09-24 北京化工大学 一种不饱和碳-碳三键选择性加氢催化剂及其制备方法
CN110368931A (zh) * 2019-07-31 2019-10-25 合肥工业大学 一种共价有机框架材料衍生碳骨架负载金属单原子复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Control of Local Electronic Structure of Pd Single Atom Catalyst by Adsorbate Induction";Wei Ru et al.;《Small》;20211112;第18卷(第1期);第1-11页 *
"MOF负载Pd催化剂的制备及选择性加氢性能";殷冬冬;《中国博士学位论文全文数据库 工程科技I辑》;20200115(第01期);正文第51页第4.2节,第55页第3段 *
"Palladium(II)@Zirconium-Based Mixed-Linker Metal-Organic Frameworks as Highly Efficient and Recyclable Catalysts for Suzuki and Heck Cross-Coupling Reactions";Sun, R et al.;《ChemCatChem》;20160922;第8卷(第20期);第3261页摘要及右栏第1段,3263页图1及右栏第1段,3270页左栏第2-3段 *

Also Published As

Publication number Publication date
CN112337509A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112337509B (zh) 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法
CN110270348B (zh) 一种贵金属单原子催化剂及其制备和应用
CN107497488B (zh) 一种高加氢选择性Au-Pd单原子合金催化剂的制备方法及应用
WO2018209666A1 (zh) 一种单原子分散钯基催化剂的制备方法及其催化应用
CN110270375B (zh) 一种不饱和碳-碳三键选择性加氢催化剂及其制备方法
CN105642311A (zh) 碳基非贵金属贵金属核壳纳米催化剂及其以MOFs为模板的制备方法
Shi et al. CO oxidation over Cu 2 O deposited on 2D continuous lamellar gC 3 N 4
CN106423161B (zh) 一种加氢催化剂的制备方法及催化剂
CN108404987B (zh) 一种提高纳米颗粒@MOFs材料催化效率的方法
CN110694690A (zh) 一种制备金属单原子催化剂的方法
CN111203260A (zh) 一种单原子钯负载氮化碳催化剂及其制备和在去除no中的应用
CN114558590A (zh) 一种Co-Rh双金属催化剂合成方法及其应用
CN111195514A (zh) 一种单原子分散的铑基催化剂、其制备方法及在甲烷低温氧化反应中的应用
CN116809072A (zh) 一种微波法合成的钴单原子多相催化剂及其应用
CN113171771B (zh) 一种限域型复合催化剂、制备方法及其应用
CN107185525A (zh) 八面体Pt纳米粒子负载γ‑Al2O3型催化剂的制备方法
CN114471580B (zh) 一种负载型镍镓催化剂的合成及其应用方法
CN111804298A (zh) 贵金属单原子-钙铝石笼状亚纳米腔复合催化剂的受控合成方法及产品和应用
CN116651442B (zh) 表面限域型原子级分散的Pt@SiO2-N催化剂及其制备方法和应用
CN114849700B (zh) 一种高选择性Pt基加氢催化剂及其制备方法和应用
CN113559862B (zh) 原子级助剂修饰的CuO复合介晶催化剂及其制备方法
CN114618518B (zh) 一种负载型双金属催化剂及其制备和应用
CN116943709B (zh) 一种用于丙烯和氧气环氧化制备环氧丙烷的催化剂及其用途
CN109126779B (zh) 一种小分子多碳直链烯烃烷烃化及异构化可控制备方法
CN113368895B (zh) 一种具有高转化率的丙烯气相环氧化催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant