CN106504988A - 一种金刚石热沉衬底GaN HEMTs制备方法 - Google Patents

一种金刚石热沉衬底GaN HEMTs制备方法 Download PDF

Info

Publication number
CN106504988A
CN106504988A CN201611084413.8A CN201611084413A CN106504988A CN 106504988 A CN106504988 A CN 106504988A CN 201611084413 A CN201611084413 A CN 201611084413A CN 106504988 A CN106504988 A CN 106504988A
Authority
CN
China
Prior art keywords
gan
hemts
diamond
substrate
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611084413.8A
Other languages
English (en)
Other versions
CN106504988B (zh
Inventor
王进军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201611084413.8A priority Critical patent/CN106504988B/zh
Publication of CN106504988A publication Critical patent/CN106504988A/zh
Application granted granted Critical
Publication of CN106504988B publication Critical patent/CN106504988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种金刚石热沉衬底GaN基HEMTs制备方法,包括在蓝宝石衬底上MOCVD生长GaN基HEMTs外延结构;再采用激光剥离技术对蓝宝石衬底进行剥离;再刻蚀、抛光GaN底表面外延层,同时抛光金刚石热沉片;再在GaN底表面和金刚石热沉片抛光淀积薄层键合粘合剂,进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构;再去除金刚石/GaN基HEMTs外延材料/Si三层结构中Si晶片的临时支撑材料,得到金刚石/GaN基HEMTs外延材料两层结构;再ICP刻蚀GaN基HEMTs外延材料,进行器件隔离;最后制备器件电极。本发明采用高热导率的金刚石做热沉,散热效果优;低温键合方法有效避免了传统的高温键合对材料性能的损伤;蓝宝石衬底激光剥离有效避免了激光剥离对GaN基HEMTs外延材料性能的影响。

Description

一种金刚石热沉衬底GaN HEMTs制备方法
【技术领域】
本发明属于GaN HEMTs散热技术领域,具体涉及一种金刚石热沉衬底GaN HEMsT制备方法。
【背景技术】
GaN HEMTs作为典型的功率半导体器件,具有耐高压、大电流、高功率、耐高温的优势,是一种非常有应用前景的电力电子器件。然而随着器件输出功率的不断提高,器件所产生的热量将急剧升高,如果这些热量没有及时散发出去,器件内部因发热产生的高温将严重影响器件的性能。因此,散热成为GaN HEMTs功率器件设计和制造过程中一个亟待解决课题。
传统的解决GaN HEMTs功率器件散热的方法是将器件制备在蓝宝石或SiC衬底上,利用蓝宝石、SiC衬底散热,然而蓝宝石、SiC有限热导率(蓝宝石热导率35W/m·K、SiC热导率490W/m·K)很难满足器件高频、大功率应用时的散热需求。金刚石具有极高的热导率,IIa型天然单晶金刚石的室温热导率高达2000W/m·K,采用金刚石作热沉可以有效地解决GaN HEMTs功率器件散热问题。
【发明内容】
本发明所要解决的技术问题在于针对上述现有技术中的不足,提出一种金刚石热沉衬底GaN HEMTs制备方法,其目的在于形成以金刚石衬底做热沉的GaN HEMTs器件,利用金刚石的高热导率来解决GaN HEMTs功率器件高频、大功率应用时的散热问题。
本发明采用以下技术方案:
一种金刚石热沉衬底GaN基HEMTs制备方法,包括以下步骤:
S1:在蓝宝石衬底上MOCVD生长GaN基HEMTs外延结构;
S2:采用激光剥离技术对步骤S1所述蓝宝石衬底进行剥离;
S3:刻蚀、抛光GaN底表面外延层,同时抛光金刚石热沉片;
S4:将步骤S2制备的所述GaN底表面和步骤S3制备的所述金刚石热沉片表面进行抛光并淀积薄层,薄层上键合粘合剂,进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构;
S5:去除所述步骤S4得到的金刚石/GaN基HEMTs外延材料/Si三层结构中Si晶片的临时支撑材料,得到金刚石/GaN基HEMTs外延材料两层结构;
S6:ICP刻蚀GaN基HEMTs外延材料,进行器件隔离;
S7:制备器件电极。
进一步的,所述步骤S1具体包括以下步骤:
S11:蓝宝石衬底清洗,丙酮、去离子水分别超声2~3分钟;
S12:将蓝宝石衬底在900~1000℃的H2气氛下进行烘烤;
S13:以三甲基镓和氨气分别作为Ga源和N源,N2和H2作为载气,530~580℃下采用MOCVD技术在蓝宝石衬底上低温生长20nm的GaN成核层;
S14:继续升温至1050℃生长3.5μm的GaN缓冲层;
S15:再升温至1100℃,在氢气氛围下生长100nm的GaN-UID沟道层;
S16:保持温度不变,以三甲基铝和氨气分别作为Al源和N源在生长1nm的AlN插入层;
S17:最后以三甲基镓、三甲基铝和氨气分别作为Ga源、Al源和N源,N2和H2作为载气MOCVD交替生长25nm的AlGaN势垒层。
进一步的,所述外延材料具体为:蓝宝石衬底单面抛光,厚度500μm,GaN成核层厚度20nm,GaN缓冲层厚度3.5μm,本征GaN层厚度100nm,AlN层厚度1nm,AlGaN势垒层厚度20nm。
进一步的,步骤S2具体为:
S21:取Si晶片作为临时支撑材料,用热塑性粘合剂将所述Si临时支撑材料粘到所述GaN基HEMTs外延材料上,形成蓝宝石/GaN基HEMTs外延材料/Si三层结构;
S22:用波长248~480nm,脉冲宽度38ns KrF脉冲激光从蓝宝石一面扫描整个样品,激光脉冲的能量密度由焦距40cm的石英透镜调节;
S23:加热所述蓝宝石/GaN基HEMTs外延材料Si三层结构,去除蓝宝石衬底,得到GaN基HEMTs外延材料/Si两层结构。
进一步的,所述步骤S23中,加热所述蓝宝石衬底到Ga的熔点29℃以上。
进一步的,所述步骤S4中低温键合具体为:分别对GaN底表面和金刚石热沉片表面进行抛光并淀积一薄层,薄层上设置有键合粘合剂苯并环丁烯BCB,然后将所述GaN底表面和金刚石热沉片紧密接触进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构,键合、固化温度不超过150℃。
进一步的,所述步骤S6具体为:
先对所述金刚石热沉/GaN基HEMTs外延材料清洗,再进行欧姆接触,然后离子注入隔离,形成肖特基栅,最后生长Si3N4隔离层。
进一步的,所述外延清洗采用三氯化碳、四氯乙烯、丙酮、乙醇、去离子水超声各3~5分钟,氮气吹干;然后采用磁控溅射Ti/Al/TiAu,N2保护下在850~900℃、50s进行退火;再注He+20KeV,1×1015cm-2和50KeV,1×1014cm-2;然后光刻3μm栅,磁控溅射Ni/Au,剥离形成肖特基栅,最后生长隔离层。
进一步的,所述步骤S7制备器件电极具体为:先磁控溅射Ti/Al/TiAu制备源、漏欧姆电极,再He+离子注入隔离,磁控溅射Ni/Au,剥离形成肖特基栅电极;接着PECVD生长Si3N4场板绝缘介质层;然后用ICP刻蚀进行第一次刻孔;然后磁控溅射金属Ni/Au,剥离形成源金属场板;然后在PECVD上生长Si3N4钝化层;然后用ICP刻蚀进行第二次刻蚀接触孔;然后磁控溅射Ni/Au,加厚电极;最后划片封装。
与现有技术相比,本发明至少具有以下有益效果:
本发明一种金刚石热沉衬底GaN基HEMTs制备方法采用高热导率的金刚石做热沉,散热效果优于传统的衬底;键合方法采用低温工作方式,有效避免了传统的高温键合对材料性能的损伤;蓝宝石衬底激光剥离过程中,先把GaN基HEMTs外延材料倒转到Si临时支撑材料上,有效避免了激光剥离对GaN基HEMTs外延材料性能的影响。;
进一步的,蓝宝石衬底在1000℃的H2气氛下进行烘烤,能够除去表面吸附杂质,AlN插入层用来减少AlGaN势垒层三元合金散射,提高二维电子气的迁移率。
综上所述,本发明所述制备方法工艺简单、容易实现,重复性好。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
【附图说明】
图1为实施例1蓝宝石衬底GaN基HEMTs外延材料剖面图;
图2为实施例2蓝宝石衬底GaN基HEMTs外延材料向Si临时支撑材料转移示意图;
图3为实施例2脉冲激光扫描蓝宝石衬底示意图;
图4为实施例2蓝宝石衬底剥离示意图;
图5为实施例3GaN基HEMTs外延材料与金刚石热沉衬底键合示意图;
图6为实施例3去除Si临时支撑材料示意图;
图7为实施例4ICP刻蚀示意图;
图8为实施例4制备器件电极、场板、钝化层示意图。
其中:1.蓝宝石衬底;2.GaN成核层;3.GaN缓冲层;4.本征GaN层;5.二维电子层;6.AlN层;7.AlGaN势垒层;8.Si临时支撑材料;9.粘合剂苯并环丁烯(BCB);10.金刚石热沉衬底;11.源欧姆电极;12.漏欧姆电极;13.肖特基栅电极;14.场板绝缘介质层;15.金属场板;16.钝化层。
【具体实施方式】
一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,包括以下步骤:
S1:在蓝宝石衬底1上MOCVD生长GaN基HEMTs外延材料;
请参阅图1所示,所述蓝宝石衬底GaN基HEMTs外延材料,蓝宝石衬底(0001)单面抛光,厚度500μm,GaN成核层2厚度20nm,GaN缓冲层3厚度3.5μm,本征GaN层4厚度100nm,本征GaN层4上设置有二维电子层5,AlN层6厚度1nm,AlGaN势垒层7厚度20nm,蓝宝石衬底1上外延生长GaN基HEMTs外延材料包括以下步骤:
(1)蓝宝石衬底清洗,丙酮、去离子水超声各2~3分钟;
(2)将蓝宝石衬底在900~1000℃的H2气氛下进行烘烤,除去表面吸附杂质;
(3)以三甲基镓TMGa和氨气NH3分别作为Ga源和N源,N2和H2作为载气,530~580℃下采用MOCVD技术在蓝宝石衬底上低温生20nmGaN成核层;
(4)接着升温至1050℃生长3.5μmGaN缓冲层;
(5)升温至1100℃,在氢气氛围下生长100nm厚GaN-UID沟道层;
(6)保持温度不变,以三甲基铝TMAl和氨气NH3分别作为Al源和N源在生长1nm厚AlN插入层,AlN插入层主要用来减少AlGaN势垒层三元合金散射,提高二维电子气的迁移率。
(7)最后以三甲基镓TMGa,三甲基铝TMAl和氨气NH3分别作为Ga源、Al源和N源,N2和H2作为载气MOCVD交替生长25nm厚AlGaN势垒层。
S2:采用激光剥离技术对步骤S1所述蓝宝石衬底进行剥离;
请参阅图2、图3和图4所示,器件临时支撑材料为(111)晶向Si的晶片,扫描激光采用波长为248~480nm,脉冲宽度为38ns KrF脉冲激光。包括以下步骤:
(1)取一块Si(111)的晶片作为Si临时支撑材料8,用粘合剂将所述蓝宝石衬底GaN基HEMTs外延材料临时倒转到Si临时支撑材料8上,形成蓝宝石/蓝GaN基HEMTs外延材料/Si的三层结构;
(2)用一束波长248~480nm,脉冲宽度38ns KrF脉冲激光从蓝宝石一面扫描整个样品;激光脉冲的能量密度可以由一个焦距40cm的石英透镜来调节。
(3)加热所述蓝宝石/GaN基HEMTs外延材料Si三层结构(加热衬底到Ga的熔点29℃以上)去除蓝宝石衬底,得到GaN基HEMTs外延材料/Si两层结构;
S3:刻蚀、抛光GaN底表面外延层,同时抛光金刚石热沉片;
S4:将步骤S2制备的所述GaN底表面和步骤S3制备的所述金刚石热沉片表面进行抛光并淀积薄层,薄层上键合粘合剂,进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构;
S5:去除所述金刚石/GaN基HEMTs外延材料/Si三层结构中Si晶片的临时支撑材料,得到金刚石/GaN基HEMTs外延材料两层结构;
请参阅图5、图6和图7所示,金刚石为多晶金刚石,厚度0.3mm,粘合剂为苯并环丁烯(BCB),键合时间25~30min,键合和固化温度低于150℃。采用粘合剂低温键合技术来完成GaN基HEMTs外延材料与金刚石热沉衬底10低温键合,包括以下步骤:
(1)刻蚀、抛光所述暴露的GaN底表面外延层,抛光到纳米级表面粗糙度,为晶片键合做准备,同时抛光金刚石热沉片;
(2)在所述暴露的GaN底表面和金刚石热沉片抛光淀积一薄层键合粘合剂苯并环丁烯(BCB),所述两部分紧密接触进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构,键合、固化温度不超过150℃。
(3)请参阅图7所示,去除所述金刚石/GaN基HEMTs外延材料/Si三层结构中Si晶片临时支撑材料,得到金刚石热沉衬底/GaN基HEMTs外延结构。
S6:ICP刻蚀GaN基HEMTs外延材料,进行器件隔离;
S7:制备器件电极。
请参阅图8所示,肖特基栅电极采用Ni/Au复合两层金属结构,源、漏欧姆电极采用Ti/Al/Ti/Au多层技术结构,场板绝缘介质采用氮化硅。完成金刚石热沉衬底GaN基HEMTs的隔离、电极与场板的制备,包括以下步骤:
(1)所述金刚石热沉/GaN基HEMTs外延材料清洗,三氯化碳、四氯乙烯、丙酮、乙醇、去离子水超声各3~5分钟,氮气吹干。
(2)制备源欧姆电极11和漏欧姆电极12:磁控溅射Ti/Al/TiAu,N2保护下850~900℃、50s退火;
(3)离子注入隔离:注He+20KeV,1×1015cm-2和50KeV,1×1014cm-2
(4)形成肖特基栅电极:光刻3μm栅,磁控溅射Ni/Au,剥离形成肖特基栅电极13;
(5)PECVD生长Si3N4场板绝缘介质层14;
(6)ICP第一次刻孔;
(7)磁控溅射金属Ni/Au,剥离形成金属源场板15;
(8)PECVD生长Si3N4钝化层16;
(9)ICP第二次刻蚀接触孔;
(10)磁控溅射Ni/Au,加厚电极;
(11)划片封装。

Claims (9)

1.一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,包括以下步骤:
S1:在蓝宝石衬底上MOCVD生长GaN基HEMTs外延结构;
S2:采用激光剥离技术对步骤S1所述蓝宝石衬底进行剥离;
S3:刻蚀、抛光GaN底表面外延层,同时抛光金刚石热沉片;
S4:将步骤S2制备的所述GaN底表面和步骤S3制备的所述金刚石热沉片表面进行抛光并淀积薄层,薄层上键合粘合剂,进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构;
S5:去除所述步骤S4得到的金刚石/GaN基HEMTs外延材料/Si三层结构中的Si晶片的临时支撑材料,得到金刚石/GaN基HEMTs外延材料两层结构;
S6:ICP刻蚀GaN基HEMTs外延材料,进行器件隔离;
S7:制备器件电极。
2.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S1具体包括以下步骤:
S11:蓝宝石衬底清洗,丙酮、去离子水分别超声2~3分钟;
S12:将蓝宝石衬底在900~1000℃的H2气氛下进行烘烤;
S13:以三甲基镓和氨气分别作为Ga源和N源,N2和H2作为载气,530~580℃下采用MOCVD技术在蓝宝石衬底上低温生长20nm的GaN成核层;
S14:继续升温至1050℃生长3.5μm的GaN缓冲层;
S15:再升温至1100℃,在氢气氛围下生长100nm的GaN-UID沟道层;
S16:保持温度不变,以三甲基铝和氨气分别作为Al源和N源在生长1nm的AlN插入层;
S17:最后以三甲基镓、三甲基铝和氨气分别作为Ga源、Al源和N源,N2和H2作为载气MOCVD交替生长25nm的AlGaN势垒层。
3.根据权利要求2所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述外延材料具体为:蓝宝石衬底单面抛光,厚度500μm,GaN成核层厚度20nm,GaN缓冲层厚度3.5μm,本征GaN层厚度100nm,AlN层厚度1nm,AlGaN势垒层厚度20nm。
4.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,步骤S2具体为:
S21:取Si晶片作为临时支撑材料,用热塑性粘合剂将所述Si临时支撑材料粘到所述GaN基HEMTs外延材料上,形成蓝宝石/GaN基HEMTs外延材料/Si三层结构;
S22:用波长248~480nm,脉冲宽度38ns KrF脉冲激光从蓝宝石一面扫描整个样品,激光脉冲的能量密度由焦距40cm的石英透镜调节;
S23:加热所述蓝宝石/GaN基HEMTs外延材料Si三层结构,去除蓝宝石衬底,得到GaN基HEMTs外延材料/Si两层结构。
5.根据权利要求4所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于:所述步骤S23中,加热所述蓝宝石衬底到Ga的熔点29℃以上。
6.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S4中低温键合具体为:分别对GaN底表面和金刚石热沉片表面进行抛光并淀积一薄层,薄层上设置有键合粘合剂苯并环丁烯BCB,然后将所述GaN底表面和金刚石热沉片紧密接触进行低温键合、固化得到金刚石/GaN基HEMTs外延材料/Si三层结构,键合、固化温度不超过150℃。
7.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S6具体为:
先对所述金刚石热沉/GaN基HEMTs外延材料清洗,再进行欧姆接触,然后离子注入隔离,形成肖特基栅,最后生长Si3N4隔离层。
8.根据权利要求7所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述外延清洗采用三氯化碳、四氯乙烯、丙酮、乙醇、去离子水超声各3~5分钟,氮气吹干;然后采用磁控溅射Ti/Al/TiAu,N2保护下在850~900℃、50s进行退火;再注He+20KeV,1×1015cm-2和50KeV,1×1014cm-2;然后光刻3μm栅,磁控溅射Ni/Au,剥离形成肖特基栅,最后生长隔离层。
9.根据权利要求1所述的一种金刚石热沉衬底GaN基HEMTs制备方法,其特征在于,所述步骤S7制备器件电极具体为:先磁控溅射Ti/Al/TiAu制备源、漏欧姆电极,再He+离子注入隔离,磁控溅射Ni/Au,剥离形成肖特基栅电极;接着PECVD生长Si3N4场板绝缘介质层;然后用ICP刻蚀进行第一次刻孔;然后磁控溅射金属Ni/Au,剥离形成源金属场板;然后在PECVD上生长Si3N4钝化层;然后用ICP刻蚀进行第二次刻蚀接触孔;然后磁控溅射Ni/Au,加厚电极;最后划片封装。
CN201611084413.8A 2016-11-30 2016-11-30 一种金刚石热沉衬底GaN HEMTs制备方法 Active CN106504988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611084413.8A CN106504988B (zh) 2016-11-30 2016-11-30 一种金刚石热沉衬底GaN HEMTs制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611084413.8A CN106504988B (zh) 2016-11-30 2016-11-30 一种金刚石热沉衬底GaN HEMTs制备方法

Publications (2)

Publication Number Publication Date
CN106504988A true CN106504988A (zh) 2017-03-15
CN106504988B CN106504988B (zh) 2019-09-10

Family

ID=58327307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611084413.8A Active CN106504988B (zh) 2016-11-30 2016-11-30 一种金刚石热沉衬底GaN HEMTs制备方法

Country Status (1)

Country Link
CN (1) CN106504988B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783614A (zh) * 2017-04-12 2017-05-31 成都海威华芯科技有限公司 一种基于GaN HEMT结构的欧姆接触制备方法
CN106981423A (zh) * 2017-04-12 2017-07-25 成都海威华芯科技有限公司 基于Si衬底外延SiC基GaN HEMT的工艺方法
CN107393858A (zh) * 2017-07-28 2017-11-24 西安交通大学 一种GaN HEMTs功率器件向金刚石热沉转移方法
CN107481982A (zh) * 2017-08-08 2017-12-15 中国科学院半导体研究所 AlN基板高效散热HEMT器件及其制备方法
CN108447899A (zh) * 2018-02-09 2018-08-24 江苏如高第三代半导体产业研究院有限公司 一种垂直结构GaN功率器件的制备方法
CN110211880A (zh) * 2019-07-05 2019-09-06 苏州汉骅半导体有限公司 金刚石基氮化镓hemt结构制造方法
CN111584346A (zh) * 2020-05-28 2020-08-25 浙江大学 具有热沉结构的GaN器件及其制备方法
CN112216610A (zh) * 2020-10-10 2021-01-12 东莞市中镓半导体科技有限公司 基于蓝宝石衬底的hemt的制备方法
CN112530803A (zh) * 2020-12-04 2021-03-19 中国科学院上海微系统与信息技术研究所 GaN基HEMT器件的制备方法
CN113571416A (zh) * 2021-07-19 2021-10-29 太原理工大学 一种金刚石基氮化镓高电子迁移率晶体管及其制备方法
CN113690347A (zh) * 2021-10-27 2021-11-23 南昌凯捷半导体科技有限公司 一种具有亚波长抗反射光栅mini LED的制作方法
WO2022019799A1 (ru) * 2020-07-24 2022-01-27 Общество С Ограниченной Ответственностью "Вандер Технолоджис" Гетероэпитаксиальная структура с алмазным теплоотводом
CN115491764A (zh) * 2022-09-29 2022-12-20 中国电子科技集团公司第十三研究所 一种剥离外延金刚石与GaN材料的方法
CN117954331A (zh) * 2024-03-27 2024-04-30 北京大学东莞光电研究院 一种金刚石复合散热基板的制备方法及金刚石复合散热基板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185824A (zh) * 2015-09-02 2015-12-23 成都嘉石科技有限公司 半导体器件的制作方法
CN105826434A (zh) * 2016-03-23 2016-08-03 陕西科技大学 一种金刚石热沉GaN基LED制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185824A (zh) * 2015-09-02 2015-12-23 成都嘉石科技有限公司 半导体器件的制作方法
CN105826434A (zh) * 2016-03-23 2016-08-03 陕西科技大学 一种金刚石热沉GaN基LED制作方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981423A (zh) * 2017-04-12 2017-07-25 成都海威华芯科技有限公司 基于Si衬底外延SiC基GaN HEMT的工艺方法
CN106981423B (zh) * 2017-04-12 2019-08-02 成都海威华芯科技有限公司 基于Si衬底外延SiC基GaN HEMT的工艺方法
CN106783614A (zh) * 2017-04-12 2017-05-31 成都海威华芯科技有限公司 一种基于GaN HEMT结构的欧姆接触制备方法
CN107393858A (zh) * 2017-07-28 2017-11-24 西安交通大学 一种GaN HEMTs功率器件向金刚石热沉转移方法
CN107481982A (zh) * 2017-08-08 2017-12-15 中国科学院半导体研究所 AlN基板高效散热HEMT器件及其制备方法
CN108447899A (zh) * 2018-02-09 2018-08-24 江苏如高第三代半导体产业研究院有限公司 一种垂直结构GaN功率器件的制备方法
CN110211880A (zh) * 2019-07-05 2019-09-06 苏州汉骅半导体有限公司 金刚石基氮化镓hemt结构制造方法
CN111584346A (zh) * 2020-05-28 2020-08-25 浙江大学 具有热沉结构的GaN器件及其制备方法
CN111584346B (zh) * 2020-05-28 2021-02-12 浙江大学 具有热沉结构的GaN器件及其制备方法
WO2022019799A1 (ru) * 2020-07-24 2022-01-27 Общество С Ограниченной Ответственностью "Вандер Технолоджис" Гетероэпитаксиальная структура с алмазным теплоотводом
CN112216610A (zh) * 2020-10-10 2021-01-12 东莞市中镓半导体科技有限公司 基于蓝宝石衬底的hemt的制备方法
CN112530803A (zh) * 2020-12-04 2021-03-19 中国科学院上海微系统与信息技术研究所 GaN基HEMT器件的制备方法
CN112530803B (zh) * 2020-12-04 2022-05-17 中国科学院上海微系统与信息技术研究所 GaN基HEMT器件的制备方法
CN113571416A (zh) * 2021-07-19 2021-10-29 太原理工大学 一种金刚石基氮化镓高电子迁移率晶体管及其制备方法
CN113690347A (zh) * 2021-10-27 2021-11-23 南昌凯捷半导体科技有限公司 一种具有亚波长抗反射光栅mini LED的制作方法
CN115491764A (zh) * 2022-09-29 2022-12-20 中国电子科技集团公司第十三研究所 一种剥离外延金刚石与GaN材料的方法
CN115491764B (zh) * 2022-09-29 2024-01-30 中国电子科技集团公司第十三研究所 一种剥离外延金刚石与GaN材料的方法
CN117954331A (zh) * 2024-03-27 2024-04-30 北京大学东莞光电研究院 一种金刚石复合散热基板的制备方法及金刚石复合散热基板

Also Published As

Publication number Publication date
CN106504988B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN106504988B (zh) 一种金刚石热沉衬底GaN HEMTs制备方法
US20090078943A1 (en) Nitride semiconductor device and manufacturing method thereof
US9359693B2 (en) Gallium-nitride-on-diamond wafers and manufacturing equipment and methods of manufacture
CN105826434B (zh) 一种金刚石热沉GaN基LED的制作方法
US20110244654A1 (en) Method for manufacturing semiconductor substrate
US9356188B2 (en) Tensile separation of a semiconducting stack
CN106784276B (zh) 一种金刚石热沉GaN基异侧电极LED制作方法
CN111540684A (zh) 一种金刚石基异质集成氮化镓薄膜与晶体管的微电子器件及其制备方法
CN106981423B (zh) 基于Si衬底外延SiC基GaN HEMT的工艺方法
CN107393858A (zh) 一种GaN HEMTs功率器件向金刚石热沉转移方法
JP6407475B2 (ja) 半導体装置および半導体装置を生産する方法
CN107731903A (zh) 基于SOI结构金刚石复合衬底的GaN高电子迁移率器件及制备方法
TW201413783A (zh) 碳化矽紋層
CN106971943B (zh) 氮化镓外延层生长在硅衬底上的纵向型器件的制造方法
JP2010177353A (ja) 窒化ガリウム系半導体電子デバイスを作製する方法
JP6783063B2 (ja) 窒化物半導体テンプレートおよび窒化物半導体積層物
CN110164766B (zh) 一种基于金刚石衬底的氮化镓器件及其制备方法
WO2022019799A1 (ru) Гетероэпитаксиальная структура с алмазным теплоотводом
CN110323308A (zh) 一种利用石墨烯阻挡层制备氮化物垂直结构led的方法
CN209266411U (zh) 一种高性能晶体管
CN113838816A (zh) 一种具有金刚石钝化层的氮化镓基二极管器件的制备方法
JP2017183455A (ja) 窒化物半導体テンプレート、窒化物半導体積層物、窒化物半導体テンプレートの製造方法、および窒化物半導体積層物の製造方法
CN105322007B (zh) 基于金刚石衬底的氮化物结构、制备方法及半导体器件
CN113594110B (zh) 一种半导体器件及其制备方法
US20230411140A1 (en) Method for producing a substrate for epitaxial growth of a gallium-based iii-n alloy layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant