CN113368868A - 一种负载型亚纳米贵金属催化剂及其制备方法 - Google Patents

一种负载型亚纳米贵金属催化剂及其制备方法 Download PDF

Info

Publication number
CN113368868A
CN113368868A CN202110790524.5A CN202110790524A CN113368868A CN 113368868 A CN113368868 A CN 113368868A CN 202110790524 A CN202110790524 A CN 202110790524A CN 113368868 A CN113368868 A CN 113368868A
Authority
CN
China
Prior art keywords
ldo
noble metal
catalyst
salt
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110790524.5A
Other languages
English (en)
Inventor
贺宇飞
李海萍
李殿卿
刘雅楠
冯俊婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110790524.5A priority Critical patent/CN113368868A/zh
Publication of CN113368868A publication Critical patent/CN113368868A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/19Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings
    • C07C29/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings in a non-condensed rings substituted with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型亚纳米贵金属催化剂及其制备方法,本发明将低氧化态金属阳离子引入层状复合金属氧化物层板结构中,制备的M1M2‑LDO载体具有充分暴露且均匀分散的低氧化态金属阳离子还原位点,再负载贵金属活性组分,通过控制气氛环境与热处理温度,利用载体自身分散的还原位点、高比表面积和结构稳定性,自发原位还原和锚定贵金属组分,实现贵金属组分高度分散和稳定负载。获得具有催化活性的负载型亚纳米贵金属催化剂N/M1M2‑LDO。所制备的催化剂在苯酚加氢和蒽醌加氢反应中表现出较好的转化率与选择性,且反应工艺条件温和,便于回收。本发明提供的制备方法制备过程绿色高效,无需添加还原剂及表面活性剂。

Description

一种负载型亚纳米贵金属催化剂及其制备方法
技术领域
本发明属于催化剂制备领域,具体涉及负载型亚纳米贵金属催化剂及其制备方法。
背景技术
多相催化作为现代化学工业的关键技术,在国民经济中占有举足轻重的地位,对社会经济的发展与进步具有重大的促进作用。负载型贵金属催化剂是一类十分重要的多相催化剂,在石油炼制、环境保护、以及精细化学品合成等领域起着重要作用。负载型贵金属催化剂一般由活性贵金属组分、助催化剂及载体组成,而单质态的活性贵金属组分在吸附与活化反应物分子过程中发挥重要作用。我国贵金属储量较少,而近年来快速发展的化工产业对贵金属需求量急剧增加。因此,开发一种简单实用、绿色高效且通用性强的负载型亚纳米贵金属催化剂的制备方法以提高贵金属原子的经济性仍然具有挑战性。
负载型贵金属催化剂的制备主要包括贵金属活性组分前驱体的还原及其在载体表面的固定两个步骤,不同制备方法的两个步骤顺序是迥乎不同的。要实现负载型贵金属催化剂的高分散,贵金属组分在载体表面的快速还原和固载以及抑制团聚都是至关重要的。传统的负载型贵金属催化剂制备方法是浸渍法,制备过程简单成本低,易于工业化生产。但贵金属组分与载体之间难以形成强的相互作用,且在焙烧和干燥过程中会发生迁移或生长聚集形成较大的纳米颗粒,此外在催化反应过程中贵金属也会发生迁移或浸出。近年来,对负载型贵金属催化剂的活性组分分散性进行改善的制备方法受到广泛关注,如原位沉淀法、溶胶-凝胶固定法、原位还原法等被报道以改善贵金属的分散和分散稳定性。文献Zhou Gongbing,Jiang Lan,He Daiping,Journal of Catalysis 369(2019)352-362中通过水热法制备了均匀暴露{100}晶面的TiO2载体,以KBH4为还原剂,采用浸渍法制备了在TiO2{100}晶面良好分散的Ru基催化剂,暴露的{100}晶面有利于Ru纳米颗粒的均匀分散,平均粒径为3.4nm,有效的提高了催化性能。但是该方法制备负载型贵金属催化剂过程中,极易产生溶剂化和团簇效应存在颗粒团聚的问题,同时制备过程中需添加还原剂。文献Chen Xiaomei,Wu Genghuang,Chen Jinmei,Chen Xi,Xie Zhaoxiong,and Wang Xiaoru,J.Am.Chem.Soc.,2011,133,3693-3695以氧化石墨烯作为载体,同时利用其自身还原性直接与氧化态PdCl4 2-发生氧化还原反应,成功制备了Pd/氧化石墨烯催化剂,无需添加还原剂,但是该催化剂活性组分Pd纳米颗粒平均粒径为3.5nm,仍需要拓展该方法,进一步降低活性组分尺寸。因此,继续开展负载型亚纳米贵金属催化剂的绿色高效制备方法的探究,对于提升贵金属组分的原子经济性具有重要意义。
还原性层状复合金属氧化物材料(LDO)是通过热处理还原性层状双金属氢氧化物(LDHs)获得的一种二维层状无机功能材料。基于LDHs的拓扑效应,热处理后获得还原性LDO的金属阳离子在层板上的排布方式和位置基本保持不变,使得LDO中金属阳离子保持良好的分散性和还原性;而垂直于层板方向的层间结构发生坍塌,使得LDO中暴露更多还原性金属阳离子位点,且具有更好的结晶性和更高的比表面积。此外,热处理后层板表面羟基基团脱除避免了其对载体自发还原制备催化剂过程的影响。
基于LDO材料中金属阳离子良好分散且种类可以灵活调控,及其拓扑效应的结构特性,我们发现还原性LDHs前驱体在控制气氛环境和焙烧温度热处理后获得的LDO材料具有良好分散和暴露的低氧化态金属阳离子还原位点,且具有更好的结晶性和更高的比表面积。其中良好分散和暴露的低氧化态金属阳离子与氧化态贵金属离子发生原位自发氧化还原过程获得零价态的贵金属,更好的结晶性和更高的比表面积可进一步提升活性贵金属组分的稳定性和分散性,故利用该发现制备一种负载型亚纳米贵金属催化剂。
发明内容
本发明的目的是提供一种负载型亚纳米贵金属催化剂,另一目的是提供该催化剂的制备方法。该催化剂在苯酚加氢和蒽醌加氢反应中具有良好的应用效果。
本发明所提供的负载型亚纳米贵金属催化剂,表示为N/M1M2-LDO,其中N代表贵金属Pd、Pt、Ag中的一种或两种,较优的为Pd或Pt;M1M2-LDO是含有低氧化态金属离子的层状复合金属氧化物载体,贵金属活性组分呈原子级均匀分散于M1M2-LDO载体上,M1代表二价金属离子Co2+、Fe2+、Mg2+或Zn2+中的一种或两种;M2代表三价金属离子Al3+、Fe3+或Ce3+中的一种或两种;且M1和M2中至少含有低氧化态金属离子Co2+、Fe2+或Ce3+中的一种。M1M2-LDO较优的是CoAl-LDO、CoAlCe-LDO、CoMgAl-LDO中的一种。亚纳米是指贵金属粒子的平均尺寸小于1nm。
本发明所提供的负载型亚纳米贵金属催化剂的制备方法,具体步骤如下:
A.将M1盐和M2盐溶于去离子水中配制混合盐溶液;其中M1盐的浓度为0.1-2mol/L;M2盐的浓度为0.025-1mol/L;M1/M2摩尔比为2-4:1;且混合溶液中至少含有低氧化态金属离子Co2+、Fe2+或Ce3+中的一种或两种。
所述的M1盐为Co(NO3)2·6H2O、FeSO4 7H2O、Mg(NO3)2·6H2O或Zn(NO3)2·6H2O中的一种或者两种;所述的M2盐为Al(NO3)3·9H2O、Fe(NO3)3·9H2O、Ce(NO3)3·6H2O中的一种或两种。
再将Na2CO3和NaOH溶于去离子水中配制混合碱溶液;其中Na2CO3的浓度为0.5-10mol/L,NaOH的浓度为0.2-4mol/L;
B.将上述两种溶液同时匀速滴加入胶体磨中,混合盐溶液与混合碱溶液的滴加量按照OH-与总阳离子摩尔比为1-2:1确定;于1000-3000rpm的转速快速成核20-30分钟,出料,将成核浆液于65-95℃恒温搅拌反应3-14h,离心收集沉淀物,用去离子水离心洗涤滤饼至中性,干燥9-15小时,得到水滑石结构前驱体M1M2-LDHs,将其置于马弗炉,在空气气氛中于300-600℃温度下焙烧2-6h,获得含有低氧化态金属阳离子的还原性层状复合金属氧化物载体M1M2-LDO;
该步骤中,焙烧时载体前驱体发生拓扑结构转变,获得还原性层状复合金属氧化物载体M1M2-LDO,载体表面低氧化态金属阳离子还原位点保持良好分散,且具有更好的结晶性和更高的比表面积。
C.将步骤B获得的M1M2-LDO粉末加入去离子水中,搅拌使其均匀分散,配制固含量为0.1-1%悬浊液;逐滴加入贵金属N盐溶液,按照最终催化剂N/M1M2-LDO中贵金属N与M1M2-LDO的质量百分比为0.1-1%确定N盐的加入量;继续室温搅拌4-6h,结束反应,离心收集沉淀物,用去离子水离心洗至中性,于-50~-20℃真空冷冻干燥箱中冷冻干燥4-12小时,得到催化剂N/M1M2-LDO,贵金属活性组分粒子平均粒径尺寸小于1nm,为亚纳米粒子。
所述贵金属N为Pd、Pt、Ag中的一种或两种;所述N盐溶液为Na2PdCl4、K2PdCl4、H2PtCl6、Na2PtCl6、AgNO3溶液中的一种或两种,N盐溶液的浓度为30-60mmol/L。
该步骤中,载体中低氧化态金属阳离子与贵金属前驱体盐溶液中的Pd2+、Pt4+、Ag+发生原位自发氧化还原反应,使其还原成Pd0、Pt0、Ag0,且均匀分散在载体表面。
对得到的催化剂进行以下表征:
图1为实施例1步骤C制备的催化剂的高角度环形暗场-扫描透射电子显微镜(HAADF-STEM)照片及Co、Pt物种粒子分布图。从图1显示出催化剂中Co及活性组分Pt均匀分布于样品表面,且无明显的大颗粒团聚现象,活性组分Pt以亚纳米团簇的形式均匀分散于载体表面。
图2为实施例2步骤C制备的催化剂的高角度环形暗场-扫描透射电子显微镜(HAADF-STEM)照片及Co、Ce、Pd物种粒子分布图。从图2显示出催化剂载体表面Co物种分散于样品表面,Ce物种以纳米颗粒的形式分布于Co物种周围,活性组分Pd物种均匀分布于样品表面,且无明显的大颗粒团聚现象,说明其以亚纳米尺寸的形式均匀分布于载体表面,且在Co/Ce物种周围亚纳米Pd物种的分布更为丰富。
图3为实施例2步骤C制备的催化剂的X射线光电子能谱分析(XPS)结果。从图3显示出,Co2+/Ce3+物种与Pd发生氧化还原反应,表明Pd与载体间存在强电子间相互作用。
图4为实施例3步骤C制备的催化剂的热过滤实验转化率随时间变化图。图4显示,催化剂催化苯酚加氢反应进行2个小时进行热过滤实验后,反应转化率不变,说明催化剂结构稳定,在反应过程中不发生活性组分Pd亚纳米粒子的浸出。
本发明的有益效果:本发明将低氧化态金属阳离子引入层状复合金属氧化物层板结构中,制备的M1M2-LDO载体具有充分暴露且均匀分散的低氧化态金属阳离子还原位点,因此具备供电子效应,在贵金属组分负载过程中,无需加入还原剂与表面活性剂或高温焙烧处理,载体利用自身分散的还原位点、高比表面积和结构稳定性,自发原位还原和锚定贵金属组分,实现贵金属组分高度分散和稳定负载。一步获得具有催化活性的负载型亚纳米贵金属催化剂N/M1M2-LDO。通过控制热处理温度,对载体还原位点的分散性、比表面积和稳定性进行调控,增强金属-载体间作用力,抑制活性组分颗粒发生奥斯瓦尔德熟化产生的聚集现象,实现亚纳米贵金属粒子的稳定负载。所制备的催化剂在苯酚加氢和蒽醌加氢反应中表现出较好的转化率与选择性,且反应工艺条件温和,便于回收。
附图说明:
图1为实施例1制备的催化剂的HAADF-STEM照片及催化剂表面Co与Pt物种的分布照片。其中a、b和c分别为催化剂Pt/CoAl-LDO的HAADF-STEM照片、催化剂Pt/CoAl-LDO表面Co物种和Pt物种的分布照片。
图2为实施例2制备的催化剂的HAADF-STEM照片及Co、Ce与Pd物种的分布照片。其中a、b、c、d和e分别为催化剂Pd/CoAlCe-LDO的HAADF-STEM照片、催化剂表面Co物种、Ce物种、Co-Ce共存物种和Pd物种的分布照片。
图3为实施例2制备的载体、催化剂的金属物种的XPS谱图。其中a为载体和催化剂中Co物种的谱图、b为载体和催化剂中Ce物种的谱图,c为催化剂中Pd物种的XPS谱图。
图4为实施例3制备的催化剂用于苯酚加氢反应热过滤实验转化率随时间变化图。
具体实施方式:
以下结合附图实施例对本发明作进一步详细描述:
实施例1
A.将3.1067g Co(NO3)2·6H2O和2.001g Al(NO3)3·9H2O溶于160mL去离子水中配制混合盐溶液;将1.0240g NaOH和1.1307g Na2CO3溶于160mL去离子水中配制成混合碱溶液。
B.将上述两种溶液同时匀速滴加入胶体磨中,控制二者的体积比为1:1,保持pH为6.5-7.5;室温下,于3000rpm的转速快速成核20分钟。将成核浆液于90℃恒温条件下搅拌反应4h,离心收集沉淀物,用去离子水离心洗至中性,干燥9小时,得到含有低氧化态金属阳离子的还原性层状金属氢氧化物载体前驱体CoAl-LDHs,置于马弗炉中在空气气氛环境中热处理4h,焙烧温度为450℃,获得含有低氧化态金属阳离子的还原性层状复合金属氧化物载体CoAl-LDO。
C.将步骤B获得的0.6000g CoAl-LDO分散在100mL去离子水中,室温搅拌30min,形成均匀分散的CoAl-LDO悬浊液;逐滴加入529微升浓度为50mmol/L的Na2PtCl6溶液;继续室温搅拌6h,结束反应,离心收集沉淀物,用去离子水离心洗至中性,于-50℃真空冷冻干燥箱中冷冻干燥5小时,得到催化剂Pt/CoAl-LDO。测得其中Pt的百分含量为0.86%,Pt颗粒以亚纳米尺寸形式分布于载体表面。
实施例2
A.将2.9103g Co(NO3)2·6H2O,1.5005g Al(NO3)3·9H2O和0.4342gCe(NO3)3·6H2O溶于150mL去离子水中配制混合盐溶液;将1.2000g NaOH和1.0600g Na2CO3溶于150mL去离子水中配制成混合碱溶液。
B.将上述两种溶液同时匀速滴加入胶体磨中,控制二者的体积比为5:8,保持pH为9.5-10.5,室温下,于3000rpm的转速快速成核20分钟。将成核浆液于85℃恒温条件下搅拌反应4h,离心收集沉淀物,用去离子水离心洗至中性,干燥8小时,得到含有低氧化态金属阳离子的还原性层状金属氢氧化物载体前驱体CoAlCe-LDHs,置于马弗炉中在空气气氛环境中热处理4h,焙烧温度为450℃,获得含有低氧化态金属阳离子的还原性层状复合金属氧化物载体CoAlCe-LDO。
C.将步骤B获得的0.6000g CoAlCe-LDO分散在100mL去离子水中,室温搅拌20min,形成均匀分散的CoAlCe-LDO悬浊液;逐滴加入469微升浓度为30mmol/L的K2PdCl4溶液;继续室温搅拌4h,结束反应,离心收集沉淀物,用去离子水离心洗至中性,于-50℃真空冷冻干燥箱中冷冻干燥10小时,得到催化剂Pd/CoAlCe-LDO。测得其中Pd的百分含量为0.25%,Pd颗粒以亚纳米尺寸形式分布于载体表面。
实施例3
A.将1.4900g Co(NO3)2·6H2O,0.4396g Mg(NO3)2·6H2O,1.2800g Al(NO3)3·9H2O溶于120mL去离子水中配制混合盐溶液;将0.6554g NaOH和0.7235g Na2CO3溶于120mL去离子水中配制成混合碱溶液。
B.将上述两种溶液同时匀速滴加入胶体磨中,控制二者的体积比为1:1,保持pH为6.5-7.5;室温下,于3000rpm的转速快速成核20分钟。将成核浆液于80℃恒温条件下搅拌反应4h,离心收集沉淀物,用去离子水离心洗至中性,干燥10小时,得到含有低氧化态金属阳离子的还原性层状金属氢氧化物载体前驱体CoMgAl-LDHs,置于气氛炉在H2气氛环境中热处理4h,焙烧温度为350℃,获得含有低氧化态金属阳离子的还原性层状复合金属氧化物载体CoMgAl-LDO。
C.将步骤B获得的CoMgAl-LDO粉末分散在100mL去离子水中,室温搅拌20-30min,形成均匀分散的CoMgAl-LDO悬浊液;逐滴加入451微升浓度为30mmol/L的Na2PdCl4溶液;继续室温搅拌5h,结束反应,离心收集沉淀物,用去离子水离心洗至中性,于-50℃真空冷冻干燥箱中冷冻干燥8小时,得到催化剂Pd/CoMgAl-LDO。测得其中Pd的百分含量为0.48%,Pd颗粒以亚纳米尺寸形式分布于载体表面。
实施例4
A.将1.4553g Co(NO3)2·6H2O,0.2975Zn(NO3)2·6H2O,1.1254g Al(NO3)3·9H2O溶于100mL去离子水中配制盐溶液;将0.5760g NaOH和0.5235g Na2CO3溶于100mL去离子水中配制成混合碱溶液。
B.将上述两种溶液同时匀速滴加入胶体磨中,控制二者的体积比为1:1,保持pH为6.5-7.5;室温下,于2500rpm的转速快速成核20分钟。将成核浆液于85℃恒温条件下搅拌反应4h,离心收集沉淀物,用去离子水离心洗至中性,干燥9小时,得到含有低氧化态金属阳离子的还原性层状金属氢氧化物载体前驱体CoZnAl-LDHs,置于马弗炉种在空气气氛环境中热处理4h,焙烧温度为450℃,获得含有低氧化态金属阳离子的还原性层状复合金属氧化物载体CoZnAl-LDO。
C.将步骤B获得的0.5000gCoZnAl-LDO分散在100mL去离子水中,室温搅拌25min,形成均匀分散的CoZnAl-LDO悬浊液;逐滴加入834微升浓度为50mmol/L的Na2PtCl6溶液;继续室温搅拌5h,结束反应,离心收集沉淀物,用去离子水离心洗至中性,于-50℃真空冷冻干燥箱中冷冻干燥10小时,得到催化剂Pt/CoZnAl-LDO。测得其中Pt的百分含量为0.90%,Pt颗粒以亚纳米尺寸形式分布于载体表面。
应用例1:
将实施例1、3制备的催化剂用于苯酚加氢反应进行性能评价
评价装置为高压反应釜,操作步骤如下:
首先,按照苯酚与贵金属的摩尔比为250:1,将15mL反应溶剂环己烷、0.4g反应物苯酚和催化剂加人到25mL高压反应釜中。反应开始前,先通入高纯H2进行除气1min,立即密闭高压反应釜。然后将反应釜温度升到80℃。控制反应温度为80℃,搅拌速度为1000r/min。反应体系压力为0.4MPa的高纯H2,反应时间为4h。反应结束后,用冰水浴冷却至室温,离心、过滤,反应液进行岛津高效液相色谱检测。并采用内标法进行数据处理。催化剂在80℃条件下的苯酚转化率和环己醇选择性结果见表1:
表1
催化剂样品 实例1 实例3
苯酚转化率(%) 99 98
环己醇选择性(%) 99 99
从表1中可以看出,采用本发明所制备的Pt基和Pd基催化剂在温和条件下(0.4MPa,80℃,苯酚与贵金属的摩尔比为250:1)对苯酚加氢反应具有较高的苯酚转化率和环己醇选择性。
应用例2:
将实施例2、3制备的催化剂应用于蒽醌加氢反应进行性能评价,具体步骤如下:
评价装置为带有磁力搅拌和加热装置的聚四氟乙烯内胆反应釜,将50mg催化剂和60mL蒽醌工作液(浓度为100g/L的蒽醌工作液由100g 2-乙基蒽醌、1,3,5-三甲苯和400mL磷酸三辛酯组成)加入到反应釜并封闭,通入氢气以置换反应釜中的空气,重复5次。将反应釜升温至50℃,并通入氢气,使压力达到0.3MPa,搅拌转速调至1200r/min后开始计时。反应1.5h后,从反应气出口阀采集反应样品进行活性和选择性评价并计算H2O2产率。催化剂的H2O2产率和时空收率见表2。
表2
催化剂样品 实施例2 实施例3
H<sub>2</sub>O<sub>2</sub>产率(g/mL) 11.67 14.54
时空收率(gH<sub>2</sub>O<sub>2</sub>/(gPd·h)) 2017 2575
从表2中可以看出,采用本发明所获得的Pd基催化剂在蒽醌加氢反应中具有较高的H2O2产率和时空收率。

Claims (4)

1.一种负载型亚纳米贵金属催化剂的制备方法,其特征是按照如下步骤制备:
A.将M1盐和M2盐溶于去离子水中配制混合盐溶液;其中M1盐的浓度为0.1-2mol/L;M2盐的浓度为0.025-1mol/L;M1/M2摩尔比为2-4:1;且混合溶液中至少含有低氧化态金属离子Co2+、Fe2+或Ce3+中的一种或两种;所述的M1盐为Co(NO3)2·6H2O、FeSO4 7H2O、Mg(NO3)2·6H2O或Zn(NO3)2·6H2O中的一种或者两种;所述的M2盐为Al(NO3)3·9H2O、Fe(NO3)3·9H2O、Ce(NO3)3·6H2O中的一种或两种;
再将Na2CO3和NaOH溶于去离子水中配制混合碱溶液;其中Na2CO3的浓度为0.5-10mol/L,NaOH的浓度为0.2-4mol/L;
B.将上述两种溶液同时匀速滴加入胶体磨中,混合盐溶液与混合碱溶液的滴加量按照OH-与总阳离子摩尔比为1-2:1确定;于1000-3000rpm的转速快速成核20-30分钟,出料,将成核浆液于65-95℃恒温搅拌反应3-14h,离心收集沉淀物,用去离子水离心洗涤滤饼至中性,干燥9-15小时,得到水滑石结构前驱体M1M2-LDHs,将其置于马弗炉,在空气气氛中于300-600℃温度下焙烧2-6h,得到含有低氧化态金属阳离子的还原性层状复合金属氧化物M1M2-LDO;
C.将步骤B获得的M1M2-LDO粉末加入去离子水中,搅拌使其均匀分散,配制固含量为0.1-1%悬浊液;逐滴加入贵金属N盐溶液,按照最终催化剂N/M1M2-LDO中贵金属N与M1M2-LDO的质量百分比为0.1-1%确定N盐的加入量;继续室温搅拌4-6h,结束反应,离心收集沉淀物,用去离子水离心洗至中性,于-50~-20℃真空冷冻干燥箱中冷冻干燥4-12小时,得到催化剂N/M1M2-LDO;
所述贵金属N为Pd、Pt、Ag中的一种或两种;所述N盐溶液为Na2PdCl4、K2PdCl4、H2PtCl6、Na2PtCl6、AgNO3溶液中的一种或两种,N盐溶液的浓度为30-60mmol/L。
2.根据权利要求1所述的负载型亚纳米贵金属催化剂的制备方法,其特征是所述贵金属N为Pd或Pt。
3.一种根据权利要求1所述的方法制备的负载型亚纳米贵金属催化剂,其特征是该催化剂的化学表示式为N/M1M2-LDO,其中N代表贵金属Pd、Pt、Ag中的一种或两种,M1M2-LDO是含有低氧化态金属离子的层状复合金属氧化物载体,贵金属活性组分呈原子级均匀分散于M1M2-LDO载体上,M1代表二价金属离子Co2+、Fe2+、Mg2+或Zn2+中的一种或两种;M2代表三价金属离子Al3+、Fe3+或Ce3+中的一种或两种;且M1和M2中至少含有低氧化态金属离子Co2+、Fe2+或Ce3+中的一种。
4.根据权利要求3所述的负载型亚纳米贵金属催化剂,其特征是所述贵金属N为Pd或Pt;所述的M1M2-LDO载体是CoAl-LDO、CoAlCe-LDO、CoMgAl-LDO层状复合金属氧化物中的一种。
CN202110790524.5A 2021-07-13 2021-07-13 一种负载型亚纳米贵金属催化剂及其制备方法 Pending CN113368868A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110790524.5A CN113368868A (zh) 2021-07-13 2021-07-13 一种负载型亚纳米贵金属催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110790524.5A CN113368868A (zh) 2021-07-13 2021-07-13 一种负载型亚纳米贵金属催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN113368868A true CN113368868A (zh) 2021-09-10

Family

ID=77581900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110790524.5A Pending CN113368868A (zh) 2021-07-13 2021-07-13 一种负载型亚纳米贵金属催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113368868A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917927A (zh) * 2022-04-26 2022-08-19 郑州大学 一种铂族金属催化剂及其制备和应用
CN114950473A (zh) * 2022-04-19 2022-08-30 浙江微通催化新材料有限公司 一种Pt/CuMgFe-LDH催化剂的制备方法及其在苯酚加氢制备环己醇中的应用
CN116099548A (zh) * 2023-03-23 2023-05-12 大连理工大学 一种用于制备高比例反反氢化双酚a的负载型催化剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732567A (zh) * 2016-11-16 2017-05-31 北京化工大学 一种复合金属氧化物负载活性金属催化剂及其制备方法
CN108067252A (zh) * 2017-11-23 2018-05-25 福州大学 一种贵金属加氢脱硫催化剂及其制备方法和应用
CN110170326A (zh) * 2019-05-08 2019-08-27 北京化工大学 一种高分散负载型贵金属催化材料及其制备方法
CN111389416A (zh) * 2020-05-06 2020-07-10 北京化工大学 一种基于水滑石结构的单原子催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732567A (zh) * 2016-11-16 2017-05-31 北京化工大学 一种复合金属氧化物负载活性金属催化剂及其制备方法
CN108067252A (zh) * 2017-11-23 2018-05-25 福州大学 一种贵金属加氢脱硫催化剂及其制备方法和应用
CN110170326A (zh) * 2019-05-08 2019-08-27 北京化工大学 一种高分散负载型贵金属催化材料及其制备方法
CN111389416A (zh) * 2020-05-06 2020-07-10 北京化工大学 一种基于水滑石结构的单原子催化剂及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950473A (zh) * 2022-04-19 2022-08-30 浙江微通催化新材料有限公司 一种Pt/CuMgFe-LDH催化剂的制备方法及其在苯酚加氢制备环己醇中的应用
CN114917927A (zh) * 2022-04-26 2022-08-19 郑州大学 一种铂族金属催化剂及其制备和应用
CN114917927B (zh) * 2022-04-26 2024-01-30 郑州大学 一种铂族金属催化剂及其制备和应用
CN116099548A (zh) * 2023-03-23 2023-05-12 大连理工大学 一种用于制备高比例反反氢化双酚a的负载型催化剂的制备方法及应用
CN116099548B (zh) * 2023-03-23 2024-05-28 大连理工大学 一种用于制备高比例反反氢化双酚a的负载型催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
CN110170326B (zh) 一种高分散负载型贵金属催化材料及其制备方法
CN113368868A (zh) 一种负载型亚纳米贵金属催化剂及其制备方法
CN111389416A (zh) 一种基于水滑石结构的单原子催化剂及其制备方法
Rioux et al. Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects
Jiang et al. Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction
Li et al. Structural evolution of a metal–organic framework and derived hybrids composed of metallic cobalt and copper encapsulated in nitrogen-doped porous carbon cubes with high catalytic performance
WO2021253712A1 (zh) 一种新型金属复合氧化物催化剂及其制备方法
CN113231070B (zh) 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用
CN112371173B (zh) 一种应用于间硝基苯磺酸加氢的铂炭催化剂及其制备方法
CN111054404A (zh) 片状羟基磷灰石载体及负载型纳米银催化剂的制备方法
Li et al. Synthesis of supported Pd nanocluster catalyst by spontaneous reduction on layered double hydroxide
CN116351477A (zh) 一种除甲醛负载型Pt6团簇催化剂及其制备方法
CN114653370A (zh) 金属氧化物基金属单原子催化剂及其制备方法和应用
CN113600181A (zh) 一种纳米钯负载催化剂的制备方法
CN109599571B (zh) 用于电催化氧还原的枝状PtPdCu纳米颗粒及其制备方法
KR101227389B1 (ko) 균일한 산화철 나노입자의 제조 방법
CN114797845A (zh) 一种碳-碳三键选择性加氢反应用Pd催化剂及其制备方法
Shang et al. Influence of synthesis parameters on particle properties and catalytic activity of rice roll-like Au/SiO2 nanocatalysts prepared in inverse miniemulsions
CN113231058A (zh) 一种锌修饰的亲水性Ru基催化剂的制备方法及其催化苯选择性加氢反应的应用
Ma et al. Synthesis of hydrogen peroxide from carbon monoxide, water and oxygen catalyzed by amorphous NiP (B)/Al2O3
CN113929158B (zh) 一种硝酸铂的制备方法
CN114471580B (zh) 一种负载型镍镓催化剂的合成及其应用方法
CN114604881B (zh) 一种可控羟基含量的羟基纳米氧化铝的制备方法
CN111569903B (zh) 一种直接利用砷钌矿制备钌基催化剂的方法及其产品和应用
CN114082418B (zh) 一种负载型铂基单原子三元合金催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210910

WD01 Invention patent application deemed withdrawn after publication