CN105732023A - 一种超宽温低损耗无铅陶瓷电容器介电材料 - Google Patents

一种超宽温低损耗无铅陶瓷电容器介电材料 Download PDF

Info

Publication number
CN105732023A
CN105732023A CN201610016977.1A CN201610016977A CN105732023A CN 105732023 A CN105732023 A CN 105732023A CN 201610016977 A CN201610016977 A CN 201610016977A CN 105732023 A CN105732023 A CN 105732023A
Authority
CN
China
Prior art keywords
dielectric material
temperature
hours
tio
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610016977.1A
Other languages
English (en)
Other versions
CN105732023B (zh
Inventor
侯育冬
章进
陈鸿熙
岳云鸽
郑木鹏
朱满康
严辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610016977.1A priority Critical patent/CN105732023B/zh
Publication of CN105732023A publication Critical patent/CN105732023A/zh
Application granted granted Critical
Publication of CN105732023B publication Critical patent/CN105732023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种超宽温低损耗无铅陶瓷电容器介电材料及其制备方法,属于电子信息材料的技术领域。化学式(1?x)[0.94(0.75Bi1/2Na1/2TiO3–0.25NaNbO3)–0.06BaTiO3)]–xCaZrO3,0.10≤x<0.15。按照金属元素的摩尔比称取Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2作为起始原料。首次球磨后,预烧。预烧后粉体研碎,球磨,烘干后研磨成粉,以聚乙烯醇水溶液作为粘结剂造粒,压制成型,排胶,高温烧结,随炉冷却。本发明的介电材料具有在超宽的温度范围内保持优异的电容温度稳定性,且在整个温度区介电损耗都低于3%。

Description

一种超宽温低损耗无铅陶瓷电容器介电材料
技术领域
本发明涉及一种超宽温高稳定低损耗的无铅电容器陶瓷介电材料及其制备方法,主要应用于多层陶瓷电容器等表面贴装电子元器件,属于电子信息材料的技术领域。
背景技术
多层陶瓷电容器是电子信息装备的重要基础元器件,也是全球需求量最大的表面贴装电子元器件。近年来,随着电子信息装备的飞速发展,对多层陶瓷电容器高温段工作温度范围提出更高要求,尤其是石油钻井、混合动力车辆、航天探测与核工业装备中的耐高温电子设备等,都是在极端环境下(大于200℃)长时间运行,这就需要这些电子设备中的电子元器件工作温度范围能延伸到200℃以上,甚至更高。因此,研究耐高温多层陶瓷电容器介电材料是目前电子元器件发展的一个重要方向。
当前,用于制造高温多层陶瓷电容器的商用介电材料仍然以钛酸钡(BaTiO3)为主要基体,通过在其中掺入高居里点物质,如钛酸铋钠(Bi0.5Na0.5TiO3)、钽酸锂(LiTaO3)等,使其居里点向高温方向移动,从而制备出宽温高稳定性陶瓷介质材料。但是,由于BaTiO3本征的低居里点(120℃),所以很难使以BaTiO3为基体的材料电容温度变化率△C/C25℃≤±15%高温上限延伸到200℃以上。近期,有研究者发现通过将Bi0.5Na0.5TiO3与NaNbO3复合可以成功制备出一种室温介电常数达到1000,且电容温度变化率(△C/C25℃≤±15%)高温上限延伸到350℃以上的介电材料Bi0.5Na0.5TiO3-NaNbO3(Xu Qi等,JOURNAL OF THE AMERICANCERAMIC SOCIETY卷:98期:10页:3119-3126出版年:OCT 2015)。但是,该体系材料的缺点是在高温时(≥250℃)介电损耗过大(>5%)。高介电损耗会影响陶瓷电容器的工作稳定性,因而制约了该体系材料在超高温领域陶瓷电容器方面的应用。
发明内容
本发明所要解决的技术问题是针对现有的陶瓷介质材料很难同时满足宽工作温度范围内的电容温度稳定性(△C/C25℃≤±15%)与低介电损耗(tanδ≤5%),而提供一种超宽温高稳定且在高温时仍具有较低介电损耗的无铅电容器陶瓷介质材料及其制备方法,该电容器陶瓷具有在超宽的温度范围内(-55℃-350℃)在保持优异的电容温度稳定性(△C/C25℃≤±15%)同时,且在整个温度区间(-55℃-350℃)样品的介电损耗都低于3%。
本发明通过如下技术方案予以实现。
一种超宽温高稳定低损耗无铅电容器陶瓷介电材料,其特征在于,其化学组成为(1-x)[0.94(0.75Bi1/2Na1/2TiO3–0.25NaNbO3)–0.06BaTiO3)]–xCaZrO3,其中0.10≤x<0.15。
上述超宽温高稳定无铅电容器陶瓷介电材料的工作温度范围为:-55℃—350℃。
一种新型多层陶瓷电容器用介质材料的制备方法,具有如下步骤:
1):根据化学式(1-x)[0.94(0.75Bi1/2Na1/2TiO3–0.25NaNbO3)–0.06BaTiO3)]–xCaZrO3,按照化学式中金属元素的化学摩尔比称取Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2作为起始原料;
2):将称取好的Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2放入球磨罐,以无水乙醇为球磨介质,球磨至少12小时混合均匀,烘干,然后升温至800~900℃进行预烧2小时,升温速率为2~3℃/min;
3)把步骤(2)预烧后的制得的粉体研碎,再球磨至少12小时混合均匀,烘干后研磨成粉状,以聚乙烯醇水溶液(浓度优选5wt%)作为粘结剂造粒,然后过80目筛后压制成型,于560℃下保温2小时以排出胶体,再在高温炉空气气氛中1160~1200℃烧结,保温2小时后,随炉自然冷却至室温,得到一种超宽温高稳定低损耗的无铅电容器陶瓷介质材料。
与现有技术相比较,本发明具有以下优点:
本发明方法解决了以传统以钛酸钡为基体的介电材料工作温度范围(△C/C25℃≤±15%)很难延伸至200℃以上的难题,本发明得到的陶瓷介质材料性能优异,工作温度范围(△C/C25℃≤±15%)甚至能达到350℃以上。更重要的是,该体系在-55℃-350℃的温度区间内,介电损耗都低于3%。该材料不含对环境有害物质、原材料成本低,具有良好的应用前景。
附图说明
图1:实施例1、2、3、4制备的陶瓷介电材料的XRD图谱。
图2:实施例1、2、3、4制备的陶瓷介电材料的扫描电镜图。
图3:实施例1、2制备的陶瓷介电材料容温变化率与温度的关系曲线。
图4:实施例1制备的陶瓷介电材料在不同频率下介电常数与温度的关系曲线。
图5:实施例2制备的陶瓷介电材料在不同频率下介电常数与温度的关系曲线。
图6:实施例3制备的陶瓷介电材料在不同频率下介电常数与温度的关系曲线。
图7:实施例4制备的陶瓷介电材料在不同频率下介电常数与温度的关系曲线。
其中,扫描电镜中a,b,c,d分别代表具体实施例1、实施例2、实施例3、实施例4。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
采用德国Bruker公司D8-Advance型X射线衍射仪测定样品的相结构,Hitachi S–4800扫描电子显微镜测定所制备材料的显微形貌。采用宽频介电阻抗分析仪(Novocontrol Technologies,德国)在1kHz~100kHz范围内测试该介电材料的介电常数和介电损耗。
实施例1
1)根据表达式(1-x)[0.96(0.75Bi1/2Na1/2TiO3-0.25NaNbO3)–0.04BaTiO3)]–xCaZrO3,x=0,按照表达式中金属原子的化学计量比来称取Bi2O3、Na2CO3、BaCO3、TiO2和Nb2O5作为基质原料;
2)将称量好的Bi2O3、Na2CO3、BaCO3、TiO2和Nb2O5用无水乙醇为介质混合球磨12小时,再烘干,然后在800℃预烧2小时,升温速率为3℃/min;
3)将步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干5小时后研磨成粉状,以5wt%的聚乙烯醇水溶液作为粘结剂造粒,然后过80目筛后压制成型,于560℃下保温2小时以排出胶体,再在高温炉空气气氛中1160℃烧结,升温速率为3℃/min;保温2小时,随炉自然冷却至室温,即制得超宽温高稳定无铅电容器陶瓷介质材料。
实施例2
1)根据表达式(1-x)[0.96(0.75Bi1/2Na1/2TiO3-0.25NaNbO3)–0.04BaTiO3)]–xCaZrO3,x=0.10,按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2作为基质原料;
2)将称量好的Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2用无水乙醇为介质混合球磨12小时,再烘干,然后在800℃预烧2小时,升温速率为3℃/min;
3)将步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干5小时后研磨成粉状,以5wt%的聚乙烯醇水溶液作为粘结剂造粒,然后过80目筛后压制成型,于560℃下保温2小时以排出胶体,再在高温炉空气气氛中1180℃烧结,升温速率为3℃/min;保温2小时,随炉自然冷却至室温,即制得超宽温高稳定无铅电容器陶瓷介质材料。
实施例3
1)根据表达式(1-x)[0.96(0.75Bi1/2Na1/2TiO3-0.25NaNbO3)–0.04BaTiO3)]–xCaZrO3,x=0.15,按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2作为基质原料;
2)将称量好的Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2用无水乙醇为介质混合球磨12小时,再烘干,然后在800℃预烧2小时,升温速率为3℃/min;
3)将步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干5小时后研磨成粉状,以5wt%的聚乙烯醇水溶液作为粘结剂造粒,然后过80目筛后压制成型,于560℃下保温2小时以排出胶体,再在高温炉空气气氛中1180℃烧结,升温速率为3℃/min;保温2小时,随炉自然冷却至室温,即制得超宽温高稳定无铅电容器陶瓷介质材料。
实施例4
1)根据表达式(1-x)[0.96(0.75Bi1/2Na1/2TiO3-0.25NaNbO3)–0.04BaTiO3)]–xCaZrO3,x=0.20,按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2作为基质原料;
2)将称量好的Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2用无水乙醇为介质混合球磨12小时,再烘干,然后在800℃预烧2小时,升温速率为3℃/min;
3)将步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干5小时后研磨成粉状,以5wt%的聚乙烯醇水溶液作为粘结剂造粒,然后过80目筛后压制成型,于560℃下保温2小时以排出胶体,再在高温炉空气气氛中1180℃烧结,升温速率为3℃℃/min;保温2小时,随炉自然冷却至室温,即制得超宽温高稳定无铅电容器陶瓷介质材料。
由图1可知由Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2合成的(1-x)[0.96(0.75Bi1/2Na1/2TiO3-0.25NaNbO3)–0.04BaTiO3)]–xCaZrO3,随着CaZrO3的添加,XRD图中在24°附近的Bi0.5Na0.5TiO3的特征峰消失。
由图2可知制备的陶瓷样品均呈现致密的显微组织结构,缺陷较少。
图3可知当x=0和0.10时,所得介电材料在从-55℃到350℃温度范围内具有良好的温度稳定性,电容量的变化率满足△C/C25℃≤±15%。但是可以明显看出,当x=0.10时,所得的样品温度稳定性更加优异。
由图4可知当x=0时,当温度超过200℃时,所得的介电材料样品的介电损耗显著提升,超过10%。较高的介电损耗会严重影响电容器在工作电路中正常运行。因此当x=0时,材料不适宜制备宽温高稳定电容器。
由图5可知当x=0.10,所得介电材料在高温范围内具有良好的温度稳定性。相比于x=0的样品,虽然介电常数有所降低(室温介电常数大约700),但是当温度超过200℃时,样品的介电损耗并未随温度升高而显著提升。在整个温度区间(-55℃-350℃),样品的介电损耗都低于2%。
由图6和图7可知,当x≥0.10时,随着CaZrO3含量的继续增加,所得介电材料虽然仍然具有优异的温度稳定性和在高温段较小的介电损耗,但是其介电常数也随着CaZrO3含量的增加而更显著减少。当x=0.20时。样品室温介电常数仅400左右,不利于实现电容器大容量化。

Claims (4)

1.一种超宽温低损耗无铅陶瓷电容器介电材料,其特征在于,介质材料的化学组成为(1-x)[0.94(0.75Bi1/2Na1/2TiO3–0.25NaNbO3)–0.06BaTiO3)]–xCaZrO3,0.10≤x<0.15。
2.制备权利要求1所述的一种超宽温低损耗无铅陶瓷电容器介电材料的方法,其特征在于,包括以下步骤:
(1)根据化学式(1-x)[0.94(0.75Bi1/2Na1/2TiO3–0.25NaNbO3)–0.06BaTiO3)]–xCaZrO3,按照化学式中金属元素的化学摩尔比称取Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2作为起始原料;
(2)将称取好的Bi2O3、Na2CO3、BaCO3、TiO2、Nb2O5、CaO和ZrO2放入球磨罐,以无水乙醇为球磨介质,球磨至少12小时混合均匀,烘干,然后升温至800~900℃进行预烧2~3小时,升温速率为2~3℃/min;
(3)把步骤(2)预烧后制得的粉体研碎,再球磨至少12小时混合均匀,于100℃下烘干5小时后研磨成粉状,以聚乙烯醇水溶液作为粘结剂造粒,然后过80目筛后压制成型,于560℃下保温2小时以排出胶体,再在高温炉空气气氛中1160-1200℃烧结,保温2~4小时后随炉自然冷却至室温,即制得超宽温高稳定低损耗的无铅电容器陶瓷介质材料。
3.按照权利要求2的方法,其特征在于,聚乙烯醇水溶液的质量浓度为5%。
4.权利要求1所述的超宽温低损耗无铅陶瓷电容器介电材料的应用,其特征在于,工作温度范围为:-55℃—350℃。
CN201610016977.1A 2016-01-11 2016-01-11 一种超宽温低损耗无铅陶瓷电容器介电材料 Active CN105732023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610016977.1A CN105732023B (zh) 2016-01-11 2016-01-11 一种超宽温低损耗无铅陶瓷电容器介电材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610016977.1A CN105732023B (zh) 2016-01-11 2016-01-11 一种超宽温低损耗无铅陶瓷电容器介电材料

Publications (2)

Publication Number Publication Date
CN105732023A true CN105732023A (zh) 2016-07-06
CN105732023B CN105732023B (zh) 2018-08-28

Family

ID=56246339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610016977.1A Active CN105732023B (zh) 2016-01-11 2016-01-11 一种超宽温低损耗无铅陶瓷电容器介电材料

Country Status (1)

Country Link
CN (1) CN105732023B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864621A (zh) * 2018-06-15 2018-11-23 安徽大学 一种陶瓷/聚合物柔性高介电复合材料及其制备方法
CN110128132A (zh) * 2019-05-22 2019-08-16 北京工业大学 一种超宽温细晶高介无铅多层陶瓷电容器介质材料及其制备方法
CN110436920A (zh) * 2019-08-26 2019-11-12 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323522A (zh) * 2008-07-02 2008-12-17 南京大学 一种无铅压电陶瓷及其制备方法
CN102718477A (zh) * 2012-05-14 2012-10-10 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料及其制备方法
CN105174944A (zh) * 2015-09-18 2015-12-23 北京工业大学 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323522A (zh) * 2008-07-02 2008-12-17 南京大学 一种无铅压电陶瓷及其制备方法
CN102718477A (zh) * 2012-05-14 2012-10-10 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料及其制备方法
CN105174944A (zh) * 2015-09-18 2015-12-23 北京工业大学 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATIAS ACOSTA ET AL.: ""High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
杨林波 等: ""CaZrO3掺杂对耐高温陶瓷电容介电性能的影响"", 《压电与声光》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864621A (zh) * 2018-06-15 2018-11-23 安徽大学 一种陶瓷/聚合物柔性高介电复合材料及其制备方法
CN110128132A (zh) * 2019-05-22 2019-08-16 北京工业大学 一种超宽温细晶高介无铅多层陶瓷电容器介质材料及其制备方法
CN110436920A (zh) * 2019-08-26 2019-11-12 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN110436920B (zh) * 2019-08-26 2020-06-16 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105732023B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN105732025B (zh) 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
JP2007290940A (ja) 誘電体磁器組成物および電子部品
CN103408301B (zh) 一种超高压陶瓷电容器介质及其制备方法
CN106518059A (zh) 一种钛酸铋钠基三元系高温稳定的高介无铅陶瓷电容器材料及其制备方法
CN104058741B (zh) 一种超宽温稳定的介质陶瓷及其制备方法
CN101386534A (zh) 一种高性能中低温烧结高压陶瓷电容器介质
Chen et al. Energy-storage performance of PbO–B 2 O 3–SiO 2 added (Pb 0.92 Ba 0.05 La 0.02)(Zr 0.68 Sn 0.27 Ti 0.05) O 3 antiferroelectric ceramics prepared by microwave sintering method
Lu et al. Microstructure and dielectric characteristics of Nb2O5 doped BaTiO3-Bi (Znl/2Til/2) O3 ceramics for capacitor applications
CN105174944A (zh) 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN110330332A (zh) 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
CN103922732A (zh) 一种高耐压多层陶瓷电容器介质材料及其制备方法
CN105732023A (zh) 一种超宽温低损耗无铅陶瓷电容器介电材料
CN114242454B (zh) 一种钛酸铋钠基四元系高温稳定的高介无铅陶瓷电容器介质材料及制备
CN113831121A (zh) 一种高击穿场强的复相巨介电陶瓷材料及其制备方法
CN103992107A (zh) 一种低损耗多层陶瓷电容器介质材料
CN106187189B (zh) 一种储能微波介质陶瓷材料及其制备方法
JPWO2015046538A1 (ja) 全固体型キャパシタ
CN101333105B (zh) 薄介质x7r mlcc介质瓷料
CN101030478B (zh) 一种高介金属-电介质复合陶瓷电容器介质及其制备方法
Qi et al. Effects of Bi2O3–ZnO–B2O3–SiO2 glass addition on the sintering and microwave dielectric properties of ZnZrNb2O8 ceramics for LTCC applications
CN112408977A (zh) 一种高品质的陶瓷介质材料及其制备方法
CN101823876B (zh) 用于温度稳定型多层陶瓷电容器瓷料及其制备方法
CN100434394C (zh) B位先驱体掺杂改性的钛酸钡基金属复合陶瓷及制备方法
CN106145932B (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
CN103864415B (zh) 一种锡酸锌掺杂的钛酸钡高介电陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant