CN103588165A - 一种三维跨尺度碳电极阵列结构及其制备方法 - Google Patents

一种三维跨尺度碳电极阵列结构及其制备方法 Download PDF

Info

Publication number
CN103588165A
CN103588165A CN201310617991.3A CN201310617991A CN103588165A CN 103588165 A CN103588165 A CN 103588165A CN 201310617991 A CN201310617991 A CN 201310617991A CN 103588165 A CN103588165 A CN 103588165A
Authority
CN
China
Prior art keywords
array structure
photoresist
dimensional
electrode array
yardstick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310617991.3A
Other languages
English (en)
Other versions
CN103588165B (zh
Inventor
汤自荣
蒋淑兰
史铁林
夏奇
高阳
龙胡
习爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201310617991.3A priority Critical patent/CN103588165B/zh
Publication of CN103588165A publication Critical patent/CN103588165A/zh
Application granted granted Critical
Publication of CN103588165B publication Critical patent/CN103588165B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种三维跨尺度碳电极阵列结构及其制备方法,该方法包括如下步骤:(1)清洗硅片,去除表面杂质和氧化层;(2)在硅片上涂覆负性光刻胶,并进行前烘;(3)用PDMS模板作为压印模板,进行压印工艺,得到光刻胶半球阵列结构;(4)用氧等离子体进行刻蚀,得到跨尺度的光刻胶阵列结构;(5)将跨尺度的光刻胶阵列结构进行热解,得到三维跨尺度碳电极阵列结构。该方法简单,便于控制,重复性好,制备的碳电极阵列结构稳定,具有大的比表面积和良好的生物兼容性,可广泛应用于微型超级电容、微型电池、生物芯片和微型传感器等微机电系统领域。

Description

一种三维跨尺度碳电极阵列结构及其制备方法
技术领域
本发明属于碳微/纳机电系统技术领域,更具体地,涉及一种三维跨尺度碳电极阵列结构及其制备方法。
背景技术
碳材料具有生物兼容性好,导电率高,稳定性好等优点,碳材料被预见可应用在微型超级电容、微型电池、生物芯片和微型传感器等微机电系统(MEMS)领域。将热解技术与微纳加工工艺(如光刻)创新性结合的碳微机电系统(C-MEMS)技术在微机电系统的各个领域具有广泛的应用前景。该工艺操作简单,可大批量生产,通过将负性光刻胶(如SU-8胶)作为前驱体,通过光刻工艺得到三维交联微结构,再在特定的温度和气氛条件下进行热解,获得具有高深宽比的不定型碳微结构。尽管如此,通过C-MEMS技术制备的三维碳微结构表面光滑,电流密度和效率因其相对小的比表面积而受到限制。
随着纳米技术的不断发展,具有大的比表面积的三维微纳分级结构的碳电极的制备方法越来越多样化,跨尺度的碳电极结构的制备成为国际上的研究热点。美国弗罗里达国际大学的Wang Chunlei课题组报道了一种制备三维跨尺度碳电极阵列用于芯片上超级电容器的方法(Wei Chen,MajidBeidaghi,Varun Penmatsa,etc.,Integration of Carbon Nanotubes to C-MEMSfor On-chip Supercapacitors,IEEE Transactions on Nanotechnology,2010,9:734-740),利用光刻工艺和热解技术制备三维的碳结构,然后通过静电喷雾沉积技术在光刻胶柱子上沉积催化剂颗粒,再通入化学气相沉积(CVD)技术在碳柱表面生长碳纳米管得到跨尺度的碳电极阵列结构。由于CVD工艺较为复杂,该方法的可控性不好。
公布号为102167281A的中国发明专利申请公开了一种表面集成碳纳米结构的碳微结构的制备方法,将SU-8光刻胶稀释并掺入碳纳米管作为前驱体,在显影液中掺入碳纳米管,进行光刻工艺和热解工艺,从而制得碳微纳集成结构。这种利用碳纳米管掺杂的方法虽然操作简单,但是碳纳米管不容易完全均匀地分散在光刻胶里。公布号为103072984A的中国发明专利申请公开了一种基于光刻胶的跨尺度的多孔碳材料制备方法,对光刻胶多次曝光后进行三维显影,再炭化和活化,制得表面纳米结构尺寸可控的三维网状炭结构。这种方法要求多次定向曝光,且在热解形成碳结构后还需要高温活化,制备时间较长。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种三维跨尺度碳电极阵列结构及其制备方法,将碳纳米结构集成在碳微电极上,方法简单,便于控制,重复性好,制备的碳电极阵列结构稳定,比表面积大,生物兼容性好,可广泛应用于微型超级电容、微型电池、生物芯片和微型传感器等微机电系统领域。
为实现上述目的,按照本发明的一个方面,提供了一种三维跨尺度碳电极阵列结构的制备方法,其特征在于,包括如下步骤:(1)清洗硅片,去除表面杂质和氧化层;(2)在硅片上涂覆负性光刻胶,并进行前烘;(3)用PDMS模板作为压印模板,进行压印工艺,得到光刻胶半球阵列结构;(4)用氧等离子体进行刻蚀,得到跨尺度的光刻胶阵列结构;(5)将跨尺度的光刻胶阵列结构进行热解,得到三维跨尺度碳电极阵列结构。
优选地,所述步骤(4)中,用氧等离子体进行感应耦合等离子刻蚀或反应离子刻蚀。
优选地,所述感应耦合等离子刻蚀中,氧气流速为50~100sccm,ICP功率为300~1000W,射频功率为50~100W,气压为10~40mtorr,时间为5~20min。
优选地,所述步骤(5)中,热解包括如下步骤:(5-1)抽真空,通入氮气,使炉中充满氮气;(5-2)从室温升至250~300℃,升温速率为5~10℃/min,保持30~60min,持续通入氮气;(5-3)接着以3~8℃/min的速率升温至900~1500℃,保持90~120min,持续通入氮气和氢气的混合气体;(5-4)在氮气氛围下自然冷却至室温。
优选地,所述步骤(5-3)中,混合气体中氮气的体积分数为95%,氢气的体积分数为5%。
优选地,所述步骤(3)中,压印温度为95℃,压强为10MPa,曝光时间为60s。
优选地,所述PDMS模板通过如下方法制得:(A)在洗净的硅片上涂覆正性光刻胶;(B)曝光和显影,得到光刻胶柱子阵列;(C)在140℃热板上烘10min,形成光刻胶半球阵列;(D)将PDMS主剂与硬化剂以质量比10:1混合均匀后,用真空泵抽真空消除混合液中的气泡,然后将此PDMS混合物倒在光刻胶半球阵列表面,在80℃热板上固化30min,冷却后将PDMS剥离,得到PDMS模板。
按照本发明的另一方面,提供了一种用上述方法制备的三维跨尺度碳电极阵列结构。
按照本发明的另一方面,提供了一种用氧等离子体对光刻胶进行刻蚀的方法。
优选地,所述氧等离子体由感应耦合等离子刻蚀系统或反应离子刻蚀系统产生。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
1、所制备的碳电极阵列结构稳定,具有大的比表面积。氧等离子体对光刻胶的选择性刻蚀具有重复性和可控性好的特点,本发明将碳纳米纤维与碳微结构结合,通过氧等离子体处理在微结构表面得到纳米纤维,再通过碳化处理得到跨尺度碳电极阵列结构。
2、制备方法简单,工艺步骤便于控制,重复性好,可以大规模制备,制得的跨尺度碳电极阵列结构具有良好的生物兼容性,可广泛应用于微型超级电容、微型电池、生物芯片和微型传感器等微机电系统领域。
附图说明
图1是本发明实施例的三维跨尺度碳电极阵列结构的制备方法工艺流程示意图,其中,(a)为在硅片表面覆盖光刻胶;(b)为压印得到光刻胶半球阵列结构;(c)为氧等离子体刻蚀;(d)为将跨尺度的光刻胶阵列结构热解得到三维跨尺度碳电极阵列结构;
图2是本发明实施例1得到的跨尺度光刻胶阵列结构显微图,其中,图2(a)是光刻胶半球阵列结构,图2(b)是单个光刻胶半球;
图3是本发明实施例1得到的三维跨尺度碳电极阵列结构显微图,其中,图3(a)是碳阵列结构,图3(b)是碳半球的局部放大图;
图4是本发明实施例2得到的跨尺度光刻胶阵列结构显微图,其中,图4(a)是光刻胶半球阵列结构,图4(b)是单个光刻胶半球;
图5是本发明实施例3得到的跨尺度光刻胶阵列结构显微图,其中,图5(a)是光刻胶半球阵列结构,图5(b)是单个光刻胶半球;
图6是本发明实施例4得到的三维跨尺度碳电极阵列结构显微图;
图7是光刻得到的SU-8柱状结构用氧等离子体处理后的光刻胶微纳分级结构显微图;
图8是匀胶后的光刻胶平面结构用氧等离子体处理后得到的光刻胶微纳分级结构显微图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明的三维跨尺度碳电极阵列结构的制备方法包括如下步骤:
(1)预处理:清洗硅片,去除表面杂质和氧化层。
(2)在预处理后的硅片上涂覆负性光刻胶,并进行前烘。选择负胶作为前驱体是因为负胶在惰性气体中热解时能够变成碳结构,而正胶在高温热解时会挥发。
(3)用聚二甲基硅氧烷(polydimethylsiloxane,PDMS)模板作为压印模板,进行压印工艺,得到光刻胶半球阵列结构。
具体地,压印温度为95℃,压强为10MPa,曝光时间为60s。
(4)用氧等离子体进行刻蚀,得到跨尺度的光刻胶阵列结构。
具体地,用氧等离子体进行感应耦合等离子(Inductively CoupledPlasma,ICP)刻蚀,氧气流速为50~100sccm,ICP功率为500~1000W,射频功率为50~100W,控制物理轰击作用,气压为10~40mtorr,时间为5~20min。调整上述参数,可以得到不同形貌的微纳分级结构。
氧气流速为50~100sccm间的任何值,氧气流速过低,产生的等离子体密度太小,对样品的刻蚀作用太弱,氧气流速过高,产生的等离子体密度太大,使其平均自由程大幅减小,同样导致对样品的刻蚀作用太弱;ICP功率为300~1000W间的任何值,ICP功率过小,氧等离子体的浓度太低,刻蚀速率过低,ICP功率过大,氧等离子体对光刻胶的刻蚀太剧烈,刻蚀速率过高,样品的表面形貌不易控制;射频功率为50~100W间的任何值,射频功率过低,离子轰击速度太小,得到的表面形貌起伏不明显,同时还会减弱离子轰击的方向性,导致各向同性刻蚀增强,射频功率过高,离子轰击速度太大,样品的表面形貌不易控制;气压为10~40mtorr间的任何值,气压过低,样品表面被刻蚀的粗糙度太小,不能形成三维的微纳集成结构,气压过高,样品表面的粗糙度过大,不易控制。
产生氧等离子体的设备不限于感应耦合等离子刻蚀系统,还可以是其他的能产生氧等离子体的系统,如反应离子刻蚀系统(Reactive Ion Etching,RIE)等。
氧等离子体通常用于活化碳结构或者去除光刻胶工艺中,本方法创新性地利用氧等离子体对光刻胶的选择性刻蚀来制备微纳分级结构。一方面,ICP反应腔中含有少量的锑和铝元素,形成一个保护层;另一方面,氧等离子体对光刻胶聚合物链中所含的芳香成分和线性成分的刻蚀速率不同,从而在光刻胶半球表面形成粗糙并附有径向光刻胶纳米纤维的微纳分级结构。氧等离子体对光刻胶的选择性刻蚀具有重复性和可控性好的特点,所得到的微纳分级结构稳定,且比表面积大,易于后续处理,如热解处理,或者将其他导电物质(如导电聚合物或者金属薄膜)附着到微纳结构的表面用于制作微电极或者微型器件。
(5)将跨尺度的光刻胶阵列结构进行热解,得到三维跨尺度的碳电极阵列结构。
具体地,热解包括如下步骤:
(5-1)抽真空,通入氮气,使炉中充满氮气。
(5-2)从室温升至250~300℃,升温速率为5~10℃/min,保持30~60min,持续通入氮气,去除水汽,达到坚膜效果。
升温速率为5~10℃/min,能获得最佳的坚膜效果。
(5-3)接着以3~8℃/min的速率升温至900~1500℃,保持90~120min,持续通入氮气和氢气的混合气体,使光刻胶碳化,其中,氮气的体积分数为95%,氢气的体积分数为5%。
升温速率为3~8℃/min间的任何值,升温速率过慢,升温时间太长,浪费时间和资源,升温速率过快,热应力太大导致光刻胶脱离硅片或者破裂,而且由于升温时间太短,导致光刻胶升温过程中所逸出的气体来不及排出,加剧样品的脱落或者破裂;升温至900~1500℃间的任何值,温度过低,光刻胶的碳化不完全,温度过高,浪费能源;保持时间为90~120min间的任何值,时间太短,碳化不完全,时间太长,碳化效果变化不明显,且浪费能源。
(5-4)在氮气氛围下自然冷却至室温。
为使本领域技术人员更好地理解本发明,下面结合具体实施例对本发明的三维跨尺度碳电极阵列结构的制备方法进行详细说明。
实施例1
本发明实施例的三维跨尺度碳电极阵列结构的制备方法包括如下步骤:
(1)预处理:清洗硅片,去除表面杂质和氧化层。具体地,首先将硅片放入丙酮中超声10min后,用去离子水冲洗;接着将硅片放入SPM溶液(浓硫酸与双氧水按体积比2:1的混合液)中,加热到150℃,保持10min后,用大量去离子水冲洗干净;最后将硅片放到130℃的热板(Stuart,SD160)上烘30min后,取下冷却至室温。
(2)将预处理后的硅片进行匀胶(SU-8GM1070,KW-4A型匀胶机)。具体地,先以500rpm旋转10s,再以1000rpm旋转30s;接着在热板上前烘,先在65℃下保持15min,再在95℃下保持30min;最后冷却至室温。如图1(a)所示,在硅片2的表面覆盖一层SU-8胶1。
(3)压印(Obducat Eitre3压印机)。用PDMS模板作为压印模板,压印温度为95℃,压强为10MPa,曝光时间为60s。将压印后的样品放在95℃热板上中烘40min,冷却至室温后脱模,得到SU-8胶半球阵列结构3,如图1(b)所示。
步骤(2)和步骤(3)的工艺参数如表1所示。
表1步骤(2)和步骤(3)的工艺参数
具体地,PDMS模板通过如下方法制得:
(A)在洗净的硅片上匀胶AZ9260。具体地,先以500rpm旋转5s,再以1000rpm旋转30s,最后在110℃的热板上前烘6min。
(B)曝光和显影,得到AZ9260光刻胶柱子阵列。
(C)再进行热熔步骤。具体地,在140℃热板上烘10min,形成AZ9260光刻胶半球阵列。
(D)将PDMS主剂与硬化剂以质量比10:1混合均匀后,用真空泵抽真空消除混合液中的气泡,然后将此PDMS混合物倒在AZ9260半球阵列表面,在80℃热板上固化30min,冷却后将PDMS剥离,得到PDMS的半球模板。
AZ9260为正胶,用正胶做模板是因为正胶在热熔时能够流动形成半球结构,而AZ9260光刻能够得到较厚的光刻胶图形。
(4)氧等离子体刻蚀。如图1(c)所示,将SU-8半球阵列结构用氧等离子体4进行刻蚀(感应耦合等离子刻蚀系统ICP,Oxford PlasmaLabSystem100)10min,氧气流速为50sccm,射频功率为50W,ICP功率为700W,气压为20mtorr,得到跨尺度的SU-8阵列结构,如图2(a)和2(b)所示。
(5)热解。将跨尺度的SU-8阵列结构放入GSL-1400X型真空管式炉,分两步升温进行热解,得到三维跨尺度碳电极阵列结构5,如图1(d)所示。具体包括如下步骤:
(5-1)抽真空至10-3Torr,排除管式炉中的氧气。以2000标准毫升/分钟(sccm)的速率通入氮气,排除多余的氧气,使管式炉中充满氮气。
(5-2)从室温升至300℃,升温速率为5℃/min,保持30min,持续以2000sccm的速率通入氮气。
(5-3)接着以5℃/min的升温速率升至900℃,保持120min,持续通入氮气和氢气(体积比为95%/5%),使光刻胶碳化。
(5-4)热解完成后在流速为2000sccm的氮气的保护下自然冷却至室温,减少碳结构的内应力,并加速降温。
通过上述步骤,即可得到三维跨尺度碳电极阵列结构,如图3(a)和图3(b)所示,从图3(b)可以清晰地看到在半球结构的表面附着有纳米尺度的碳纤维。
热解步骤的工艺参数如表2所示。
表2热解步骤的工艺参数
Figure BDA0000423658320000091
Figure BDA0000423658320000101
实施例2
将实施例1中步骤(4)的氧等离子体处理的时间变为5min,其它步骤与实施例1相同。得到跨尺度的SU-8阵列结构如图4(a)和图4(b)所示。由于缩短了氧等离子体的处理时间,所得到的微纳结构中被去除的部分减少,半球中心部分很多光刻胶还没有去除,所形成的结构在表面上有微纳结构,而其内部的结构还是实心的光刻胶结构。
实施例3
将实施例1中步骤(4)的氧等离子体处理的时间变为20min,其它步骤与实施例1相同。得到跨尺度的SU-8阵列结构如图5(a)和图5(b)所示。由于延长了氧等离子体的处理时间,所得到的微纳结构中被去除的部分更多,所得到的微纳结构变得疏松。
实施例4
将实施例1中步骤(5)的过程3的升温速率变为10℃/min,其它步骤与实施例1相同。得到的碳电极阵列结构如图6所示,由于光刻胶碳化过程的升温速率过快,碳微纳结构上有明显的裂纹。
氧等离子体刻蚀不仅可以处理本发明实施例的光刻胶半球结构,还可以处理其它结构,如匀胶后得到的平面结构和光刻胶柱状结构,均可以得到微纳分级的结构,氧等离子体处理的时间可根据光刻胶微结构的高度进行调整。图7为光刻得到的SU-8柱状结构用氧等离子体处理后的光刻胶微纳分级结构,图8为匀胶后的光刻胶平面结构用氧等离子体处理后得到的光刻胶微纳分级结构。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种三维跨尺度碳电极阵列结构的制备方法,其特征在于,包括如下步骤:
(1)清洗硅片,去除表面杂质和氧化层;
(2)在硅片上涂覆负性光刻胶,并进行前烘;
(3)用PDMS模板作为压印模板,进行压印工艺,得到光刻胶半球阵列结构;
(4)用氧等离子体进行刻蚀,得到跨尺度的光刻胶阵列结构;
(5)将跨尺度的光刻胶阵列结构进行热解,得到三维跨尺度碳电极阵列结构。
2.如权利要求1所述的三维跨尺度碳电极阵列结构的制备方法,其特征在于,所述步骤(4)中,用氧等离子体进行感应耦合等离子刻蚀或反应离子刻蚀。
3.如权利要求2所述的三维跨尺度碳电极阵列结构的制备方法,其特征在于,所述感应耦合等离子刻蚀中,氧气流速为50~100sccm,ICP功率为300~1000W,射频功率为50~100W,气压为10~40mtorr,时间为5~20min。
4.如权利要求1至3中任一项所述的三维跨尺度碳电极阵列结构的制备方法,其特征在于,所述步骤(5)中,热解包括如下步骤:
(5-1)抽真空,通入氮气,使炉中充满氮气;
(5-2)从室温升至250~300℃,升温速率为5~10℃/min,保持30~60min,持续通入氮气;
(5-3)接着以3~8℃/min的速率升温至900~1500℃,保持90~120min,持续通入氮气和氢气的混合气体;
(5-4)在氮气氛围下自然冷却至室温。
5.如权利要求4所述的三维跨尺度碳电极阵列结构的制备方法,其特征在于,所述步骤(5-3)中,混合气体中氮气的体积分数为95%,氢气的体积分数为5%。
6.如权利要求1至5中任一项所述的三维跨尺度碳电极阵列结构的制备方法,其特征在于,所述步骤(3)中,压印温度为95℃,压强为10MPa,曝光时间为60s。
7.如权利要求1至6中任一项所述的三维跨尺度碳电极阵列结构的制备方法,其特征在于,所述PDMS模板通过如下方法制得:
(A)在洗净的硅片上涂覆正性光刻胶;
(B)曝光和显影,得到光刻胶柱子阵列;
(C)在140℃热板上烘10min,形成光刻胶半球阵列;
(D)将PDMS主剂与硬化剂以质量比10:1混合均匀后,用真空泵抽真空消除混合液中的气泡,然后将此PDMS混合物倒在光刻胶半球阵列表面,在80℃热板上固化30min,冷却后将PDMS剥离,得到PDMS模板。
8.一种用权利要求1至7中任一项所述方法制备的三维跨尺度碳电极阵列结构。
9.一种用氧等离子体对光刻胶进行刻蚀的方法。
10.如权利要求9所述的方法,其特征在于,所述氧等离子体由感应耦合等离子刻蚀系统或反应离子刻蚀系统产生。
CN201310617991.3A 2013-11-27 2013-11-27 一种三维跨尺度碳电极阵列结构及其制备方法 Expired - Fee Related CN103588165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310617991.3A CN103588165B (zh) 2013-11-27 2013-11-27 一种三维跨尺度碳电极阵列结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310617991.3A CN103588165B (zh) 2013-11-27 2013-11-27 一种三维跨尺度碳电极阵列结构及其制备方法

Publications (2)

Publication Number Publication Date
CN103588165A true CN103588165A (zh) 2014-02-19
CN103588165B CN103588165B (zh) 2016-04-13

Family

ID=50078535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310617991.3A Expired - Fee Related CN103588165B (zh) 2013-11-27 2013-11-27 一种三维跨尺度碳电极阵列结构及其制备方法

Country Status (1)

Country Link
CN (1) CN103588165B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962562A (zh) * 2014-04-12 2014-08-06 北京工业大学 半球形金属微颗粒的制备方法
CN103983678A (zh) * 2014-05-09 2014-08-13 西安交通大学 一种基于球形跨尺度结构阵列的葡萄糖酶电极及其制备方法
CN104129752A (zh) * 2014-07-15 2014-11-05 华中科技大学 一种跨尺度微纳米褶皱结构的制备方法
CN104681308A (zh) * 2015-03-20 2015-06-03 太原理工大学 一种孔径可控的超级电容器三维微电极制备方法
CN104681297A (zh) * 2015-03-20 2015-06-03 太原理工大学 一种基于炭化的超级电容器三维微电极的制备方法
CN105023842A (zh) * 2015-07-10 2015-11-04 太原理工大学 一种加固碳化光刻胶与Si基底结合的凹槽刻蚀方法
CN110376364A (zh) * 2019-07-09 2019-10-25 天津大学 一种生物传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255233A1 (en) * 2004-02-11 2005-11-17 The Regents Of The University Of California High aspect ratio C-MEMS architecture
CN101792112A (zh) * 2010-03-03 2010-08-04 北京大学 一种基于表面增强拉曼散射活性基底的微流控检测器件
CN102135729A (zh) * 2011-03-18 2011-07-27 华中科技大学 一种碳微纳集成结构的制备方法
CN102167281A (zh) * 2011-03-31 2011-08-31 华中科技大学 一种表面集成碳纳米结构的碳微结构及其制备方法
CN102757013A (zh) * 2012-06-11 2012-10-31 华中科技大学 一种集成碳纳米褶皱的三维碳微纳电极阵列结构制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255233A1 (en) * 2004-02-11 2005-11-17 The Regents Of The University Of California High aspect ratio C-MEMS architecture
CN101792112A (zh) * 2010-03-03 2010-08-04 北京大学 一种基于表面增强拉曼散射活性基底的微流控检测器件
CN102135729A (zh) * 2011-03-18 2011-07-27 华中科技大学 一种碳微纳集成结构的制备方法
CN102167281A (zh) * 2011-03-31 2011-08-31 华中科技大学 一种表面集成碳纳米结构的碳微结构及其制备方法
CN102757013A (zh) * 2012-06-11 2012-10-31 华中科技大学 一种集成碳纳米褶皱的三维碳微纳电极阵列结构制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SWATI SHARMA, ET AL.: "Micro and nano patterning of carbon electrodes for bioMEMS", 《BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962562A (zh) * 2014-04-12 2014-08-06 北京工业大学 半球形金属微颗粒的制备方法
CN103962562B (zh) * 2014-04-12 2016-04-06 北京工业大学 半球形金属微颗粒的制备方法
CN103983678A (zh) * 2014-05-09 2014-08-13 西安交通大学 一种基于球形跨尺度结构阵列的葡萄糖酶电极及其制备方法
CN104129752A (zh) * 2014-07-15 2014-11-05 华中科技大学 一种跨尺度微纳米褶皱结构的制备方法
CN104681308A (zh) * 2015-03-20 2015-06-03 太原理工大学 一种孔径可控的超级电容器三维微电极制备方法
CN104681297A (zh) * 2015-03-20 2015-06-03 太原理工大学 一种基于炭化的超级电容器三维微电极的制备方法
CN104681297B (zh) * 2015-03-20 2018-01-19 太原理工大学 一种基于炭化的超级电容器三维微电极的制备方法
CN105023842A (zh) * 2015-07-10 2015-11-04 太原理工大学 一种加固碳化光刻胶与Si基底结合的凹槽刻蚀方法
CN105023842B (zh) * 2015-07-10 2017-11-21 太原理工大学 一种加固碳化光刻胶与Si基底结合的凹槽刻蚀方法
CN110376364A (zh) * 2019-07-09 2019-10-25 天津大学 一种生物传感器及其制备方法

Also Published As

Publication number Publication date
CN103588165B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN103588165B (zh) 一种三维跨尺度碳电极阵列结构及其制备方法
CN109781311B (zh) 一种柔性电容式压力传感器及其制备方法
CN104925783B (zh) 核壳分级结构多孔碳的制备方法
Liu et al. Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium‐ion batteries
Penmatsa et al. Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing
CN105845918B (zh) 一种高容量的多孔硅材料及其制备方法和应用
CN103881278B (zh) 一种氧化石墨烯-水溶性聚合物三维多孔纳米复合材料的制备方法
CN105926014B (zh) 基于纳米软压印的大面积高度有序多孔氧化膜的制备方法
JP2014523382A (ja) 階層的カーボンからなるナノまたはマイクロ構造体
CN102633230A (zh) 一种基于纳米球刻蚀技术制备硅纳米柱阵列的方法
CN105741980A (zh) 一种表面具有微结构图案的柔性自支撑石墨烯导电薄膜及其制备方法
CN102135729B (zh) 一种碳微纳集成结构的制备方法
CN106910640A (zh) 一种形态可控的石墨烯纳米片电极材料及其制备方法和应用
CN105668555B (zh) 一种制备三维石墨烯的方法
CN107221447B (zh) 一种石墨烯柔性复合电极、其制备方法及柔性超级电容器
CN104129752A (zh) 一种跨尺度微纳米褶皱结构的制备方法
CN108172416A (zh) 具有多孔管壁纳米管的三维碳气凝胶的制备方法及其应用
CN107954420A (zh) 一种电化学阳极剥离石墨箔片制备三维石墨烯的方法
CN104743542A (zh) 一种空心介孔碳球及其制备方法
CN106115639A (zh) 一种卷曲叶片形纳米层状g‑C3N4的制备方法
CN103466590A (zh) 一种SiCO空心纳米球的制备方法
CN102328925A (zh) 高密度碳纳米管束的制备工艺
Hu et al. Study on wet etching of AAO template
CN102583233B (zh) 一种基于纳米森林模板的超亲水聚二甲基硅氧烷薄膜制备方法
CN110371919B (zh) 一种微纳米多级柱结构的自组装制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20181127

CF01 Termination of patent right due to non-payment of annual fee