CN106637506A - 一种液态金属/二氧化钛纳米连续纤维及其制备方法 - Google Patents

一种液态金属/二氧化钛纳米连续纤维及其制备方法 Download PDF

Info

Publication number
CN106637506A
CN106637506A CN201610834508.0A CN201610834508A CN106637506A CN 106637506 A CN106637506 A CN 106637506A CN 201610834508 A CN201610834508 A CN 201610834508A CN 106637506 A CN106637506 A CN 106637506A
Authority
CN
China
Prior art keywords
liquid metal
titanium dioxide
liquid
continuous fiber
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610834508.0A
Other languages
English (en)
Other versions
CN106637506B (zh
Inventor
王文庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xu Haijun
Original Assignee
Dongguan Lianzhou Intellectual Property Operation and Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Lianzhou Intellectual Property Operation and Management Co Ltd filed Critical Dongguan Lianzhou Intellectual Property Operation and Management Co Ltd
Priority to CN201610834508.0A priority Critical patent/CN106637506B/zh
Publication of CN106637506A publication Critical patent/CN106637506A/zh
Application granted granted Critical
Publication of CN106637506B publication Critical patent/CN106637506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明提供一种液态金属/二氧化钛纳米连续纤维的制备方法,包括以下步骤:将高分子量的PVP溶于去离子水中,搅拌均匀,滴加钛的前驱体溶液,充分搅拌,形成静电纺丝液;将静电纺丝液置于注射器中,施加高压,利用锡箔纸接收得到二氧化钛纳米纤维;将液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,高温烧结,取出,静置,得到液态金属/二氧化钛纳米连续纤维。本发明的制备方法简单,制备的纤维为纳米级,既具有纳米材料的特性,又具有液态金属和二氧化钛的高强度、导热导电、抗静电、抗菌、光催化等性能。

Description

一种液态金属/二氧化钛纳米连续纤维及其制备方法
技术领域
本发明属于纺织材料技术领域,具体涉及一种液态金属/二氧化钛纳米连续纤维及其制备方法。
背景技术
二氧化钛是由氧元素与钛元素组成的二元化合物,具有优异的光响应性、无毒、稳定、成本低、对环境好,还具有抗菌除臭抗紫外等多种性能,而且有研究表明,纳米级的二氧化钛的具有块体材料所不具有的性能,如小尺寸效应,表面效应和量子尺寸效应等。
二氧化钛纳米纤维是一种具有多晶结构的氧化钛纤维,经纺丝、烧结/溶解制备的二氧化钛纤维为网状多孔型纳米纤维连续的二氧化钛纤维具有强度高、韧性好、耐水流气流冲击等性能,可以被运用于服装、光催化、污染防控等多个领域。但是二氧化钛也具有带隙宽等缺点,将二氧化钛与其他载体相复合有望得到性能更加优异的二氧化钛复合材料。
中国专利CN 103121712B公开的一种以纤维素纤维为模板制备超长纤维状二氧化钛的方法,将天然纤维分散液中依次加入四氯化钛、硫酸铵、盐酸和氨水,加热搅拌陈化,得到附着二氧化钛的天然纤维,将附着二氧化钛的天然纤维经清洗干燥后,高温烧结,出去天然纤维,得到超长纤维状二氧化钛。该方法制备的超长状二氧化钛受然然纤维的长度和直径限制,长度为毫米或厘米级,直径为微米级,二氧化钛的应用仍受到很大程度的限制。中国专利CN 104549201A公开的光催化剂氧化石墨烯掺杂二氧化钛纳米纤维及其制备方法和应用,将二氧化钛凝胶纤维经高温烧结得到二氧化钛纳米纤维,再将二氧化钛纳米纤维分散在乙醇中,并加入氧化石墨烯,得到氧化石墨烯掺杂的二氧化钛纳米纤维,利用氧化石墨烯提高光催化反应中的光电转化效率。中国专利CN 104383947A公开的一种磷酸银/二氧化钛纳米复合材料及其制备方法,首先利用静电纺丝技术将酞酸丁酯、聚乙烯吡咯烷酮、二甲基甲酰胺及酸溶液制备形成二氧化钛纳米纤维,将二氧化钛纳米纤维分散于去离子水中,加入银盐和磷酸二氢盐,避光搅拌,得到负载磷酸银纳米颗粒的二氧化钛纳米纤维,使材料在紫外光和可见光区域都具有较强的催化活性。
由上述现有技术可知,目前对二氧化钛纳米纤维的改性大多是在二氧化钛纳米纤维附着功能性物质提高二氧化钛的光催化性能,对于二氧化钛纳米纤维本身的机械性能方面研究的很少。
发明内容
本发明要解决的技术问题是提供一种液态金属/二氧化钛纳米连续纤维及其制备方法,利用高分子量的PVP与二氧化钛前驱体作为原料,经静电纺丝技术纳米二氧化钛连续纤维,然后纳米二氧化钛连续纤维浸渍于液体金属中进行烧结,得到液态金属/二氧化钛纳米纤维。本发明的制备方法简单,制备的纤维既具有纳米材料的特性,又具有液态金属和二氧化钛的高强度、导热导电、抗静电、抗菌、光催化等性能。
为解决上述技术问题,本发明的技术方案是:
一种液态金属/二氧化钛纳米连续纤维,所述液态金属/二氧化钛纳米连续纤维包括液态金属和二氧化钛,所述二氧化钛形成网状结构,所述液态金属填充于网状结构的缝隙,所述液态金属为钠钾铝镁的混合物。
作为上述技术方案的优选,所述液态金属/二氧化钛纳米连续纤维是经静电纺丝、浸渍和高温烧结方法制备而成。
本发明还提供一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:包括以下步骤:
(1)将高分子量的PVP溶于去离子水中,搅拌均匀,滴加钛的前驱体溶液,充分搅拌,形成静电纺丝液;
(2)将步骤(1)制备的静电纺丝液置于注射器中,施加高压,利用锡箔纸接收得到二氧化钛纳米纤维;
(3)将液态金属粉末熔融形成液态金属溶液,将步骤(2)制备的二氧化钛纳米纤维转移到液态金属溶液中,高温烧结,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
作为上述技术方案的优选,所述步骤(1)中,高分子量的PVP的相对分子量为30000-50000。
作为上述技术方案的优选,所述步骤(1)中,钛的前驱体溶液的质量分数为5-15%,滴加速度为2-3ml/min。
作为上述技术方案的优选,所述步骤(1)中,静电纺丝液中PVP、钛的前驱体和去离子水的质量比为10-20:5-8:50-80。
作为上述技术方案的优选,所述步骤(2)中,高压的强度为15-25kV,接受距离为20-25cm,注射器的推进速度为5-10ml/h。
作为上述技术方案的优选,所述步骤(2)中,二氧化钛纳米纤维的直径为500-800nm,长度不低于50cm。
作为上述技术方案的优选,所述步骤(3)中,液态金属溶液中钠钾铝镁的重量比为1:1:5:3。
作为上述技术方案的优选,所述步骤(3)中,高温烧结的温度条件为:以室温为起点,以10℃/min的速率升高至450-500℃,保温2-3h,自然降温至200℃。
与现有技术相比,本发明具有以下有益效果:
(1)本发明制备的液态金属/二氧化钛纳米连续纤维中二氧化钛因烧结成网络状,含有许多孔隙,液态金属填充到孔隙中,形成复合纤维,烧结后的二氧化钛纤维的强度和韧性下降较大,液态金属不仅弥补了二氧化钛纤维机械强度不足,还赋予二氧化钛纳米纤维导电导热等性能。
(2)本发明制备的液态金属/二氧化钛纳米连续纤维采用高分子量的PVP作为高分子量基底制备纳米二氧化钛连续纤维,未烧结之前的纳米二氧化钛纤维的机械性能良好,直径均匀,形态好,有利于烧结后二氧化钛纳米纤维的直径和形态的完好。
(3)本发明制备的液态金属/二氧化钛纳米连续纤维将未烧结的纳米二氧化钛纤维浸渍于液态金属中,将PVP烧结后留下的缝隙瞬时填充液态金属,防止空气的渗透,而且液态金属的渗透更加有利于二氧化钛由锐钛晶型向金红石晶型方向转变,有利于提高二氧化钛纳米纤维的光催化性能。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1:
(1)按重量份计,将10份的相对分子量为30000的PVP溶于50份的去离子水中,搅拌均匀,以2ml/min的流速滴加含5份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为5%,以750rpm充分搅拌30min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以5ml/h的速度推进,施加15kV的高压,在距离20-25cm处,利用锡箔纸接收得到直径为500nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至450℃,高温烧结保温2h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
实施例2:
(1)按重量份计,将20份的相对分子量为50000的PVP溶于80份的去离子水中,搅拌均匀,以3ml/min的流速滴加含8份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为15%,以1000rpm充分搅拌60min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以10ml/h的速度推进,施加25kV的高压,在距离25cm处,利用锡箔纸接收得到直径为800nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至500℃,高温烧结保温3h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
实施例3:
(1)按重量份计,将15份的相对分子量为40000的PVP溶于60份的去离子水中,搅拌均匀,以2.5ml/min的流速滴加含6份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为8%,以800rpm充分搅拌40min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以6ml/h的速度推进,施加20kV的高压,在距离22cm处,利用锡箔纸接收得到直径为600nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至480℃,高温烧结保温2.5h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
实施例4:
(1)按重量份计,将13份的相对分子量为35000的PVP溶于60份的去离子水中,搅拌均匀,以2.3ml/min的流速滴加含6份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为12%,以950rpm充分搅拌50min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以6ml/h的速度推进,施加18kV的高压,在距离20cm处,利用锡箔纸接收得到直径为560nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至480℃,高温烧结保温2.5h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
实施例5:
(1)按重量份计,将10份的相对分子量为50000的PVP溶于80份的去离子水中,搅拌均匀,以3ml/min的流速滴加含7份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为13%,以1000rpm充分搅拌50min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以6ml/h的速度推进,施加20kV的高压,在距离25cm处,利用锡箔纸接收得到直径为800nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至500℃,高温烧结保温2h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
实施例6:
(1)按重量份计,将20份的相对分子量为40000的PVP溶于80份的去离子水中,搅拌均匀,以2ml/min的流速滴加含8份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为5%,以1000rpm充分搅拌30min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以10ml/h的速度推进,施加15kV的高压,在距离20cm处,利用锡箔纸接收得到直径为800nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至500℃,高温烧结保温2h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
实施例7:
(1)按重量份计,将10份的相对分子量为50000的PVP溶于80份的去离子水中,搅拌均匀,以2.7ml/min的流速滴加含5份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为13%,以750rpm充分搅拌40min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以10ml/h的速度推进,施加15kV的高压,在距离25cm处,利用锡箔纸接收得到直径为600nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至450℃,高温烧结保温2.5h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
实施例8:
(1)按重量份计,将20份的相对分子量40000的PVP溶于75份的去离子水中,搅拌均匀,以2.5ml/min的流速滴加含7.5份的钛的前驱体的溶液,钛的前驱体的溶液的质量分数为8%,以800rpm充分搅拌60min,形成静电纺丝液。
(2)将静电纺丝液置于注射器中,以10ml/h的速度推进,施加20kV的高压,在距离20cm处,利用锡箔纸接收得到直径为700nm,长度不低于50cm二氧化钛纳米纤维。
(3)将重量比为1:1:5:3的钠钾铝镁液态金属粉末熔融形成液态金属溶液,将二氧化钛纳米纤维转移到液态金属溶液中,完全浸没二氧化钛纳米纤维,置于高温烧结炉中,以室温为起点,以10℃/min的速率升高至500℃,高温烧结保温3h,自然降温至200℃,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
经检测,实施例1-8制备的液态金属/二氧化钛纳米连续纤维的机械性能、光催化性、抗菌、抗紫外性能的结果如下所示:
由上表可见,本发明制备的液态金属/二氧化钛纳米连续纤维的机械强度良好,光催化、抗菌和抗紫外性能较好。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种液态金属/二氧化钛纳米连续纤维,其特征在于:所述液态金属/二氧化钛纳米连续纤维包括液态金属和二氧化钛,所述二氧化钛形成网状结构,所述液态金属填充于网状结构的缝隙,所述液态金属为钠钾铝镁的混合物。
2.根据权利要求1所述的一种液态金属/二氧化钛纳米连续纤维,其特征在于:所述液态金属/二氧化钛纳米连续纤维是经静电纺丝、浸渍和高温烧结方法制备而成。
3.一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于,包括以下步骤:
(1)将高分子量的PVP溶于去离子水中,搅拌均匀,滴加钛的前驱体溶液,充分搅拌,形成静电纺丝液;
(2)将步骤(1)制备的静电纺丝液置于注射器中,施加高压,利用锡箔纸接收得到二氧化钛纳米纤维;
(3)将液态金属粉末熔融形成液态金属溶液,将步骤(2)制备的二氧化钛纳米纤维转移到液态金属溶液中,高温烧结,取出,静置,得到液态金属/二氧化钛纳米连续纤维。
4.根据权利要求3所述的一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:所述步骤(1)中,高分子量的PVP的相对分子量为30000-50000。
5.根据权利要求3所述的一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:所述步骤(1)中,钛的前驱体溶液的质量分数为5-15%,滴加速度为2-3ml/min。
6.根据权利要求3所述的一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:所述步骤(1)中,静电纺丝液中PVP、钛的前驱体和去离子水的质量比为10-20:5-8:50-80。
7.根据权利要求3所述的一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:所述步骤(2)中,高压的强度为15-25kV,接受距离为20-25cm,注射器的推进速度为5-10ml/h。
8.根据权利要求3所述的一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:所述步骤(2)中,二氧化钛纳米纤维的直径为500-800nm,长度不低于50cm。
9.根据权利要求3所述的一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:所述步骤(3)中,液态金属溶液中钠钾铝镁的重量比为1:1:5:3。
10.根据权利要求3所述的一种液态金属/二氧化钛纳米连续纤维的制备方法,其特征在于:所述步骤(3)中,高温烧结的温度条件为:以室温为起点,以10℃/min的速率升高至450-500℃,保温2-3h,自然降温至200℃。
CN201610834508.0A 2016-09-20 2016-09-20 一种液态金属/二氧化钛纳米连续纤维及其制备方法 Active CN106637506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610834508.0A CN106637506B (zh) 2016-09-20 2016-09-20 一种液态金属/二氧化钛纳米连续纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610834508.0A CN106637506B (zh) 2016-09-20 2016-09-20 一种液态金属/二氧化钛纳米连续纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN106637506A true CN106637506A (zh) 2017-05-10
CN106637506B CN106637506B (zh) 2019-09-27

Family

ID=58852645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610834508.0A Active CN106637506B (zh) 2016-09-20 2016-09-20 一种液态金属/二氧化钛纳米连续纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN106637506B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023727A (zh) * 2018-08-30 2018-12-18 华南理工大学 一种可主动捕获pm2.5的纳米纤维膜材料的制备方法
CN109402818A (zh) * 2018-12-06 2019-03-01 清华大学 一种基于液态金属的导电微米纤维及其制备和应用
CN109834937A (zh) * 2019-03-07 2019-06-04 南京大学 打印线条粗细可调的3d打印装置
CN110922903A (zh) * 2019-12-06 2020-03-27 常州华岳微创医疗器械有限公司 一种易撕垫片及其加工工艺
CN111041820A (zh) * 2019-11-22 2020-04-21 华南理工大学 一种高导电稳定性超弹性纱线及其制备方法与应用
CN115945171A (zh) * 2022-12-12 2023-04-11 山东省临沂生态环境监测中心 一种空气净化材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162759A (en) * 1998-02-13 2000-12-19 Sumitomo Chemical Company, Ltd. Method for producing a catalyst component-carrying titania fiber
CN101239737A (zh) * 2008-02-29 2008-08-13 中国科学院理化技术研究所 具有分级结构的二氧化钛薄膜材料及其制备方法
US20120208421A1 (en) * 2011-02-14 2012-08-16 Xerox Corporation Process of making core-sheath nanofibers by coaxial electrospinning
CN104313373A (zh) * 2014-10-13 2015-01-28 北京科技大学 一种TiAl/TiO2纳米复合材料的制备方法
CN104907580A (zh) * 2015-06-16 2015-09-16 华北电力大学 包含金属纳米粒子的中空二氧化钛纳米纤维的制备方法
CN104923259A (zh) * 2015-04-29 2015-09-23 大连民族学院 贵金属/ZnIn2S4/TiO2纳米异质结构光催化剂及制备方法
CN105019054A (zh) * 2015-07-01 2015-11-04 宁波工程学院 TiO2中空全介孔纳米纤维

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162759A (en) * 1998-02-13 2000-12-19 Sumitomo Chemical Company, Ltd. Method for producing a catalyst component-carrying titania fiber
CN101239737A (zh) * 2008-02-29 2008-08-13 中国科学院理化技术研究所 具有分级结构的二氧化钛薄膜材料及其制备方法
US20120208421A1 (en) * 2011-02-14 2012-08-16 Xerox Corporation Process of making core-sheath nanofibers by coaxial electrospinning
CN104313373A (zh) * 2014-10-13 2015-01-28 北京科技大学 一种TiAl/TiO2纳米复合材料的制备方法
CN104923259A (zh) * 2015-04-29 2015-09-23 大连民族学院 贵金属/ZnIn2S4/TiO2纳米异质结构光催化剂及制备方法
CN104907580A (zh) * 2015-06-16 2015-09-16 华北电力大学 包含金属纳米粒子的中空二氧化钛纳米纤维的制备方法
CN105019054A (zh) * 2015-07-01 2015-11-04 宁波工程学院 TiO2中空全介孔纳米纤维

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN-TAO GUAN等: "Threshold pressure and infiltration behavior of liquid metal into fibrous preform", 《TRANS. NONFERROUS MET. SOC.》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023727A (zh) * 2018-08-30 2018-12-18 华南理工大学 一种可主动捕获pm2.5的纳米纤维膜材料的制备方法
CN109402818A (zh) * 2018-12-06 2019-03-01 清华大学 一种基于液态金属的导电微米纤维及其制备和应用
CN109402818B (zh) * 2018-12-06 2021-04-06 清华大学 一种基于液态金属的导电微米纤维及其制备和应用
CN109834937A (zh) * 2019-03-07 2019-06-04 南京大学 打印线条粗细可调的3d打印装置
CN111041820A (zh) * 2019-11-22 2020-04-21 华南理工大学 一种高导电稳定性超弹性纱线及其制备方法与应用
CN111041820B (zh) * 2019-11-22 2021-07-30 华南理工大学 一种高导电稳定性超弹性纱线及其制备方法与应用
CN110922903A (zh) * 2019-12-06 2020-03-27 常州华岳微创医疗器械有限公司 一种易撕垫片及其加工工艺
CN115945171A (zh) * 2022-12-12 2023-04-11 山东省临沂生态环境监测中心 一种空气净化材料及其制备方法

Also Published As

Publication number Publication date
CN106637506B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN106637506A (zh) 一种液态金属/二氧化钛纳米连续纤维及其制备方法
Tang et al. Dip-coating for fibrous materials: mechanism, methods and applications
Qu et al. Coaxial electrospun nanostructures and their applications
Li et al. A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning
CN104790067B (zh) 纳米导电高分子/石墨烯复合纤维及其制备方法和应用
CN109112728B (zh) 柔性二氧化钛/碳复合多孔纳米纤维膜材料的制备方法
CN103451851B (zh) 一种柔韧高强氧化锆纳米纤维膜的制备方法
CN104451925A (zh) 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
CN107799314B (zh) 二硫化钼/碳化钛/碳复合纳米纤维膜及其制备方法
CN103696235B (zh) 一种碳纤维负载介孔二氧化钛的制备方法
CN104141181B (zh) 一种含有SiO2掺杂的ZrO2纤维的制备方法
CN106048783A (zh) 一种高效制备钛基‑碳三维卷曲纳米纤维的方法
CN113831581B (zh) 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN105734724A (zh) 一种新型静电纺丝制备碳纳米纤维的方法
CN102531051B (zh) 高度双重有序宏孔/介孔TiO2薄膜及其制备方法
CN102701163B (zh) 一种具有三维连通孔道结构的氮化钛纳米材料及制备方法
Massaglia et al. Semiconducting nanofibers in photoelectrochemistry
CN113663611A (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN109713203A (zh) 一种锂离子电池隔膜及其制备方法
CN106978671A (zh) 一种利用静电纺丝技术制备透明vo2热色智能薄膜的方法
CN106854779A (zh) 一种碳纳米管定向增强的碳纤维复合材料及其制备方法
KR101409683B1 (ko) 광 산란과 표면 플라즈몬의 협력효과를 나타내는 금속 나노입자가 표면에 위치한 이산화티타늄 나노섬유를 포함하는 염료감응형 태양전지의 산화전극의 제조방법
CN102874861A (zh) 红色荧光纳米片Y2O2SO4:Eu3+的静电纺丝方法
CN202865402U (zh) 三叶形截面的聚酰亚胺纤维
CN102952359A (zh) 一种超材料介质基板材料及其加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190830

Address after: 318000 Zhonglin Village, Xinqiao Town, Luqiao District, Taizhou City, Zhejiang Province

Applicant after: Xu Haijun

Address before: 523000 Guangdong province Dongguan City Songshan Lake high tech Industrial Zone Building 406 industrial development productivity

Applicant before: Dongguan Lianzhou Intellectual Property Operation Management Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant