CN107393858A - 一种GaN HEMTs功率器件向金刚石热沉转移方法 - Google Patents

一种GaN HEMTs功率器件向金刚石热沉转移方法 Download PDF

Info

Publication number
CN107393858A
CN107393858A CN201710631784.1A CN201710631784A CN107393858A CN 107393858 A CN107393858 A CN 107393858A CN 201710631784 A CN201710631784 A CN 201710631784A CN 107393858 A CN107393858 A CN 107393858A
Authority
CN
China
Prior art keywords
power devices
gan hemts
sink
diamond heat
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710631784.1A
Other languages
English (en)
Inventor
张景文
王进军
陈旭东
翟文博
王晓亮
卜忍安
王宏兴
侯洵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710631784.1A priority Critical patent/CN107393858A/zh
Publication of CN107393858A publication Critical patent/CN107393858A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Abstract

本发明公开了一种GaN HEMTs功率器件向金刚石热沉转移方法,通过在蓝宝石衬底上生长GaN HEMTs功率器件,然后采用Si晶片作为临时支撑材料生长在GaN HEMTs功率器件上,然后将蓝宝石衬底与GaN HEMTs功率器件分离,再通过热塑性粘合剂将Si晶片粘到GaN HEMTs功率器件上,最后将GaN HEMTs功率器件上的SI晶片剥离,从而得到金刚石热沉片GaN HEMTs功率器件,采用高热导率的金刚石做GaN HEMTs功率器件的热沉片,大大提高了GaN HEMTs功率器件高频、大功率应用时的散热能力,采用低温键合方法使GaN HEMTs功率器件高频、大功率应用时的散热问题和金刚石热沉片粘合,有效避免了传统的高温键合对器件性能的损伤。本方法转移工艺简单、容易实现、重复性好。

Description

一种GaN HEMTs功率器件向金刚石热沉转移方法
技术领域
本发明涉及GaN HEMTs功率器件散热技术领域,具体涉及一种GaN HEMTs功率器件向金刚石热沉转移方法。
背景技术
GaN HEMTs作为典型的功率半导体器件,具有耐高压、大电流、高功率、耐高温的优势,是一种非常有应用前景的电力电子器件。然而随着器件输出功率的不断提高,器件所产生的热量将急剧升高,如果这些热量没有及时散发出去,器件内部因发热产生的高温将严重影响器件的性能。因此,散热成为GaN HEMTs功率器件设计和制造过程中一个亟待解决课题。
传统的解决GaN HEMTs功率器件散热的方法是将器件制备在蓝宝石或SiC衬底上,利用蓝宝石、SiC衬底散热,然而蓝宝石、SiC有限热导率(蓝宝石热导率35W/m·K、SiC热导率490W/m·K)很难满足器件高频、大功率应用时的散热需求,由于大尺寸高质量金刚石单晶衬底的制备非常困难,同时由于GaN与金刚石存在很大的晶格失配和热失配,外延生长的温度通常在1000℃以上,在金刚石衬底上进行GaN异质外延的难度很大,金刚石材料难以形成高性能的异质结构。
发明内容
本发明的目的在于提供一种GaN HEMTs功率器件向金刚石热沉转移方法,以克服心有技术的不足。
为达到上述目的,本发明采用如下技术方案:
一种GaN HEMTs功率器件向金刚石热沉转移方法,具体包括以下步骤:
步骤1),在蓝宝石衬底上生长GaN HEMTs功率器件;
步骤2),在生长于蓝宝石衬底上的GaN HEMTs功率器件上端生长Si晶片,形成蓝宝石衬底/GaN HEMTs功率器件/Si晶片的三层结构;
步骤3),将步骤2)得到的蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构去除蓝宝石衬底,得到GaN HEMTs功率器件/Si晶片两层结构;
步骤4),将GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件表面与金刚石热沉片通过键合粘合剂键合、固化得到金刚石热沉片/GaN HEMTs功率器件/Si晶片三层结构;
步骤5),去除步骤4)得到的金刚石热沉片/GaN HEMTs功率器件/Si晶片中的Si晶片,即得到金刚石热沉片GaN HEMTs功率器件。
进一步的,具体的,步骤2)中,通过热塑性粘合剂将Si晶片粘到GaN HEMTs功率器件上。
进一步的,Si晶片为Si(111)晶片。
进一步的,具体的,步骤3)中,采用氟化氪激光沿蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构方向垂直于蓝宝石衬底表面扫描蓝宝石衬底/GaN HEMTs/Si晶片三层结构,使GaN HEMTs功率器件与蓝宝石衬底分离,得到GaN HEMTs/Si晶片两层结构。
进一步的,氟化氪激光辐射能量大于GaN HEMTs隙能量。
进一步的,氟化氪(KrF)准分子激光波长为248nm、脉冲宽度为38ns。
进一步的,步骤4)中,GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件表面与金刚石热沉片进行键合前,分别对GaN HEMTs功率器件表面和金刚石热沉片表面进行抛光处理。
进一步的,抛光后金刚石表面均方根粗糙度为1-3nm,GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件表面抛光到纳米级表面粗糙度。
进一步的,步骤4)中,其中键合、固化温度不超过150℃。
进一步的,步骤5)中,首先通过减薄机完成Si晶片背面减薄,然后研磨至Si晶片厚度不大于100nm,再采用干法刻蚀工艺刻蚀掉Si晶片。
与现有技术相比,本发明具有以下有益的技术效果:
本发明一种GaN HEMTs功率器件向金刚石热沉转移方法,通过在蓝宝石衬底上生长GaN HEMTs功率器件,然后采用Si晶片作为临时支撑材料生长在GaN HEMTs功率器件上,然后将蓝宝石衬底与GaN HEMTs功率器件分离,再通过热塑性粘合剂将Si晶片粘到GaNHEMTs功率器件上,最后将GaN HEMTs功率器件上的SI晶片剥离,从而得到金刚石热沉片GaNHEMTs功率器件,采用高热导率的金刚石做GaN HEMTs功率器件的热沉片,大大提高了GaNHEMTs功率器件高频、大功率应用时的散热能力,采用低温键合方法使GaN HEMTs功率器件高频、大功率应用时的散热问题和金刚石热沉片粘合,有效避免了传统的高温键合对器件性能的损伤。本方法转移工艺简单、容易实现、重复性好。
进一步的,采用氟化氪激光沿蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构方向垂直于蓝宝石衬底表面扫描蓝宝石衬底/GaN HEMTs/Si晶片三层结构,蓝宝石衬底对于的氟化氪准分子激光是透明的,而GaN HEMTs功率器件则会强烈吸收248nm激光的能量,垂直于蓝宝石衬底表面扫描蓝宝石衬底/GaN HEMTs/Si晶片三层结构过程中激光穿过蓝宝石衬底到达GaN HEMTs功率器件缓冲层,产生局部的爆炸冲击波,使得在该处的GaN HEMTs功率器件与蓝宝石衬底分离,得到GaN HEMTs/Si晶片两层结构,方法简单。
附图说明
图1为蓝宝石衬底GaN HEMTs功率器件剖面图。
图2为蓝宝石衬底GaN HEMTs功率器件向Si临时支撑材料转移示意图。
图3为脉冲激光扫描蓝宝石衬底示意图。
图4为蓝宝石衬底剥离示意图。
图5为GaN HEMTs功率器件与金刚石热沉片键合示意图。
图6为去除Si临时支撑材料示意图。
图7为金刚石热沉衬GaN HEMTs功率器件剖面图。
图中,1-蓝宝石衬底,2-不掺杂GaN层,3-AlGaN势垒层,4-二维电子气,5-源极,6-漏极,7-栅极,8-钝化层,9-Si晶片,10-粘合剂苯并环丁烯,11-金刚石热沉片。
具体实施方式
下对本发明做进一步详细描述:
一种GaN HEMTs功率器件向金刚石热沉转移方法,具体包括以下步骤:
步骤1),在蓝宝石衬底上生长GaN HEMTs功率器件;
步骤2),在生长于蓝宝石衬底上的GaN HEMTs功率器件上端生长Si晶片,形成蓝宝石衬底/GaN HEMTs功率器件/Si晶片的三层结构;
步骤3),将步骤2)得到的蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构去除蓝宝石衬底,得到GaN HEMTs功率器件/Si晶片两层结构;
步骤4),将GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件表面与金刚石热沉片通过键合粘合剂键合、固化得到金刚石热沉片/GaN HEMTs功率器件/Si晶片三层结构;
步骤5),去除步骤4)得到的金刚石热沉片/GaN HEMTs功率器件/Si晶片中的Si晶片,即得到金刚石热沉片GaN HEMTs功率器件。
具体的,步骤2)中,通过热塑性粘合剂将Si晶片粘到GaN HEMTs功率器件上;Si晶片为Si(111)晶片。
具体的,步骤3)中,采用氟化氪(KrF)准分子激光沿蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构方向垂直于蓝宝石衬底表面扫描蓝宝石衬底/GaN HEMTs/Si晶片三层结构,蓝宝石衬底对于的氟化氪(KrF)准分子激光(5eV辐射能量)是透明的,而GaN HEMTs功率器件(约3.3eV的带隙能量)则会强烈吸收248nm激光的能量,垂直于蓝宝石衬底表面扫描蓝宝石衬底/GaN HEMTs/Si晶片三层结构过程中激光穿过蓝宝石衬底到达GaN HEMTs功率器件缓冲层,产生局部的爆炸冲击波,使得在该处的GaN HEMTs功率器件与蓝宝石衬底分离,得到GaN HEMTs/Si晶片两层结构;具体的,氟化氪(KrF)准分子激光辐射能量大于GaNHEMTs隙能量(3.3eV),氟化氪(KrF)准分子激光波长为248nm、脉冲宽度为38ns;
具体的,步骤4)中,GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件表面与金刚石热沉片进行键合前,分别对GaN HEMTs功率器件表面和金刚石热沉片表面进行抛光处理,抛光后金刚石表面均方根粗糙度为1-3nm;
步骤4)中,其中键合、固化温度不超过150℃;
步骤5)中,首先通过减薄机完成Si晶片背面减薄,然后研磨至Si晶片厚度不大于100nm,再采用干法刻蚀工艺刻蚀掉Si晶片。
实施例:
如图1所示,蓝宝石衬底GaN HEMTs功率器件,器件结构为普通结构,蓝宝石衬底1厚度500μm,不掺杂GaN层2厚度3um,AlGaN势垒层3厚度20nm,源极5、漏极6为欧姆接触电极采用Ti/Al/Ti/Au(20/100/40/55nm)多层金属结构,栅极7为肖特基接触电极采用Ni/Au/(30/250nm)两层金属结构,栅极7和源极5间距2.5μm,栅极7和漏极6间距2.5μm,栅极7长3μm,栅极7宽Wg=100μm;
在蓝宝石衬底上制作GaN HEMTs功率器件,包括以下步骤:
(1)、先将蓝宝石衬底1清洗,采用三氯化碳、四氯乙烯、丙酮、乙醇、去离子水超声各5分钟,然后在氮气吹干,用于去除蓝宝石衬底表面的污染物;
(2)分别通过欧姆接触和磁控溅射Ti/Al/Ti/Au多层金属结构和Ni/Au/两层金属结构。
如图2至图4所示,GaN HEMTs功率器件蓝宝石衬底剥离示意图,器件临时支撑材料为Si(111)晶片9,扫描激光采用波长为248nm、脉冲宽度为38ns的KrF脉冲激光:
(1)、取一块Si(111)的晶片9作为的临时支撑材料,用粘合剂10将所述蓝宝石衬底GaN HEMTs功率器件的钝化层8临时倒转到Si晶片9支撑材料上,形成蓝宝石衬托/GaNHEMTs功率器件/Si晶片的三层结构;
(2)、用一束波长248nm、脉冲宽度38ns KrF脉冲激光沿蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构方向垂直于蓝宝石衬底表面扫描蓝宝石衬托/GaN HEMTs功率器件/Si晶片三层结构;得到GaN HEMTs功率器件/Si两层结构,激光脉冲的能量密度可以由一个焦距40cm的石英透镜来调节;
如图5至图7所示,GaN HEMTs功率器件与金刚石热沉片粘合剂键合图,金刚石为多晶金刚石,厚度0.3mm,粘合剂为苯并环丁烯(BCB),键合时间30min,键合和固化温度低于150℃,采用粘合剂低温键合技术来完成GaN HEMTs功率器件与金刚石热沉片低温键合,包括以下步骤:
(1)、刻蚀、抛光所述暴露的GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件底表面,抛光到纳米级表面粗糙度,为晶片键合做准备,同时抛光金刚石热沉片;
(2)、在抛光后的GaN HEMTs功率器件底表面和金刚石热沉片抛光淀积一薄层键合粘合剂苯并环丁烯(BCB),将GaN HEMTs功率器件和金刚石热沉片紧密接触进行低温键合、固化得到金刚石/GaN HEMTs/Si三层结构,键合、固化温度不超过150℃。
(3)、去除所述金刚石/GaN HEMTs/Si三层结构中Si晶片临时支撑材料,得到金刚石热沉片GaN HEMTs。

Claims (10)

1.一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,包括以下步骤:
步骤1),在蓝宝石衬底上生长GaN HEMTs功率器件;
步骤2),在生长于蓝宝石衬底上的GaN HEMTs功率器件上端生长Si晶片,形成蓝宝石衬底/GaN HEMTs功率器件/Si晶片的三层结构;
步骤3),将步骤2)得到的蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构去除蓝宝石衬底,得到GaN HEMTs功率器件/Si晶片两层结构;
步骤4),将GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件表面与金刚石热沉片通过键合粘合剂键合、固化得到金刚石热沉片/GaNHEMTs功率器件/Si晶片三层结构;
步骤5),去除步骤4)得到的金刚石热沉片/GaN HEMTs功率器件/Si晶片中的Si晶片,即得到金刚石热沉片GaN HEMTs功率器件。
2.根据权利要求1所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,具体的,步骤2)中,通过热塑性粘合剂将Si晶片粘到GaNHEMTs功率器件上。
3.根据权利要求1或2所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,Si晶片为Si(111)晶片。
4.根据权利要求1所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,具体的,步骤3)中,采用氟化氪激光沿蓝宝石衬底/GaN HEMTs功率器件/Si晶片三层结构方向垂直于蓝宝石衬底表面扫描蓝宝石衬底/GaNHEMTs/Si晶片三层结构,使GaN HEMTs功率器件与蓝宝石衬底分离,得到GaNHEMTs/Si晶片两层结构。
5.据权利要求4所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,氟化氪激光辐射能量大于GaN HEMTs隙能量。
6.根据权利要求5所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,氟化氪激光波长为248nm、脉冲宽度为38ns。
7.根据权利要求1所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,步骤4)中,GaN HEMTs功率器件/Si晶片两层结构GaN HEMTs功率器件表面与金刚石热沉片进行键合前,分别对GaN HEMTs功率器件表面和金刚石热沉片表面进行抛光处理。
8.根据权利要求7所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,抛光后金刚石表面均方根粗糙度为1-3nm,GaN HEMTs功率器件/Si晶片两层结构GaNHEMTs功率器件表面抛光到纳米级表面粗糙度。
9.根据权利要求1所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,步骤4)中,其中键合、固化温度不超过150℃。
10.根据权利要求1所述的一种GaN HEMTs功率器件向金刚石热沉转移方法,其特征在于,步骤5)中,首先通过减薄机完成Si晶片背面减薄,然后研磨至Si晶片厚度不大于100nm,再采用干法刻蚀工艺刻蚀掉Si晶片。
CN201710631784.1A 2017-07-28 2017-07-28 一种GaN HEMTs功率器件向金刚石热沉转移方法 Pending CN107393858A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710631784.1A CN107393858A (zh) 2017-07-28 2017-07-28 一种GaN HEMTs功率器件向金刚石热沉转移方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710631784.1A CN107393858A (zh) 2017-07-28 2017-07-28 一种GaN HEMTs功率器件向金刚石热沉转移方法

Publications (1)

Publication Number Publication Date
CN107393858A true CN107393858A (zh) 2017-11-24

Family

ID=60342593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710631784.1A Pending CN107393858A (zh) 2017-07-28 2017-07-28 一种GaN HEMTs功率器件向金刚石热沉转移方法

Country Status (1)

Country Link
CN (1) CN107393858A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148561A (zh) * 2019-04-17 2019-08-20 复旦大学 Si基AlGaN/GaN 高电子迁移率晶体管转移至柔性衬底的方法
CN110211880A (zh) * 2019-07-05 2019-09-06 苏州汉骅半导体有限公司 金刚石基氮化镓hemt结构制造方法
CN112216610A (zh) * 2020-10-10 2021-01-12 东莞市中镓半导体科技有限公司 基于蓝宝石衬底的hemt的制备方法
CN112509996A (zh) * 2021-02-05 2021-03-16 浙江工商大学 GaN器件结构及制备方法
DE102020214767A1 (de) 2020-11-25 2022-05-25 Ferdinand-Braun-Institut gGmbH, Leibniz- Institut für Höchstfrequenztechnik Verfahren zur Herstellung eines Transistors mit hoher Elektronenbeweglichkeit und hergestellter Transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003724A1 (en) * 2001-06-27 2003-01-02 Hitachi, Ltd. Manufacturing method of the semiconductor device
CN106504988A (zh) * 2016-11-30 2017-03-15 陕西科技大学 一种金刚石热沉衬底GaN HEMTs制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003724A1 (en) * 2001-06-27 2003-01-02 Hitachi, Ltd. Manufacturing method of the semiconductor device
CN106504988A (zh) * 2016-11-30 2017-03-15 陕西科技大学 一种金刚石热沉衬底GaN HEMTs制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
菲利普•加罗 等: "《3D集成手册:3D集成电路技术与应用》", 31 May 2017 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148561A (zh) * 2019-04-17 2019-08-20 复旦大学 Si基AlGaN/GaN 高电子迁移率晶体管转移至柔性衬底的方法
CN110211880A (zh) * 2019-07-05 2019-09-06 苏州汉骅半导体有限公司 金刚石基氮化镓hemt结构制造方法
CN110211880B (zh) * 2019-07-05 2023-04-28 苏州汉骅半导体有限公司 金刚石基氮化镓hemt结构制造方法
CN112216610A (zh) * 2020-10-10 2021-01-12 东莞市中镓半导体科技有限公司 基于蓝宝石衬底的hemt的制备方法
DE102020214767A1 (de) 2020-11-25 2022-05-25 Ferdinand-Braun-Institut gGmbH, Leibniz- Institut für Höchstfrequenztechnik Verfahren zur Herstellung eines Transistors mit hoher Elektronenbeweglichkeit und hergestellter Transistor
CN112509996A (zh) * 2021-02-05 2021-03-16 浙江工商大学 GaN器件结构及制备方法
CN112509996B (zh) * 2021-02-05 2021-05-11 浙江工商大学 GaN器件结构及制备方法

Similar Documents

Publication Publication Date Title
CN107393858A (zh) 一种GaN HEMTs功率器件向金刚石热沉转移方法
CN106504988B (zh) 一种金刚石热沉衬底GaN HEMTs制备方法
CN107170668B (zh) 一种自支撑氮化镓制备方法
US10043700B2 (en) Method of fabricating diamond-semiconductor composite substrates
CN105826434B (zh) 一种金刚石热沉GaN基LED的制作方法
TWI527099B (zh) 用於回收基材之方法
JP6572694B2 (ja) SiC複合基板の製造方法及び半導体基板の製造方法
CN105006446A (zh) 基于飞秒激光技术的GaN薄膜与蓝宝石衬底的剥离方法
JP2006528593A (ja) エピタキシャル成長層の形成方法
JP2006528592A (ja) エピタキシャル成長層の形成方法
JP2019528225A (ja) 気相または液相エピタキシーを使用したGaN肥厚化用のシードウエハ
JPWO2013058222A1 (ja) 固相接合ウエハの支持基板の剥離方法および半導体装置の製造方法
CN110379782A (zh) 基于刻蚀和定向外延的片内嵌入金刚石散热氮化镓晶体管及制备方法
CN101719471B (zh) 场效应晶体管制造方法
TW201526279A (zh) 半導體堆疊體的拉伸分離
CN111916348A (zh) 制造碳化硅器件的方法和在处置衬底中包括激光修改区带的晶片复合体
CN109860049A (zh) 一种金刚石基氮化镓高电子迁移率晶体管异质集成方法
CN111048407A (zh) SiC同质外延层的剥离方法
CN108288582A (zh) 一种晶圆级GaN器件衬底转移方法
CN111900200A (zh) 一种金刚石基氮化镓复合晶片及其键合制备方法
JP6407475B2 (ja) 半導体装置および半導体装置を生産する方法
US8698161B2 (en) Semiconductor structures having directly bonded diamond heat sinks and methods for making such structures
CN110349924A (zh) 一种提升片内嵌入金刚石氮化镓晶体管热输运能力的工艺方法
CN107919413A (zh) 一种GaN基LED向金刚石热沉转移方法
CN113097124B (zh) 异质集成GaN薄膜及GaN器件的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171124