CN106711449A - 纳米线型碳酸钴负极材料的合成方法 - Google Patents

纳米线型碳酸钴负极材料的合成方法 Download PDF

Info

Publication number
CN106711449A
CN106711449A CN201710009705.3A CN201710009705A CN106711449A CN 106711449 A CN106711449 A CN 106711449A CN 201710009705 A CN201710009705 A CN 201710009705A CN 106711449 A CN106711449 A CN 106711449A
Authority
CN
China
Prior art keywords
nanowire
cobalt carbonate
synthetic method
negative material
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710009705.3A
Other languages
English (en)
Other versions
CN106711449B (zh
Inventor
王佳伟
刘贯东
傅裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU YULIANG BATTERY Co Ltd
Original Assignee
SUZHOU YULIANG BATTERY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU YULIANG BATTERY Co Ltd filed Critical SUZHOU YULIANG BATTERY Co Ltd
Priority to CN201710009705.3A priority Critical patent/CN106711449B/zh
Publication of CN106711449A publication Critical patent/CN106711449A/zh
Application granted granted Critical
Publication of CN106711449B publication Critical patent/CN106711449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明为纳米线型碳酸钴负极材料的合成方法,包括如下步骤:按照钴盐:尿素=1:5‑1:1摩尔质量比配比混合物;将混合物中加入去离子水,进行搅拌充分溶解完全得到混合物溶液;将混合物溶液置入反应釜中进行密封后进行旋转制备得到反应产物;反应釜冷却后,取出反应产物,去除上层清液,并进行洗涤,后置入烘箱内进行烘干,制备得到烘干产物;将烘干产物置于N2气氛条件下进行热处理,去除结晶水,并最终得到纳米线型碳酸钴负极材料。本发明的纳米线型碳酸钴负极材料的合成方法,其制备所得的纳米线型碳酸钴负极材料的可逆容量达到1200mAh/g,高于市面上石墨负极容量三倍有余,极大提高了锂离子电池的性能。

Description

纳米线型碳酸钴负极材料的合成方法
技术领域
本发明涉及锂离子电子制备技术,具体的,其展示一种纳米线型碳酸钴负极材料的合成方法。
背景技术
二十世纪以来,随着人类社会的不断发展,对能源的需求日益增长,能源的短缺甚至枯竭成为人类继续发展的瓶颈,人民迫切的需要找到一种新型的、廉价的、储能效率高的、对环境友好的电池材料。七十年代能源危机以来,以锂与过渡金属化合物为储能材料的新型电池登上历史舞台,与过去的二次电池相比,锂离子二次电池拥有电压高、能力密度大、循环性能好等突出优点。
锂离子电池的性能很大程度上更取决于负极材料。商用负极材料石墨的理论容量只有372mAh/g,难以满足市场对动力电池能量密度的更高要求。高容量型负极材料过渡金属氧化物MO(M=Ni,Co,Mn,Fe,Cu)如NiO,Co3O4,MnO,Fe3O4等被研究者们所关注,转换机理广泛存在于金属氧化物负极材料中,从而使得负极容量得到极大的提高。Poizot等人(Poizot,P.,S.Laruelle,S.Grugeon,et al.,Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries[J].Nature,2000.407(6803):496-499)探索金属氧化物负极容量可达700mAh/g。
而Tirado课题组(Aragón,M.,C.Pérez-Vicente and J.Tirado,Submicronicparticles of manganese carbonate prepared in reverse micelles:A new electrodematerial for lithium-ion batteries[J].Electrochemistry communications,2007.9(7):1744-1748)研究发现碳酸盐负极容量远高于按照转换机理得出的理论容量。Zhou课题组(Su,L.,Z.Zhou,X.Qin,et al.,CoCO 3submicrocube/graphene composites with highlithium storage capability[J].Nano Energy,2013.2(2):276-282)认为反应过程中产生的纳米化过度金属颗粒对其中CO32+有催化作用,使得C4+被还原为C0或者其他价态的碳,从而放出更高的容量。
因此,有必要制备一种纳米线型碳酸盐负极材料,其可极大程度的提高锂离子电池的性能。
发明内容
本发明的目的是提供一种纳米线型碳酸钴负极材料的合成方法,其制备所得的纳米线型碳酸钴负极材料的可逆容量达到1200mAh/g,高于市面上石墨负极容量三倍有余,极大提高了锂离子电池的性能。
本发明通过如下技术方案实现上述目的:
一种纳米线型碳酸钴负极材料的合成方法,包括如下步骤:
1)按照钴盐:尿素=1:5-1:1摩尔质量比配比混合物;
2)将混合物中加入去离子水,进行搅拌充分溶解完全得到混合物溶液;
3)将混合物溶液置入反应釜中进行密封后进行旋转制备得到反应产物;
4)反应釜冷却后,取出反应产物,去除上层清液,并进行洗涤,后置入烘箱内进行烘干,制备得到烘干产物;
5)将烘干产物置于N2气氛条件下进行热处理,去除结晶水,并最终得到纳米线型碳酸钴负极材料。
进一步的,步骤3)中,反应釜温度为80℃-200℃,旋转时间为1h-24h。
进一步的,步骤3)中,反应釜的转速为0rpm-600rpm。
进一步的,步骤4)中,洗涤为离子水与无水乙醇各冲洗n+1次。
进一步的,步骤4)中,烘干温度为50℃-100℃。
进一步的,步骤5)中,热处理温度为100℃-400℃。
其中:
碳酸钴负极作为负极材料,拥有超过常规转换机制的巨大容量;
本发明的纳米线型碳酸钴负极材料的合成方法使材料在反应过程趋向于更易结晶方向生长,制备得出呈纳米线型的碳酸钴材料,其用做锂离子电池的负极材料可逆容量达到1200mAh/g,高于市面上石墨负极容量三倍有余。
与现有技术相比,本发明的纳米线型碳酸钴负极材料的合成方法,其制备所得的纳米线型碳酸钴负极材料的可逆容量达到1200mAh/g,高于市面上石墨负极容量三倍有余,极大提高了锂离子电池的性能。
附图说明
图1是本发明的实施例1制备所得的纳米线型碳酸钴负极材料表面的扫描电子显微图;
图2是本发明的实施例2实施例2制备所得纳米线型碳酸钴负极材料的恒电流测试结果示意图。
具体实施方式
实施例1:
本实施例展示一种纳米线型碳酸钴负极材料的合成方法,包括如下步骤
1)称取3.1125g四水醋酸钴和3.75g尿素,加入到125ml去离子水中,搅拌溶解完全后,转移至反应釜中进行密封后旋转,转速300rpm,温度160℃,反应12h,制备得到反应产物;
2)反应釜冷却至室温后,取出反应产物,去除上层清夜,用去离子水与无水乙醇各冲洗3+1次,后置入60℃烘箱烘干,制备得到烘干产物;
3)将烘干产物放置在200℃的N2气氛条件下进行热处理,去除结晶水,被最终得到纳米线型碳酸钴负极材料。
请参阅图1,其展示本实施例制备所得的纳米线型碳酸钴电极材料的表面的扫描电子显微图,从中可看出碳酸钴并没有形成二次粒子,均呈纳米线型分布,这样的形貌大大增加了比表面积,制作浆料时,提高电极材料与导电剂接触面积,进而提升其导电性能。
实施例2:
本实施例展示一种纳米线型碳酸钴负极材料的合成方法,包括如下步骤
1)称取3.1125g四水醋酸钴和0.75g尿素,加入到125ml去离子水中,搅拌溶解完全后,转移至反应釜中进行密封后旋转,转速100rpm,温度80℃,反应2h,制备得到反应产物;
2)反应釜冷却至室温后,取出反应产物,去除上层清夜,用去离子水与无水乙醇各冲洗3+1次,后置入50℃烘箱烘干,制备得到烘干产物;
3)将烘干产物放置在100℃的N2气氛条件下进行热处理,去除结晶水,被最终得到纳米线型碳酸钴负极材料。
请参阅图2,其展示本实施例制备所得的纳米线型碳酸钴负极材料的循环图与充放电曲线,其中(a)为首圈与次圈的充放电曲线,(b)为放电循环图;如图所示,碳酸钴材料首圈放出接近2000mAh/g的巨大容量,次圈可逆容量也达到了1400mAh/g,0.2mA电流下循环,并没有出现太大的衰减。
实施例3:
1)称取3.1125g四水醋酸钴和1.5g尿素,加入到125ml去离子水中,搅拌溶解完全后,转移至反应釜中进行密封后旋转,转速600rpm,温度100℃,反应24h,制备得到反应产物;
2)反应釜冷却至室温后,取出反应产物,去除上层清夜,用去离子水与无水乙醇各冲洗3+1次,后置入100℃烘箱烘干,制备得到烘干产物;
3)将烘干产物放置在400℃的N2气氛条件下进行热处理,去除结晶水,被最终得到纳米线型碳酸钴负极材料。
实施例3和实施例2与实施例1制备所得的纳米线型碳酸钴负极材料各项性能差别交小,其目的在于展示通过不同添加比例以及不同温度和反应时间制备所得的纳米线型碳酸钴负极材料的性能指标稳定。
与现有技术相比,实施例1-3分别所展示的纳米线型碳酸钴负极材料的合成方法,其制备所得的纳米线型碳酸钴负极材料的可逆容量达到1200mAh/g,高于市面上石墨负极容量三倍有余,极大提高了锂离子电池的性能。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (6)

1.一种纳米线型碳酸钴负极材料的合成方法,其特征在于:
包括如下步骤:
1)按照钴盐:尿素=1:5-1:1摩尔质量比配比混合物;
2)将混合物中加入去离子水,进行搅拌充分溶解完全得到混合物溶液;
3)将混合物溶液置入反应釜中进行密封后进行旋转制备得到反应产物;
4)反应釜冷却后,取出反应产物,去除上层清液,并进行洗涤,后置入烘箱内进行烘干,制备得到烘干产物;
5)将烘干产物置于N2气氛条件下进行热处理,去除结晶水,并最终得到纳米线型碳酸钴负极材料。
2.根据权利要求1所述的一种纳米线型碳酸钴负极材料的合成方法,其特征在于:步骤3)中,反应釜温度为80℃-200℃,旋转时间为1h-24h。
3.根据权利要求1或2所述的一种纳米线型碳酸钴负极材料的合成方法,其特征在于:步骤3)中,反应釜的转速为0rpm-600rpm。
4.根据权利要求3所述的一种纳米线型碳酸钴负极材料的合成方法,其特征在于:步骤4)中,洗涤为离子水与无水乙醇各冲洗n+1次。
5.根据权利要求4所述的一种纳米线型碳酸钴负极材料的合成方法,其特征在于:步骤4)中,烘干温度为50℃-100℃。
6.根据权利要求4或5所述的一种纳米线型碳酸钴负极材料的合成方法,其特征在于:步骤5)中,热处理温度为100℃-400℃。
CN201710009705.3A 2017-01-06 2017-01-06 纳米线型碳酸钴负极材料的合成方法 Active CN106711449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710009705.3A CN106711449B (zh) 2017-01-06 2017-01-06 纳米线型碳酸钴负极材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710009705.3A CN106711449B (zh) 2017-01-06 2017-01-06 纳米线型碳酸钴负极材料的合成方法

Publications (2)

Publication Number Publication Date
CN106711449A true CN106711449A (zh) 2017-05-24
CN106711449B CN106711449B (zh) 2019-12-31

Family

ID=58907950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710009705.3A Active CN106711449B (zh) 2017-01-06 2017-01-06 纳米线型碳酸钴负极材料的合成方法

Country Status (1)

Country Link
CN (1) CN106711449B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654417A (zh) * 2018-10-19 2021-04-13 诺华瑞思公司 陶瓷纳米线电池隔膜

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973592A (zh) * 2010-10-18 2011-02-16 南京寒锐钴业有限公司 一种高比重球型碳酸钴的制备方法
CN102115214A (zh) * 2011-01-26 2011-07-06 江苏方舟新能源股份有限公司 小粒径碳酸钴的制备方法
CN102616865A (zh) * 2012-03-23 2012-08-01 英德佳纳金属科技有限公司 一种电池用碳酸钴的制备方法
CN102701292A (zh) * 2012-05-30 2012-10-03 西北矿冶研究院 一种结构致密、类球体形貌碳酸钴材料的制备方法
CN102910686A (zh) * 2011-08-04 2013-02-06 深圳市格林美高新技术股份有限公司 碳酸钴制备方法及超细钴粉制备方法
CN103887500A (zh) * 2014-04-15 2014-06-25 山东大学 一种棒状碳酸钴铁复合材料及其应用
US20140272579A1 (en) * 2013-03-15 2014-09-18 Perfect Lithium Corp. Complexometric Precursor Formulation Methodology for Industrial Production of Fine and Ultrafine Powders and Nanopowders for Lithium Metal Oxides for Battery Applications
CN104157838A (zh) * 2014-08-27 2014-11-19 山东大学 动力锂电池用碳酸钴-聚吡咯复合负极材料及制备方法
CN104743613A (zh) * 2015-04-01 2015-07-01 浙江华友钴业股份有限公司 一种连续制备大粒径球形碳酸钴的方法
CN105600839A (zh) * 2014-11-20 2016-05-25 四川顺应金属材料科技有限公司 一种电池级碳酸钴的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973592A (zh) * 2010-10-18 2011-02-16 南京寒锐钴业有限公司 一种高比重球型碳酸钴的制备方法
CN102115214A (zh) * 2011-01-26 2011-07-06 江苏方舟新能源股份有限公司 小粒径碳酸钴的制备方法
CN102910686A (zh) * 2011-08-04 2013-02-06 深圳市格林美高新技术股份有限公司 碳酸钴制备方法及超细钴粉制备方法
CN102616865A (zh) * 2012-03-23 2012-08-01 英德佳纳金属科技有限公司 一种电池用碳酸钴的制备方法
CN102701292A (zh) * 2012-05-30 2012-10-03 西北矿冶研究院 一种结构致密、类球体形貌碳酸钴材料的制备方法
US20140272579A1 (en) * 2013-03-15 2014-09-18 Perfect Lithium Corp. Complexometric Precursor Formulation Methodology for Industrial Production of Fine and Ultrafine Powders and Nanopowders for Lithium Metal Oxides for Battery Applications
CN103887500A (zh) * 2014-04-15 2014-06-25 山东大学 一种棒状碳酸钴铁复合材料及其应用
CN104157838A (zh) * 2014-08-27 2014-11-19 山东大学 动力锂电池用碳酸钴-聚吡咯复合负极材料及制备方法
CN105600839A (zh) * 2014-11-20 2016-05-25 四川顺应金属材料科技有限公司 一种电池级碳酸钴的制备方法
CN104743613A (zh) * 2015-04-01 2015-07-01 浙江华友钴业股份有限公司 一种连续制备大粒径球形碳酸钴的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGMEI DU 等: ""Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application"", 《CRYSTENGCOMM》 *
MOSTAFA Y. NASSAR: ""Size-contr olled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method"", 《MATERIALS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654417A (zh) * 2018-10-19 2021-04-13 诺华瑞思公司 陶瓷纳米线电池隔膜
CN112654417B (zh) * 2018-10-19 2022-06-07 诺华瑞思公司 陶瓷纳米线电池隔膜
US11909070B2 (en) 2018-10-19 2024-02-20 Novarials Corporation Ceramic nanowire battery separators

Also Published As

Publication number Publication date
CN106711449B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN104466135B (zh) 一种导电聚合物包覆镍钴锰酸锂正极材料的方法
CN106920964A (zh) 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN110817972B (zh) 一种氟改性高电压钴酸锂、其制备方法及电池
CN103172118A (zh) 一种球形四氧化三钴锰的制备方法
CN106972168A (zh) 一种含有氧空位的二氧化锰/硫复合材料的制备方法及应用
CN102623707A (zh) 一种掺钴包碳的氟化铁正极材料及其制备方法
CN102427129A (zh) 锂离子电池复合负极材料及其制备方法、使用该材料的负极和锂离子电池
CN101640266B (zh) 锂离子电池高电压正极材料的制备方法
CN102280617A (zh) 一种锂离子电池用碳材料改性锰酸锂复合正极材料及其制备方法
CN112803023B (zh) 一种镧锆共掺杂的高镍三元正极材料及其制备方法和应用
CN107437620A (zh) 高镍三元ncm622‑纳米线材料的制备方法
CN109888225A (zh) 正极材料及其制备方法和锂离子电池
CN110148730A (zh) 一种高首效长寿命硅基负极材料及其制备方法和应用
CN110061235A (zh) 通过软模板的结构调控制备优良电化学性能的三元正极材料的方法
CN109980204A (zh) 通过表面活性剂辅助水热法制备五氧化二钒包覆的高性能的三元正极材料的方法
CN114590838B (zh) 一种无定型金属硫化物包覆改性二元锰基钠电前驱体及其制备方法
CN111785947A (zh) 一种复合负极材料及其制备方法和应用
CN108598403B (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
CN106450228A (zh) 一种锂离子电池用复合纳米材料及其制备方法
CN106784657A (zh) 一种钠和铁共掺杂制备高性能锰酸锂正极材料的方法
CN106450264A (zh) 一种碳包覆和离子掺杂双重改性的纳米钛酸锂复合材料的制备方法
CN102376950A (zh) 用于锂电池的正极材料及其制备方法、锂电池正极和锂电池
CN106159203A (zh) 一种硅酸盐电极材料及其制备方法
CN107230773A (zh) 用于锂电池的正极材料及其制备方法、锂电池正极和锂电池
CN107293707A (zh) 一种层状富锂锰正极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant