CN106478090A - 钛酸铋‑铌酸钙固溶体高频电介质陶瓷的制备方法 - Google Patents

钛酸铋‑铌酸钙固溶体高频电介质陶瓷的制备方法 Download PDF

Info

Publication number
CN106478090A
CN106478090A CN201610874782.0A CN201610874782A CN106478090A CN 106478090 A CN106478090 A CN 106478090A CN 201610874782 A CN201610874782 A CN 201610874782A CN 106478090 A CN106478090 A CN 106478090A
Authority
CN
China
Prior art keywords
solid solution
preparation
dielectric ceramic
bismuth titanates
frequency dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610874782.0A
Other languages
English (en)
Other versions
CN106478090B (zh
Inventor
董思远
樊小健
高勇
王晓莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201610874782.0A priority Critical patent/CN106478090B/zh
Publication of CN106478090A publication Critical patent/CN106478090A/zh
Application granted granted Critical
Publication of CN106478090B publication Critical patent/CN106478090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钛酸铋‑铌酸钙固溶体高频电介质陶瓷的制备方法,目的在于,使制备的钛酸铋‑铌酸钙固溶体高频电介质陶瓷具有高介电常数、低介电损耗、低烧结温度和宽成瓷温度范围的优点,且成本低、环保无污染,所采用的技术方案为:1)按照(1‑x)Bi2Ti2O7‑xCa2Nb2O7中化学计量比称量原材料;2)将原材料进行球磨后烘干,烘干后进行预合成;3)预合成后的粉料进行粗粉碎后进行二次球磨并烘干;4)对烘干后的粉料进行造粒,造粒后压制成薄圆片素坯;5)对薄圆片素坯进行高温排粘后自然冷却;6)对高温排粘后的薄圆片素坯进行高温烧结后自然冷却。

Description

钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法
技术领域
本发明涉及高频热补偿电容器瓷和高频热稳定电容器瓷材料,具体涉及钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法。
背景技术
随着现代化工业程度的快速发展,特别是大规模集成电路的推广和应用以及表面组装技术(SMT)的发展,对材料要求越来越微型化、高精度化、环保化。陶瓷电介质材料作为功能电子材料的重要组成部分,被广泛应用于各种元器件中,如电容器、谐振器、滤波器、电路基片、集成电路等。
铋基高频介质陶瓷材料因其烧结温度低,介电常数高,与银电极良好的结合,烧结成瓷的致密性良好,热、力学性能优良等优点,成为MLCC/LTCC(多层/低温共烧陶瓷)材料研发的热点。
焦绿石结构的钛酸铋-铌酸钙固溶体系((1-x)Bi2Ti2O7-xCa2Nb2O7,BT-xCN)电介质陶瓷作为一种新开发的电介质陶瓷材料,有着烧结温度低、容易形成致密的陶瓷和介电性能优良等优点,被系统地进行了研究。目前的工艺方法制备的钛酸铋-铌酸钙固溶体高频电介质陶瓷存在介电常数低、介电损耗高、烧结温度高等的缺陷。
发明内容
为了解决现有技术中的问题,本发明提出一种钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,使制备的钛酸铋-铌酸钙固溶体高频电介质陶瓷具有高介电常数、低介电损耗、低烧结温度和宽成瓷温度范围的优点,且成本低、环保无污染。
为了实现以上目的,本发明所采用的技术方案为:包括以下步骤:
1)按照(1-x)Bi2Ti2O7-xCa2Nb2O7中化学计量比称量原材料;
2)将原材料进行球磨后烘干,烘干后进行预合成;
3)预合成后的粉料进行粗粉碎后进行二次球磨并烘干;
4)对烘干后的粉料进行造粒,造粒后压制成薄圆片素坯;
5)对薄圆片素坯进行高温排粘后自然冷却;
6)对高温排粘后的薄圆片素坯进行高温烧结后自然冷却,即得到钛酸铋-铌酸钙固溶体高频电介质陶瓷。
所述步骤1)中原材料包括Bi2O3、CaCO3、Nb2O5和TiO2
所述步骤1)中原材料的化学计量比为:Bi2O3:CaCO3:Nb2O5:TiO2=(1-x):x:x:(1-x),其中0.3≤x≤0.7。
所述Bi2O3、CaCO3、Nb2O5和TiO2均为分析纯原料。
所述步骤2)中预合成的温度为850~950℃,保温时间为2~4h。
所述步骤4)中在烘干后的粉料中加入PVA进行造粒。
所述步骤5)中高温排粘的温度为500-550℃。
所述步骤5)中高温烧结的温度为1100~1200℃,保温时间为2~4h。
所述步骤2)和3)中采用恒温干燥箱进行烘干。
与现有技术相比,本发明对球磨后的粉料进行高温预合成,对预合成后的粉料粗粉碎后进行二次球磨,进行造粒后压制成薄圆片素坯,薄圆片素坯高温排粘后进行高温烧结,即得到钛酸铋-铌酸钙固溶体高频电介质陶瓷,制备的铋基陶瓷材料为焦绿石结构,瓷质致密,介电性能良好,介电常数为150~170,介电损耗tanδ≤1×10-3,温度系数(TCC)为-900~-700ppm/℃。本发明的方法中制备的固溶体系陶瓷材料有以下优点:1)通过调节x的值调节介电性能以满足不同的要求;2)陶瓷材料的介电常数大(150~170);3)烧结温度低、烧结范围广;4)材料成本低、环保无污染。
附图说明
图1为本发明制备的钛酸铋-铌酸钙固溶体高频电介质陶瓷室温下的X射线衍射谱图;
图2a、2b和2c分别为本发明制备的钛酸铋-铌酸钙固溶体高频电介质陶瓷介电常数、介电损耗和温度系数与烧结温度的关系,图中为x取0.3、0.4、0.5、0.6和0.7的五种情况,即BT-0.3CN、BT-0.4CN、BT-0.5CN、BT-0.6CN和BT-0.7CN。
具体实施方式
下面结合具体的实施例和说明书附图对本发明作进一步的解释说明。
本发明包括以下步骤:
1)按照化学式的化学计量比称量原材料,化学计量比为Bi2O3:CaCO3:Nb2O5:TiO2=(1-x):x:x:(1-x),其中0.3≤x≤0.7,Bi2O3、CaCO3、Nb2O5和TiO2均为市售分析纯原料;
2)将称量好的原料置于球磨罐中一次球磨,将混合好的浆料置于恒温干燥箱中烘干;
3)将烘干后的混合粉料放入坩锅中,在850~950℃高温下进行预合成,保温时间为2~4h;
4)对预合成的粉料经粗粉碎后,进行二次球磨,将细粉碎后的浆料在恒温干燥箱烘干;
5)在烘干后的粉料中加入适量的PVA进行造粒;然后压制成薄圆片素坯;
6)将圆片素坯置于箱式高温电炉中在500-550℃下进行排粘,使材料中的PVA粘合剂排出,之后随炉自然冷却;
7)将排粘后的素坯置于箱式高温电炉中,在1100~1200℃高温下烧结,保温时间为2~4h,得到钛酸铋-铌酸钙固溶体高频电介质陶瓷。
参见图1,本发明制备的钛酸铋-铌酸钙固溶体高频电介质陶瓷使用XRD衍射仪测试为类焦绿石结构,参见图2a~2c,采用介电测试系统测量的介电常数为150~170,介电损耗tanδ≤1×10-3,温度系数(TCC)为-900~-700ppm/℃,瓷质致密,介电性能良好,本发明制备的钛酸铋-铌酸钙固溶体高频电介质陶瓷有以下优点:1)通过调节x的值调节介电性能以满足不同的要求;2)陶瓷材料的介电常数大(150~170);3)烧结温度低、烧结范围广;4)材料成本低、环保无污染。
