CN106554205B - 一种SiCO微米级多孔中空陶瓷球的制备方法 - Google Patents

一种SiCO微米级多孔中空陶瓷球的制备方法 Download PDF

Info

Publication number
CN106554205B
CN106554205B CN201611054895.2A CN201611054895A CN106554205B CN 106554205 B CN106554205 B CN 106554205B CN 201611054895 A CN201611054895 A CN 201611054895A CN 106554205 B CN106554205 B CN 106554205B
Authority
CN
China
Prior art keywords
solution
sico
magnetic agitation
preparation
porous hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611054895.2A
Other languages
English (en)
Other versions
CN106554205A (zh
Inventor
余煜玺
夏范森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Runzi Chongqing Energy Saving Technology Co ltd
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201611054895.2A priority Critical patent/CN106554205B/zh
Publication of CN106554205A publication Critical patent/CN106554205A/zh
Application granted granted Critical
Publication of CN106554205B publication Critical patent/CN106554205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种SiCO微米级多孔中空陶瓷球的制备方法,涉及微米陶瓷。步骤:将陶瓷先驱体聚乙烯基硅氮烷PVSZ溶解在乙醇溶液中,加入热交联剂过氧化二异丙苯,氮气气氛保护下磁力搅拌得到溶液A;将结构导向剂嵌段共聚物F127溶解在二甲苯溶液中,氮气气氛保护下磁力搅拌得到溶液B;把溶液A和B混合,氮气气氛保护下磁力搅拌得混合液;把混合液倒入硅片中,在抽真空的烘箱中70℃进行蒸发后在140℃进行交联,得到薄膜;将薄膜用石墨片压住,在通氮气的管式炉中热处理,在薄膜表面获得SiCO微米级多孔中空陶瓷球。制备的微米级多孔核壳陶瓷,稳定性较好,可应用在复合材料和高温器件中。制备方法简单,流程较少,设备投资少,重复性好。

Description

一种SiCO微米级多孔中空陶瓷球的制备方法
技术领域
本发明涉及微米陶瓷,尤其是涉及一种SiCO微米级多孔中空陶瓷球的制备方法。
背景技术
高分子在溶液中可进行自组装,嵌段共聚物F127是高分子的一种,由于其具有化学性质不相同的嵌段,因此在选择性溶液中不同性质的嵌段由于化学相容性不同会发生相分离,但是由于各个嵌段间以共价键连接,因此嵌段只会在微观上发生相分离。利用高分子嵌段共聚物的自组装结合聚乙烯基硅氮烷可以制备具有微纳米级形貌的陶瓷。当今微纳米级材料因其独特的优异性能被广泛使用,是当前研究领域的重点和难点。微纳米级陶瓷材料具有高温稳定性、抗氧化性、高温半导体性等优点被广泛研究应用。
嵌段共聚物在高分子和电化学领域等已经得到了广泛的研究和发展,中国专利CN101914191A公开一种多金属氧酸盐—聚合物杂化嵌段共聚物纳米管的制备方法。中国专利CN101059472公开一种水相中组装嵌段共聚物制备金纳米阵列电极的方法,通过在水相中组装聚四乙烯基吡啶—聚苯乙烯嵌段共聚物,利用阳离子胶束与带负电荷的金纳米粒子间的静电作用制备金纳米阵列电极。虽然嵌段共聚物的自组装技术作为一种很有潜力的有序结构组装方法,然而将其应用在无机方面还是一个较新的领域。中国专利CN103979542A公开一种制备过程简单,可以高效制备SiCO微米陶瓷十字架的制备方法。中国专利CN103979541A公开一种制备过程简单,可以高效制备SiCO微米级双四面体陶瓷的制备方法。但是SiCO微米多孔中空陶瓷球的制备方法还未见报道。
发明内容
本发明的目的在于提供操作简单方便、效率较高的一种SiCO微米级多孔中空陶瓷球的制备方法。
本发明包括以下步骤:
1)将陶瓷先驱体聚乙烯基硅氮烷PVSZ溶解在乙醇溶液中,加入热交联剂过氧化二异丙苯,氮气气氛保护下磁力搅拌得到溶液A;
在步骤1)中,所述陶瓷先驱体聚乙烯基硅氮烷PVSZ与乙醇溶液的配比可为0.8g︰5ml,陶瓷先驱体聚乙烯基硅氮烷PVSZ以质量计算,乙醇溶液以体积计算;
所述热交联剂过氧化二异丙苯的质量为陶瓷先驱体聚乙烯基硅氮烷质量的4%;所述磁力搅拌的时间可为2~5h。
2)将结构导向剂嵌段共聚物F127溶解在二甲苯溶液中,氮气气氛保护下磁力搅拌得到溶液B;
在步骤2)中,所述结构导向剂嵌段共聚物F127与二甲苯溶液的配比可为0.350g︰5ml,其中,结构导向剂嵌段共聚物F127以质量计算,二甲苯溶液以体积计算;所述磁力搅拌的时间可为2~5h。
3)把溶液A和溶液B混合,氮气气氛保护下磁力搅拌得混合液;
在步骤3)中,所述磁力搅拌的时间可为18~24h。
4)把混合液倒入硅片中,在抽真空的烘箱中70℃进行蒸发后在140℃进行交联,得到薄膜;
在步骤4)中,所述蒸发的时间可为40~50h,所述交联的时间可为40~50min;所得薄膜为淡黄色透明薄膜;
5)将步骤4)得到的薄膜用石墨片压住,在通氮气的管式炉中热处理,在薄膜表面获得SiCO微米级多孔中空陶瓷球。
在步骤5)中,在通氮气的管式炉中热处理的程序可为:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。
本发明将模板剂F127(PEO106-PPO70-PEO106)、陶瓷先驱体聚乙烯基硅氮烷、热交联剂过氧化二异丙苯溶解于乙醇和二甲苯的混合溶液中,经过蒸发、交联、热处理获得SiCO微米级多孔中空陶瓷球。用此方法制备的微米级多孔核壳陶瓷,稳定性较好,能够应用在复合材料和高温器件中。制备方法操作简单,流程较少,设备投资少,重复性好。
附图说明
图1是本发明实施例1所制备的SiCO微米级多孔中空陶瓷球的SEM照片(标尺为2μm)。
图2是本发明实施例1所制备的SiCO微米级多孔中空陶瓷球的SEM照片(标尺为5μm)。
具体实施方式
下面通过实施例结合附图对本发明做进一步说明。
实施例1
将硅片用乙醇清洗并超声,后放入烘箱中备用。称量0.8g的聚乙烯基硅氮烷和0.032g的过氧化二异丙苯,溶解在装有5ml乙醇的三口烧瓶中,在氮气气氛保护下磁力搅拌2h,得溶液A。称量0.350g的F127,溶解在装有5ml二甲苯的三口烧瓶中,在氮气气氛保护下磁力搅拌2h,的溶液B。将溶液A和溶液B混合得混合液,将混合液倒入三口烧瓶中,在氮气气氛保护下磁力搅拌20h。将混合液倒入硅片中,在抽真空的真空烘箱中70℃保温48h。然后将附着有透明薄膜的硅片放入抽真空的140℃的烘箱中进行交联40min,取出脱膜,获得淡黄色薄膜,将薄膜放在两张石墨纸中间,随后放在管式炉中抽真空,后通入氮气进行烧结。
设置如下温度程序:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。取出石墨纸,获得黑色的薄膜样品,在其表面获得SiCO微米级多孔中空陶瓷球。
实施例2
将硅片用乙醇清洗并超声,后放入烘箱中备用。称量0.8g的聚乙烯基硅氮烷和0.032g的过氧化二异丙苯,溶解在装有5ml乙醇的三口烧瓶中,在氮气气氛保护下磁力搅拌3h,得溶液A。称量0.350g的F127,溶解在装有5ml二甲苯的三口烧瓶中,在氮气气氛保护下磁力搅拌3h,的溶液B。将溶液A和溶液B混合得混合液,将混合液倒入三口烧瓶中,在氮气气氛保护下磁力搅拌24h。将混合液倒入硅片中,在抽真空后的真空烘箱中70℃保温48h。然后将附着有透明薄膜的硅片放入140℃的抽真空后的烘箱中进行交联40min,取出脱膜,获得淡黄色薄膜,将薄膜放在两张石墨纸中间,随后放在管式炉中抽真空,后通入氮气进行烧结。
设置如下温度程序:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。取出石墨纸,获得黑色的薄膜样品,在其表面获得SiCO微米级多孔中空陶瓷球。
实施例3
将硅片用乙醇清洗并超声,后放入烘箱中备用。称量0.8g的聚乙烯基硅氮烷和0.032g的过氧化二异丙苯,溶解在装有5ml乙醇的三口烧瓶中,在氮气气氛保护下磁力搅拌3h,得溶液A。称量0.350g的F127,溶解在装有5ml二甲苯的三口烧瓶中,在氮气气氛保护下磁力搅拌3h,得到溶液B。将溶液A和溶液B混合得混合液,将混合液倒入三口烧瓶中,在氮气气氛保护下磁力搅拌24h。将搅拌后的混合液倒入硅片中,在抽真空的真空烘箱中70℃保温50h。然后将附着有透明薄膜的硅片放入140℃的抽真空的烘箱中进行交联40min,取出脱膜,获得淡黄色薄膜,将薄膜放在两张石墨纸中间,随后放在管式炉中抽真空,后通入氮气进行烧结。
设置如下温度程序:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。取出石墨纸,获得黑色的薄膜样品,在其表面获得SiCO微米级多孔中空陶瓷球。
实施例4
将硅片用乙醇清洗并超声,后放入烘箱中备用。称量0.8g的聚乙烯基硅氮烷和0.032g的过氧化二异丙苯,溶解在装有5ml乙醇的三口烧瓶中,在氮气气氛保护下磁力搅拌2h,得溶液A。称量0.350g的F127,溶解在装有5ml二甲苯的三口烧瓶中,在氮气气氛保护下磁力搅拌2h,得溶液B。将溶液A和溶液B混合得混合液,将混合液倒入三口烧瓶中,在氮气气氛保护下磁力搅拌24h。将搅拌后的混合液倒入硅片中,在抽真空后的烘箱中70℃保温50h。然后将附着有透明薄膜的硅片放入140℃的抽真空的烘箱中进行交联40min,取出脱膜,获得淡黄色薄膜,将薄膜放在两张石墨纸中间,随后放在管式炉中抽真空,后通入氮气进行烧结。
设置如下温度程序:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。取出石墨纸,获得黑色的薄膜样品,在其表面获得SiCO微米级多孔中空陶瓷球。
实施例5
将硅片用乙醇清洗并超声,后放入烘箱中备用。称量0.8g的聚乙烯基硅氮烷和0.032g的过氧化二异丙苯,溶解在装有5ml乙醇的三口烧瓶中,在氮气气氛保护下磁力搅拌4h,得溶液A。称量0.350g的F127,溶解在装有5ml二甲苯的三口烧瓶中,在氮气气氛保护下磁力搅拌4h,得溶液B。将溶液A和溶液B混合得混合液,将混合液倒入三口烧瓶中,在氮气气氛保护下磁力搅拌20h。将搅拌后的混合液倒入硅片中,在抽真空的烘箱中70℃保温45h。然后将附着有透明薄膜的硅片放入140℃的抽真空后的烘箱中进行交联45min,取出脱膜,获得淡黄色薄膜,将薄膜放在两张石墨纸中间,随后放在管式炉中抽真空,后通入氮气进行烧结。
设置如下温度程序:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。取出石墨纸,获得黑色的薄膜样品,在其表面获得SiCO微米级多孔中空陶瓷球。
实施例6
将硅片用乙醇清洗并超声,后放入烘箱中备用。称量0.8g的聚乙烯基硅氮烷和0.032g的过氧化二异丙苯,溶解在装有5ml乙醇的三口烧瓶中,在氮气气氛保护下磁力搅拌5h,得溶液A。称量0.350g的F127,溶解在装有5ml二甲苯的三口烧瓶中,在氮气气氛保护下磁力搅拌5h,得溶液B。将溶液A和溶液B混合得混合液,将混合液倒入三口烧瓶中,在氮气气氛保护下磁力搅拌24h。将搅拌后的混合液倒入硅片中,在抽真空的烘箱中70℃保温48h。然后将附着有透明薄膜的硅片放入140℃的烘箱中进行交联45min,取出脱膜,获得淡黄色薄膜,将薄膜放在两张石墨纸中间,随后放在管式炉中抽真空,后通入氮气进行烧结。
设置如下温度程序:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。取出石墨纸,获得黑色的薄膜样品,在其表面获得SiCO微米级多孔中空陶瓷球。
一种SiCO微米级多孔中空陶瓷球的制备方法,涉及一种微米陶瓷球。把0.8g的陶瓷先驱体聚乙烯基硅氮烷PVSZ溶解在5ml的乙醇溶液中,加入0.032g的热交联剂,氮气气氛保护下磁力搅拌2h得到溶液A;把0.350g的结构导向剂嵌段共聚物F127溶解在5ml的二甲苯溶液中,氮气气氛保护下磁力搅拌2h得到溶液B;将溶液A、B混合,氮气气氛保护下磁力搅拌24h得到A、B混合液。搅拌完成后,将混合液倒入硅片中,在抽真空的烘箱中70℃进行蒸发后140℃进行交联,得到淡黄色透明薄膜,将薄膜在氮气下热处理,在薄膜表面获得SiCO微米级多孔中空陶瓷球。用此方法制备的微米级多孔中空陶瓷球的操作简单、方便,耐高温、抗腐蚀,在耐高温器件、能量存储器、催化剂载体、复合材料等领域有重要应用。

Claims (4)

1.一种SiCO微米级多孔中空陶瓷球的制备方法,其特征在于包括以下步骤:
1)将陶瓷先驱体聚乙烯基硅氮烷PVSZ溶解在乙醇溶液中,加入热交联剂过氧化二异丙苯,氮气气氛保护下磁力搅拌得到溶液A;所述陶瓷先驱体聚乙烯基硅氮烷PVSZ与乙醇溶液的配比为0.8g︰5ml,陶瓷先驱体聚乙烯基硅氮烷PVSZ以质量计算,乙醇溶液以体积计算;所述热交联剂过氧化二异丙苯的质量为陶瓷先驱体聚乙烯基硅氮烷质量的4%;
2)将结构导向剂嵌段共聚物F127溶解在二甲苯溶液中,氮气气氛保护下磁力搅拌得到溶液B;所述结构导向剂嵌段共聚物F127与二甲苯溶液的配比为0.350g︰5ml,其中,结构导向剂嵌段共聚物F127以质量计算,二甲苯溶液以体积计算;
3)把溶液A和溶液B混合,氮气气氛保护下磁力搅拌得混合液;
4)把混合液倒入硅片中,在抽真空的烘箱中70℃进行蒸发后在140℃进行交联,得到薄膜;
5)将步骤4)得到的薄膜用石墨片压住,在通氮气的管式炉中热处理,在薄膜表面获得SiCO微米级多孔中空陶瓷球;
在通氮气的管式炉中热处理的程序为:从室温以1℃/min的升温速率升温至150℃,保温2h;以1℃/min的升温速率升温至300℃,保温1h;以1℃/min的升温速率升温至500℃,保温4h;以1℃/min的升温速率升温至800℃,保温4h,后随炉冷却至室温。
2.如权利要求1所述一种SiCO微米级多孔中空陶瓷球的制备方法,其特征在于在步骤1)和2)中,所述磁力搅拌的时间为2~5h。
3.如权利要求1所述一种SiCO微米级多孔中空陶瓷球的制备方法,其特征在于在步骤3)中,所述磁力搅拌的时间为18~24h。
4.如权利要求1所述一种SiCO微米级多孔中空陶瓷球的制备方法,其特征在于在步骤4)中,所述蒸发的时间为40~50h,所述交联的时间为40~50min。
CN201611054895.2A 2016-11-25 2016-11-25 一种SiCO微米级多孔中空陶瓷球的制备方法 Active CN106554205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611054895.2A CN106554205B (zh) 2016-11-25 2016-11-25 一种SiCO微米级多孔中空陶瓷球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611054895.2A CN106554205B (zh) 2016-11-25 2016-11-25 一种SiCO微米级多孔中空陶瓷球的制备方法

Publications (2)

Publication Number Publication Date
CN106554205A CN106554205A (zh) 2017-04-05
CN106554205B true CN106554205B (zh) 2019-09-10

Family

ID=58445052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611054895.2A Active CN106554205B (zh) 2016-11-25 2016-11-25 一种SiCO微米级多孔中空陶瓷球的制备方法

Country Status (1)

Country Link
CN (1) CN106554205B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824364A (zh) * 2019-03-26 2019-05-31 华南理工大学 一种SiAlZrOC陶瓷的合成方法
CN110252401B (zh) * 2019-07-10 2021-11-12 扬州大学 陶瓷先驱体负载贵金属纳米颗粒的催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203031A (zh) * 2008-08-13 2011-09-28 康宁股份有限公司 有序中孔独立式碳膜和形状因子
CN103073297A (zh) * 2013-02-22 2013-05-01 厦门大学 一种SiCO陶瓷纳米球的制备方法
CN103466590A (zh) * 2013-09-13 2013-12-25 厦门大学 一种SiCO空心纳米球的制备方法
CN103979967A (zh) * 2014-05-28 2014-08-13 厦门大学 一种SiCO微米级蠕虫状陶瓷的制备方法
CN103979969A (zh) * 2014-05-28 2014-08-13 厦门大学 一种SiCO微米陶瓷球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203031A (zh) * 2008-08-13 2011-09-28 康宁股份有限公司 有序中孔独立式碳膜和形状因子
CN103073297A (zh) * 2013-02-22 2013-05-01 厦门大学 一种SiCO陶瓷纳米球的制备方法
CN103466590A (zh) * 2013-09-13 2013-12-25 厦门大学 一种SiCO空心纳米球的制备方法
CN103979967A (zh) * 2014-05-28 2014-08-13 厦门大学 一种SiCO微米级蠕虫状陶瓷的制备方法
CN103979969A (zh) * 2014-05-28 2014-08-13 厦门大学 一种SiCO微米陶瓷球的制备方法

Also Published As

Publication number Publication date
CN106554205A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
CN106861455B (zh) 一种用于有机溶剂纳滤的金属氢氧化物/陶瓷管式复合膜及制备方法
CN102161773B (zh) 一种有机无机复合蜂窝状有序膜的制备方法
CN106554205B (zh) 一种SiCO微米级多孔中空陶瓷球的制备方法
JP6240373B2 (ja) 金属酸化物ナノシートの製造方法
WO2017221010A1 (en) Aqueous ink compositions
CN101311367A (zh) 一种氧化钨纳米线材料及其制备方法
CN107082411A (zh) 一种氮、硼共掺杂碳纳米微球及其制备方法
CN104961353A (zh) 水热制备大尺寸、正交非对称结构层状二硫化钼纳米薄膜的方法
CN114685907B (zh) 一种可调节双疏性荧光聚苯乙烯微球填料的制备方法以及应用
CN103588165A (zh) 一种三维跨尺度碳电极阵列结构及其制备方法
CN107875867B (zh) 一种基于氨基酸离子液体的促进传递膜及其制备方法和应用
CN110451561A (zh) 一种大孔径介孔双金属氧化物半导体气敏材料的合成方法
CN109925897B (zh) 一种磺酸基官能化改性的芳香族桥架有机硅杂化膜的制备方法及应用
CN112980019B (zh) 一种液-液两相界面上自组装调控制备聚苯胺-纳米金膜的方法
CN107381589B (zh) 一种有序介孔硅硼碳氮材料的制备方法
JP2011508712A (ja) 封入触媒を使ったゾル−ゲル法
CN108047472A (zh) 一种基于石墨烯量子点掺杂的聚合物复合薄膜的制备方法
Coutinho et al. Proton conducting polyaniline molecular sieve composites
CN106567156B (zh) 钴负载的二氧化硅三维纤维材料及其制备方法
CN104710589B (zh) 有序介孔间苯二酚‑甲醛树脂和介孔碳的液相制备方法
CN109879269B (zh) 一种以竹粉为碳源合成介孔碳材料的方法
Du et al. Low‐cost water soluble silicon quantum dots and biocompatible fluorescent composite films
Yao et al. Controlled preparation of macroporous TiO2 films by photo polymerization-induced phase separation method and their photocatalytic performance
CN106467605A (zh) 一种含温敏和可降解链段三嵌段共聚物、制备方法及纳米薄膜
CN107365496A (zh) 一种新型纳米级La‑SnO2/PANI复合导电材料合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210401

Address after: 100020 605, unit 1, 6 / F, 20 Gongti East Road, Chaoyang District, Beijing

Patentee after: Zhongke Runzi Technology Co.,Ltd.

Address before: Xiamen City, Fujian Province, 361005 South Siming Road No. 422

Patentee before: XIAMEN University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230321

Address after: 401120 Office Building, No. 1148, Gaoyang Road, Nanjin Street Sub-district Office, Hechuan District, Chongqing

Patentee after: Zhongke Runzi (Chongqing) energy saving Technology Co.,Ltd.

Address before: 100020 605, unit 1, 6 / F, 20 Gongti East Road, Chaoyang District, Beijing

Patentee before: Zhongke Runzi Technology Co.,Ltd.