实施例1:
1)按照化学式的化学计量比称量原材料,化学计量比为Bi2O3:CaCO3:Nb2O5:TiO2=0.7:0.3:0.3:0.7;
2)将称量好的原料置于球磨罐中一次球磨,将混合好的浆料置于恒温干燥箱中烘干;
3)将烘干后的混合粉料放入坩锅中,在适当的高温下进行预合成,预合成温度为850℃;
4)对预合成的粉料经粗粉碎后,进行二次球磨,将细粉碎后的浆料在恒温干燥箱烘干;
5)在烘干后的粉料中加入适量的PVA进行造粒;然后压制成薄圆片素坯;
6)将圆片素坯置于箱式高温电炉中进行排粘,之后随炉自然冷却;
7)将排粘后的素坯置于箱式高温电炉中,在适当高温下烧结,烧结温度为1100℃,得到钛酸铋-铌酸钙固溶体系陶瓷材料;
参见图1,使用XRD衍射仪测试钛酸铋-铌酸钙固溶体陶瓷结构为类焦绿石结构;图2a~2c使用介电测试系统测量其介电常数为163,介电损耗为0.0014,温度系数为-730ppm/℃。
实施例2:
1)按照化学式的化学计量比称量原材料,化学计量比为Bi2O3:CaCO3:Nb2O5:TiO2=0.6:0.4:0.4:0.6;
2)将称量好的原料置于球磨罐中一次球磨,将混合好的浆料置于恒温干燥箱中烘干;
3)将烘干后的混合粉料放入坩锅中,在适当的高温下进行预合成,预合成温度为850℃;
4)对预合成的粉料经粗粉碎后,进行二次球磨,将细粉碎后的浆料在恒温干燥箱烘干;
5)在烘干后的粉料中加入适量的PVA进行造粒;然后压制成薄圆片素坯;
6)将圆片素坯置于箱式高温电炉中进行排粘,之后随炉自然冷却;
7)将排粘后的素坯置于箱式高温电炉中,在适当高温下烧结,烧结温度为1100℃,得到钛酸铋-铌酸钙固溶体系陶瓷材料;
参见图1,使用XRD衍射仪测试钛酸铋-铌酸钙固溶体陶瓷结构为类焦绿石结构;参见图2a~2c,使用介电测试系统测量其介电常数为160,介电损耗为0.0007,温度系数为-850ppm/℃。
实施例3:
1)按照化学式的化学计量比称量原材料,化学计量比为Bi2O3:CaCO3:Nb2O5:TiO2=0.5:0.5:0.5:0.5;
2)将称量好的原料置于球磨罐中一次球磨,将混合好的浆料置于恒温干燥箱中烘干;
3)将烘干后的混合粉料放入坩锅中,在适当的高温下进行预合成,预合成温度为850℃;
4)对预合成的粉料经粗粉碎后,进行二次球磨,将细粉碎后的浆料在恒温干燥箱烘干;
5)在烘干后的粉料中加入适量的PVA进行造粒;然后压制成薄圆片素坯;
6)将圆片素坯置于箱式高温电炉中进行排粘,之后随炉自然冷却;
7)将排粘后的素坯置于箱式高温电炉中,在适当高温下烧结,烧结温度为1200℃,得到钛酸铋-铌酸钙固溶体系陶瓷材料;
参见图1,使用XRD衍射仪测试钛酸铋-铌酸钙固溶体陶瓷结构为类焦绿石结构;参见图2a~2c,使用介电测试系统测量其介电常数为155,介电损耗为0.0004,温度系数为-950ppm/℃。
实施例4:
1)按照化学式的化学计量比称量原材料,化学计量比为Bi2O3:CaCO3:Nb2O5:TiO2=0.5:0.5:0.5:0.5;
2)将称量好的原料置于球磨罐中一次球磨,将混合好的浆料置于恒温干燥箱中烘干;
3)将烘干后的混合粉料放入坩锅中,在适当的高温下进行预合成,预合成温度为850℃;
4)对预合成的粉料经粗粉碎后,进行二次球磨,将细粉碎后的浆料在恒温干燥箱烘干;
5)在烘干后的粉料中加入适量的PVA进行造粒;然后压制成薄圆片素坯;
6)将圆片素坯置于箱式高温电炉中进行排粘,之后随炉自然冷却;
7)将排粘后的素坯置于箱式高温电炉中,在适当高温下烧结,烧结温度为1250℃,得到钛酸铋-铌酸钙固溶体系陶瓷材料;
参见图1,使用XRD衍射仪测试钛酸铋-铌酸钙固溶体陶瓷结构为类焦绿石结构;参见图2a~2c,使用介电测试系统测量其介电常数为145,介电损耗为0.0005,温度系数为-920ppm/℃,性能较烧结温度低的稍差。
实施例5:
1)按照化学式的化学计量比称量原材料,化学计量比为Bi2O3:CaCO3:Nb2O5:TiO2=0.4:0.6:0.6:0.4;
2)将称量好的原料置于球磨罐中一次球磨,将混合好的浆料置于恒温干燥箱中烘干;
3)将烘干后的混合粉料放入坩锅中,在适当的高温下进行预合成,预合成温度为900℃;
4)对预合成的粉料经粗粉碎后,进行二次球磨,将细粉碎后的浆料在恒温干燥箱烘干;
5)在烘干后的粉料中加入适量的PVA进行造粒;然后压制成薄圆片素坯;
6)将圆片素坯置于箱式高温电炉中进行排粘,之后随炉自然冷却;
7)将排粘后的素坯置于箱式高温电炉中,在适当高温下烧结,烧结温度为1150℃,得到钛酸铋-铌酸钙固溶体系陶瓷材料。
实施例6:
1)按照化学式的化学计量比称量原材料,化学计量比为Bi2O3:CaCO3:Nb2O5:TiO2=0.3:0.7:0.7:0.3;
2)将称量好的原料置于球磨罐中一次球磨,将混合好的浆料置于恒温干燥箱中烘干;
3)将烘干后的混合粉料放入坩锅中,在适当的高温下进行预合成,预合成温度为950℃;
4)对预合成的粉料经粗粉碎后,进行二次球磨,将细粉碎后的浆料在恒温干燥箱烘干;
5)在烘干后的粉料中加入适量的PVA进行造粒;然后压制成薄圆片素坯;
6)将圆片素坯置于箱式高温电炉中进行排粘,之后随炉自然冷却;
7)将排粘后的素坯置于箱式高温电炉中,在适当高温下烧结,烧结温度为1200℃,得到钛酸铋-铌酸钙固溶体系陶瓷材料。

Claims (9)

1.钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,包括以下步骤:
1)按照(1-x)Bi2Ti2O7-xCa2Nb2O7中化学计量比称量原材料;
2)将原材料进行球磨后烘干,烘干后进行预合成;
3)预合成后的粉料进行粗粉碎后进行二次球磨并烘干;
4)对烘干后的粉料进行造粒,造粒后压制成薄圆片素坯;
5)对薄圆片素坯进行高温排粘后自然冷却;
6)对高温排粘后的薄圆片素坯进行高温烧结后自然冷却,即得到钛酸铋-铌酸钙固溶体高频电介质陶瓷。
2.根据权利要求1所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述步骤1)中原材料包括Bi2O3、CaCO3、Nb2O5和TiO2
3.根据权利要求2所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述步骤1)中原材料的化学计量比为:Bi2O3:CaCO3:Nb2O5:TiO2=(1-x):x:x:(1-x),其中0.3≤x≤0.7。
4.根据权利要求3所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述Bi2O3、CaCO3、Nb2O5和TiO2均为分析纯原料。
5.根据权利要求1所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述步骤2)中预合成的温度为850~950℃,保温时间为2~4h。
6.根据权利要求1所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述步骤4)中在烘干后的粉料中加入PVA进行造粒。
7.根据权利要求1所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述步骤5)中高温排粘的温度为500-550℃。
8.根据权利要求1所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述步骤5)中高温烧结的温度为1100~1200℃,保温时间为2~4h。
9.根据权利要求1所述的钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法,其特征在于,所述步骤2)和3)中采用恒温干燥箱进行烘干。
CN201610874782.0A 2016-09-30 2016-09-30 钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法 Active CN106478090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610874782.0A CN106478090B (zh) 2016-09-30 2016-09-30 钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610874782.0A CN106478090B (zh) 2016-09-30 2016-09-30 钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN106478090A true CN106478090A (zh) 2017-03-08
CN106478090B CN106478090B (zh) 2019-11-08

Family

ID=58268408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610874782.0A Active CN106478090B (zh) 2016-09-30 2016-09-30 钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106478090B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108640676A (zh) * 2018-08-15 2018-10-12 武汉工程大学 固相反应法制备焦绿石结构Bi2Ti2O7陶瓷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169221A (ja) * 1998-11-30 2000-06-20 Kyocera Corp 誘電体磁器およびその製法
CN1287988A (zh) * 1999-08-16 2001-03-21 株式会社村田制作所 制造压电陶瓷的方法
CN1335284A (zh) * 2000-07-28 2002-02-13 Tdk株式会社 压电陶瓷
CN1358326A (zh) * 1999-06-10 2002-07-10 塞姆特里克斯公司 高介电常数的金属氧化物薄膜
CN102424572A (zh) * 2011-09-02 2012-04-25 西安交通大学 高电阻率铁酸铋-钛酸钡固溶体磁电陶瓷材料的制备方法
CN102850048A (zh) * 2012-07-02 2013-01-02 西安交通大学 一种铌镁钛酸铋陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169221A (ja) * 1998-11-30 2000-06-20 Kyocera Corp 誘電体磁器およびその製法
CN1358326A (zh) * 1999-06-10 2002-07-10 塞姆特里克斯公司 高介电常数的金属氧化物薄膜
CN1287988A (zh) * 1999-08-16 2001-03-21 株式会社村田制作所 制造压电陶瓷的方法
CN1335284A (zh) * 2000-07-28 2002-02-13 Tdk株式会社 压电陶瓷
CN102424572A (zh) * 2011-09-02 2012-04-25 西安交通大学 高电阻率铁酸铋-钛酸钡固溶体磁电陶瓷材料的制备方法
CN102850048A (zh) * 2012-07-02 2013-01-02 西安交通大学 一种铌镁钛酸铋陶瓷材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108640676A (zh) * 2018-08-15 2018-10-12 武汉工程大学 固相反应法制备焦绿石结构Bi2Ti2O7陶瓷的方法

Also Published As

Publication number Publication date
CN106478090B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN106631005A (zh) 中温烧结的无铅高压电容器介质瓷料及制备方法
CN106882963A (zh) 一种基于溶胶凝胶法制备钛酸铜钙的方法
CN105272222B (zh) 一种镁掺杂新型钛酸铋钠基无铅介电陶瓷材料及其制备方法
CN106810209A (zh) 一种高q值锂镁钛系微波介质陶瓷
CN102850048B (zh) 一种铌镁钛酸铋陶瓷材料及其制备方法
CN103613369A (zh) 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
WO2006127103A2 (en) Dielectric ceramic composition having wide sintering temperature range and reduced exaggerated grain growth
CN104310986B (zh) 一种高介电常数温度稳定型陶瓷电容器介质材料
CN105174944A (zh) 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN107814569A (zh) 一种无铅反铁电体陶瓷及其制备方法
CN104803681B (zh) 一种新型低温烧结低介电常数微波介质陶瓷材料
CN106478083A (zh) 一种硅酸锶铜系微波介质陶瓷低温烧结的制备方法
CN106478090B (zh) 钛酸铋-铌酸钙固溶体高频电介质陶瓷的制备方法
CN106187107A (zh) 一种高可靠ag特性微波介质材料及其制备方法
CN105693238A (zh) 一种具有低介电性能和低损耗的钛酸铋钠基无铅压电铁电材料
CN105060888B (zh) 一种氧化铝掺杂制备低损耗稳定铌酸钕陶瓷
CN105732023B (zh) 一种超宽温低损耗无铅陶瓷电容器介电材料
CN105272192B (zh) 一种低介电常数ag特性多层瓷介电容器瓷料及其制备方法
CN109279882A (zh) 一种温度系数可调的硅酸锶铜系介质陶瓷及其制备方法和应用
CN104030682B (zh) 一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法
CN108002836B (zh) 中介电常数微波介电陶瓷材料及其制备方法
CN102531576A (zh) 一种正温度系数变化正电压特性电容器用介质材料及其制备方法
CN112723881B (zh) 一种具有高温度稳定性的介电陶瓷材料
CN108864621A (zh) 一种陶瓷/聚合物柔性高介电复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant