CN106191344A - 一种混合熔渣熔融还原生产与调质处理的方法 - Google Patents

一种混合熔渣熔融还原生产与调质处理的方法 Download PDF

Info

Publication number
CN106191344A
CN106191344A CN201610570916.XA CN201610570916A CN106191344A CN 106191344 A CN106191344 A CN 106191344A CN 201610570916 A CN201610570916 A CN 201610570916A CN 106191344 A CN106191344 A CN 106191344A
Authority
CN
China
Prior art keywords
slag
temperature
reduction
melting
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610570916.XA
Other languages
English (en)
Other versions
CN106191344B (zh
Inventor
张力
张武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201610570916.XA priority Critical patent/CN106191344B/zh
Priority to PCT/CN2016/097119 priority patent/WO2018014419A1/zh
Publication of CN106191344A publication Critical patent/CN106191344A/zh
Application granted granted Critical
Publication of CN106191344B publication Critical patent/CN106191344B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

一种混合熔渣熔融还原生产与调质处理的方法,属于非高炉炼铁及资源综合利用领域。步骤为:1)向高炉熔渣和熔融钢渣的混合熔渣中,加入含铁物料、还原剂,加热至熔融状态,喷吹氧化性气体,熔融还原炼铁,可以处理大宗含铁物料;2)根据反应装置,分离回收混合熔渣中铁组分、硅钙组分和磷组分。熔融还原后,还原后的熔渣可以作为水泥添加剂、水泥调整剂、水泥熟料或生产高附加值的水泥熟料,实现资源高效综合利用,是一种新的熔融还原炼铁方法。该方法用混合熔渣熔融还原生产生铁或钢、富磷相与调质处理,反应时间短、金属回收率高、生产成本低、原料适应性强、处理量大、环境友好、经济收益高,可有效解决冶金资源与热能高效回收利用问题。

Description

一种混合熔渣熔融还原生产与调质处理的方法
技术领域
本发明属于非高炉炼铁及资源综合利用领域,具体涉及一种混合熔渣熔融还原生产与调质处理的方法。
背景技术
当今世界,高炉炼铁生产空前发展,高炉规模在不断扩大,高炉生产消耗下降,成本降低,仍然是钢铁生产的主力军,然而,随着世界环境气候的改变及环保要求的加强,高炉炼铁生产遇到巨大挑战,具体情况如下:
(1)高炉从原料预处理、球团厂、烧结厂、焦化厂、高炉炼铁,生产流程长,总投资十分庞大;
(2)对冶金焦的强烈依赖。随着焦煤资源的日益贫乏,冶金焦的价格越来越高,而储量丰富的廉价焦煤资源却不能在炼铁生产上充分应用。烧结矿、球团矿及焦煤的生产带来了严重的环境污染,越来越严格的环保要求使高炉炼铁技术受到限制;
(3)传统高炉还原时间长,尽管采用强化熔炼技术,但依赖强化熔炼工艺继续提高生产率受到极大限制;
(4)熔剂加入量大;
(5)难以处理低品位矿、多金属含铁共生矿。
为了改变高炉炼铁面临的困境,形成了不同形式的非高炉炼铁,目前,形成了以直接还原和熔融还原为主体的现代化非高炉炼铁工业体系。
熔融还原法则以非焦煤为能源,在高温熔态下进行铁氧化物还原,渣铁能完全分离,其具有如下优点:(1)可以处理难选低品质铁矿、含铁复合矿、特殊矿,是资源综合利用的重要手段,原料资源选择范围广;(2)流程短,速度快,生产成本低,投资少;(3)环境污染小,更加清洁环保。
众所周知,我国是世界上钢铁产量最多的国家,2015年生铁产量超过7亿吨,粗钢产量超过9亿吨。炼铁、炼钢及铁合金生产是钢铁生产的重要工艺单元,生产过程中产生了高炉渣、钢渣、铁合金渣等钢铁冶金渣,是钢铁联合企业的第一固体废弃物,2015年,总量已经超过4亿吨。
高炉渣是高炉还原过程中产生的,不仅含有还原性物质,如焦炭、煤粉、碳素、碳粉等,而且含有较高含量CaO、SiO2等冶金熔剂,我国每年排放3亿吨吨以上高炉渣,每年带走大量的CaO、SiO2、焦炭、粉煤、碳素、碳粉等有价组分,因此,高炉渣是一种重要的二次资源。由高炉放出的高炉熔渣温度在1300℃~1600℃,每年排放大量的物理热,因此,高炉熔渣也是重要的物理热资源。
高炉渣根据其处理方法有多种利用途径:(1)粒化高炉渣做水泥途径;(2)粒化高炉渣矿粉做水泥和混凝土掺合料;(3)粒化高炉渣做砖;(4)高炉渣做硅肥;(5)做矿渣棉、铸石、微晶玻璃材料。目前,高炉渣主要通过水淬粒化,制备水泥、混凝土、砖等,但耗大量水资源,产生腐蚀性热蒸汽、热量不能回收、水资源不能循环,大量热资源很难得到利用。
钢渣产生于炼钢过程,其金属铁含量为10%以上,铁氧化物含量为30%以上,并含有一定的自由氧化钙与五氧化二磷。我国每年排放1.5亿吨以上,每年带走1500万吨以上的金属铁,3000万吨以上的铁氧化物,还带走大量自由氧化钙、五氧化二磷、二氧化硅等有价组分,因此,钢渣是一种重要的二次资源。炼钢过程放出的熔融钢渣温度高于1550℃,每年排放大量的物理热,因此,熔融也是重要的物理热资源。
目前,钢渣主要采用水淬工艺、钢渣“闷罐”等处理工艺,磁选回收渣中金属铁,但回收率低,渣中剩余金属铁含量高达5%,该工艺仅考虑回收渣中金属铁,没有考虑回收渣中含量高达30%以上的铁氧化物。水淬工艺、钢渣“闷罐”处理工艺消耗大量水资源,产生腐蚀性热蒸汽、热量不能回收、水资源不能循环,大量热资源很难得到利用。
迄今为止,人们已开发出了许多有关钢渣综合利用的方法,主要包括返回烧结、返回高炉、返回转炉渣、建材、农用等方面。尽管钢渣可以通过上述方式进行利用,但还是受到许多限制:(1)自由CaO和MgO降低了钢渣体积的稳定;(2)较高含量的铁氧化物增加了磨矿的难度;(3)钢渣直接返回冶金流程中再利用时磷会逐渐富集到铁中,限制了钢渣的应用;(4)钢渣容易粉化;(5)其中氟和重金属有被雨水浸出污染环境的危险。目前,钢渣利用率仅有20%,造成钢渣大量堆积,既污染环境,又浪费资源。
高炉熔渣和熔融钢渣,蕴含着丰富的热能资源,含有大量的热态冶金熔剂,而且含有较高含量的铁、磷、钙等多种有价元素,是重要的二次资源。高炉熔渣为还原性熔渣,熔融钢渣为氧化性熔渣,化学反应活性强,都是物理化学性质优良的熔渣体系,是冶金熟料。同时,钢渣化学组成、矿物组成与水泥熟料极其相近,高炉熔渣化学组成与水泥熟料化学组成相近,而每年我国生产水泥熟料超过12亿吨,需要大量的石灰石、粘土等矿物资源与物理热资源,成本在2000亿以上,我国石灰石、粘土矿物资源仅仅还可开采50年。
发明内容
针对现有技术存在的问题,本发明提供一种混合熔渣熔融还原生产与调质处理的方法,该方法是一种用混合熔渣熔融还原生产生铁或钢、富磷相与混合熔渣调质处理的方法。该方法反应时间短、金属回收率高、生产成本低、原料适应性强、处理量大、环境友好、经济收益高,是一种新的熔融还原炼铁工艺,可有效解决冶金资源与热能高效回收利用问题。
本发明的混合熔渣熔融还原生产与调质处理的方法,充分利用高炉熔渣和熔融钢渣的物理热资源和热态冶金熔剂,以及高炉熔渣的还原性和熔融钢渣的氧化性,通过向高炉熔渣和熔融钢渣的混合熔渣中,加入还原剂、含铁物料,加热至熔融状态,喷吹氧化性气体,进行熔融还原炼铁,反应得到的熔渣经处理,使夹杂生铁与继续被还原的金属铁聚集、长大与沉降,磷组分富集于富磷相,通过分离,获得金属铁或钢、富磷相,还原后的熔渣中铁氧化物、自由氧化钙与氧化镁消失,熔渣实现调质处理;熔融还原处理大宗含铁物料,实现大宗含铁物料熔融还原炼铁,渣-金分离,得到铁水与还原后的熔渣;还原后的熔渣可以作为水泥添加剂、水泥调整剂或直接作为水泥熟料,也可以添加其他组分生产高附加值的水泥熟料,实现资源高效综合利用,是一种新的熔融还原炼铁方法。
本发明的一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融:
将高炉熔渣、熔融钢渣形成的混合熔渣,加入保温装置、可倾倒的熔炼反应装置或固定式的熔炼反应装置中,向混合熔渣中加入还原剂和含铁物料,得到反应混合熔渣,将反应混合熔渣,加热至熔融状态,进行熔融还原,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在设定温度范围内;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
设定温度范围为1350~1600℃;
当反应装置采用保温装置时,反应混合熔渣的温度范围设定为1350~1600℃;
当反应装置采用可倾倒的熔炼反应装置或固定式的熔炼反应装置时,反应混合熔渣的温度范围设定为1400~1600℃;
控制反应混合熔渣的温度在设定温度范围的方法为:
当反应混合熔渣的温度<设定温度范围下限时,通过反应装置自身的加热功能,或向反应混合熔渣中加入燃料和/或熔融钢渣,使反应混合熔渣的温度达到设定温度范围内;
当反应混合熔渣的温度>设定温度范围上限时,向反应混合熔渣中加入固态含铁物料和/或高炉熔渣,进行降温,使反应混合熔渣的温度达到设定温度范围内;
对应(b):
当反应混合熔渣中碱度CaO/SiO2比值<0.6时,向反应混合熔渣中加入石灰粉、白云石粉或生石灰粉中的一种或几种,使反应混合熔渣中碱度CaO/SiO2比值=0.6~2.6;
当反应混合熔渣中碱度CaO/SiO2比值>2.6时,向反应混合熔渣中加入硅石,使反应混合熔渣中碱度CaO/SiO2比值=0.6~2.6;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的氧化性气体;其中氧化性气体的预热温度为0~1200℃;在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在设定温度范围内;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
采用步骤1(1)中的控制反应混合熔渣的温度在设定温度范围的方法;
对应(b):
采用步骤1(1)中的控制反应混合熔渣碱度的方法;
步骤2,分离再利用:
采用以下方法中的一种:
方法一:当反应装置采用保温装置时,进行如下步骤:
(1)冷却:将还原后的反应混合熔渣,冷却至室温,获得缓冷渣;
(2)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度为20~400μm,磨矿,磁选分离出剩余金属铁;
(3)分离出金属铁后,熔渣实现调质处理,得到尾矿;
(4)尾矿的回收利用有2种:①作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥使用;②采用湿法冶金、选矿方法或选矿-湿法冶金联合法将尾矿中含磷组分分离出来。
方法二:当反应装置采用可倾倒的熔炼反应装置或固定式的熔炼反应装置时,进行如下步骤:
(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;
(2)还原后的熔渣进行炉外熔渣处理;
(3)铁水送往转炉炼钢;
其中,
还原后的熔渣,进行炉外熔渣处理的方法,采用方法A、方法B、方法C、方法D、方法E中的一种:
方法A:还原后的熔渣空冷或水淬
还原后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂、水泥熟料、矿渣棉、铸石、微晶玻璃材料或建筑材料。
方法B:还原后的熔渣氧化后空冷或水淬
(1)还原后的熔渣倒入可倾倒的保温装置、可倾倒的熔炼反应装置或固定式的熔炼反应装置中,向还原后的熔渣中吹入预热的氧化性气体,当熔渣氧化铁含量≥2wt%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;
其中,整个过程中,要保证(c)熔渣温度≥1450℃;
对应(c):
采用的控制方法为:
当温度低于<1450℃,喷入预热燃料,燃烧放热,补充热量,或装置自身加热,使熔渣温度≥1450℃;
(2)氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料。
方法C:还原后的熔渣处理生产高附加值的水泥熟料
(1)还原后的熔渣倒入可倾倒的保温装置、可倾倒的熔炼反应装置或固定式的熔炼反应装置中,加入熔融转炉钢渣、电炉熔融还原钢渣、电炉熔融氧化钢渣、石灰、粉煤灰、碱性铁贫矿、铝土矿、高炉熔渣中的一种或几种,充分混合,获得还原后的熔渣混合物料;
(2)向还原后的熔渣混合物料中吹入预热的氧化性气体,当熔渣混合物料氧化铁含量≥2wt%,完成熔渣混合物料的氧化,获得氧化后的熔渣混合物料,其中,氧化性气体的预热温度为0~1200℃;
其中,整个过程中,要保证(d)熔渣混合物料温度≥1450℃;
对应(d),
采用的控制方法为:
当温度低于<1450℃,喷入预热燃料,燃烧放热,补充热量,或装置自身加热,使熔渣混合物料温度在≥1450℃;
(3)氧化后的熔渣混合物料,进行空冷或水淬,制得高附加值的水泥熟料。
方法D:部分或全部还原后的熔渣返回到混合熔渣
部分或全部还原后的熔渣返回到混合熔渣,作为热态冶金熔剂,调整混合熔渣成分,控制混合熔渣碱度、温度或粘度。
方法E:还原后的熔渣再处理
还原后的熔渣倒入保温装置,进行再处理:
步骤一,再混合熔渣熔融还原炼铁:
(1)喷吹气体:向保温装置内还原后的熔渣中喷入预热的氧化性气体,其中,氧化性气体的预热温度为0~1200℃;氧化性气体的喷吹时间与流量的关系为1~90L/(min·kg);
(2)控制还原与氧化过程:
在喷吹过程中,通过调控同时保证(e)、(f)和(g)三个参数:
(e)还原后的熔渣的温度在1350~1600℃;
(f)还原后的熔渣的碱度CaO/SiO2比值=0.6~2.6;
(g)还原后的熔渣中,剩余铁氧化物还原成金属铁;
调控方法为:
对应(e)的调控方法:采用步骤1中的对应(a)的调控方法调节;
对应(f)的调控方法:
当碱度不在设定范围内时,通过向还原后的熔渣中添加热态溶剂,使碱度CaO/SiO2比值=0.6~2.6;其中,热态溶剂为高炉熔渣和/或熔融钢渣;
对应(g):
当混合熔渣中还原性不足时,向混合熔渣中加入还原剂,使混合熔渣中,剩余铁氧化物还原成金属铁。
步骤二,再分离和利用:
采用步骤2中的方法一或方法二中的方法A或方法D中的一种,进行处理。
所述步骤1(1)中,高炉熔渣的温度≥1300℃,从高炉出渣口获得;熔融钢渣的温度≥1500℃,从钢渣出渣口获得。
所述步骤1(1)中,所述的高炉熔渣为普通高炉熔渣,含有TiO2的质量分数≤4%。
所述步骤1(1)中,所述的熔融钢渣为转炉炼钢熔融钢渣和/或电炉炼钢熔融氧化钢渣。
所述步骤1(1)中,所述的含铁物料为含铁物料是普通铁精矿、普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、普通铁精矿直接还原铁、普通钢渣、高炉瓦斯灰、高炉烟尘、转炉烟尘、氧化铁皮、湿法炼锌过程的锌浸出渣、氧化铝生产过程产生的赤泥、粉煤灰、铜渣、硫酸烧渣中的一种或几种。
所述步骤1(1)中,所述的还原剂是煤粉、焦粉、烟煤、无烟煤中的一种。
所述步骤1(1)中,所述的燃料是煤粉。
所述步骤1中,反应混合熔渣在物料混合熔融与喷吹氧化性气体过程中,反应混合熔渣中的铁氧化物持续发生熔融还原反应,高价铁(Fe3+,Fe2+)被还原为低价铁(Fe与Fe2+)。
所述的保温装置为可倾倒的保温装置和不可倾倒的保温装置;所述的不可倾倒的保温装置为保温地坑,其加热方法为加入燃料;所述的可倾倒的保温装置为保温渣罐,其加热方法为加入燃料。
所述的可倾倒的熔炼反应装置为可倾倒的转炉、可倾倒的熔炼反应渣罐或感应炉。
所述的固定式的熔炼反应装置为底部带有渣口或铁口的反应装置;所述的固定式的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉或反射炉。
所述步骤1(1)中,所述的反应装置内层有含碳保温脱模耐火材料;所述的含碳保温脱模耐火材料是含碳复合耐火材料;碳是碳素、石墨、石油沥青焦、冶金焦、沥青、无烟煤、烟煤、褐煤中的一种或几种,耐火材料是硅质、半硅质、粘土质、高铝质、镁质、白云石质、橄榄石质、尖晶石质、冷态高炉渣、冷态钢渣中的一种或几种;含碳保温脱模耐火材料的作用有两个:1)保护保温装置,提高其寿命;2)使冷却好的缓冷渣易于从保温装置中脱除;
所述的控制反应混合熔渣的温度在设定温度范围的方法中,向混合物料中加入燃料和熔融钢渣时,燃料和熔融钢渣为任意比。
所述的控制反应混合熔渣的温度在设定温度范围的方法中,所述的燃料的预热温度为0~1200℃,熔融钢渣的温度为≥1500℃。
所述的控制反应混合熔渣的温度在设定温度范围的方法中,燃料和氧化性气体从喷枪枪口喷入反应混合熔渣;所述的喷枪采用耐火喷枪插入混合熔渣或置于混合熔渣上部或侧面喷入燃料。
所述的控制混合熔渣的温度在设定温度范围的方法中,向混合熔渣中加入燃料的同时要加入氧化性气体,燃料和氧化性气体从喷枪枪口喷入混合熔渣。
所述的控制反应混合熔渣的温度在设定温度范围的方法中,所述的燃料是煤粉。
所述的控制反应混合熔渣的温度在设定温度范围的方法中,向混合熔渣中加入固态含铁物料和高炉熔渣时,固态含铁物料和高炉熔渣为任意比。
所述的控制反应混合熔渣的温度在设定温度范围的方法中,所述的固态含铁物料为普通铁精矿、普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、普通铁精矿直接还原铁、普通钢渣、高炉瓦斯灰、高炉烟尘、转炉烟尘、氧化铁皮、湿法炼锌过程的锌浸出渣、氧化铝生产过程产生的赤泥、粉煤灰、铜渣、硫酸烧渣中的一种或几种。
所述的控制反应混合熔渣的温度在设定温度范围的方法中,所述的固态含铁物料是粉状物料或球状物料,其中,粉状物料的粒度是≤150μm;粉状物料以喷吹的方式加入混合熔渣,载入气体为空气、氮气、氩气、氮气-空气混合气、氮气-氧气混合气或空气-氩气混合气;所述的喷吹方式采用耐火喷枪以喷吹的方式加入反应熔渣。
所述的控制反应混合熔渣的温度在设定温度范围的方法中,所述的加入固态含铁物料和/或高炉熔渣,目的是避免温度过高,保护含碳保温脱模耐火材料,抑制高炉熔渣中生铁、熔融钢渣中粒铁及被还原的金属铁的氧化,提高金属铁的回收率。
所述的控制反应混合熔渣的碱度比值,向反应混合熔渣中加入石灰粉、白云石粉或生石灰粉中的两种或三种混合物时,为任意比。
所述的氧化性气体为空气、氧气、富氧空气、氧气-氮气混合气、空气-氮气混合气、氧气-氩气混合气、空气-氩气混合气中的一种或几种;所述氧化性气体的预热温度因气体不同而异。
所述步骤1(2)中,采用耐火喷枪向混合熔渣中喷吹氧化性气体,采用耐火喷枪插入混合熔渣或置于混合熔渣上部或侧面喷入氧化性气体。
所述步骤1(2)中,氧化性气体的喷吹时间与流量依熔渣质量、温度及还原氧化程度确定。
所述步骤1(2)混合熔渣熔融还原炼铁过程中,喷吹氧化性气体,控制混合熔渣氧势,不仅使高炉熔渣中生铁与熔融钢渣中粒铁,聚集、长大与沉降,熔融钢渣中铁氧化物(FeO、Fe2O3)充分还原为金属铁,实现聚集、长大与沉降,而且实现大宗含铁物料熔融还原炼铁,是一种新的熔融还原炼铁工艺。
所述步骤1(2)中,喷吹气体结束后,获得还原后的混合熔渣,其中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
所述步骤2,方法一(1)中,冷却过程中,混合熔渣中硅与钙组分继续迁移、富集于富硅钙相,并实现长大,金属铁水继续聚集、长大与沉降,并实现长大与沉降,磷组分迁移、富集于Ca2SiO4-Ca3(PO4)2相,分布于富硅钙相与其它矿物相的两相之间的相界面,有利于富硅钙相的矿物解离,利于选矿分离;
所述步骤2,方法一(1)中,所述的冷却为自然冷却或旋转冷却。
所述步骤2,方法一(1)中,所述的旋转冷却,将装有混合熔渣的保温装置置于旋转平台上,旋转平台的旋转速度依熔渣质量与保温装置高度或深度而定,旋转时间依熔渣质量与熔渣凝固情况而定;将装有熔渣的保温装置置于旋转平台上旋转,目的是加速金属铁、硅钙组分、富磷相的聚集、长大与沉降,缩短沉降时间,改善沉降效果,提高生产效率,实现熔渣调质处理;
所述步骤2,方法一(1)中,由于密度不同与矿物大小不同,大部分金属铁沉降于底部。
所述步骤2,方法一(2)中,所述的混合熔渣的金属铁回收率为90~95%。
所述步骤2,方法一(3)中,所述的熔渣调质处理是自由氧化钙与自由氧化镁消失,金属铁与铁氧化物几乎消失,可磨性增加;
所述步骤2,方法一(4)中,所述的湿法冶金是稀酸浸出法,其中稀酸浸出法是无机酸浸、有机酸浸中的一种;所述的无机酸选用硫酸、盐酸、磷酸的一种或几种任意比例混合,有机酸选用草酸、乙酸、柠檬酸中的一种或几种任意比例混合。
所述步骤2,方法二的方法E再分离和利用采用方法一时,金属铁的回收率为95~97%。
所述步骤2,方法二中,所述的燃料是煤粉,燃料的预热温度为0~1200℃。
所述步骤2,方法二的方法E中,所述的还原剂是煤粉、焦粉、烟煤、无烟煤中的一种。
所述的反应混合熔渣熔融还原生产与调质处理的方法,调质过程是从原料混合开始直至分离回收过程一直在持续发生,熔渣中的自由氧化钙和自由氧化镁消失,铁氧化物与金属铁几乎消失,熔渣实现调质。
本发明的一种混合熔渣熔融还原生产与调质处理的方法,与现有技术相比,本发明的特点是:
(1)本发明充分利用了向高炉熔渣与熔融钢渣的混合熔渣中,加入还原剂、含铁物料,加热至熔融状态,喷吹氧化性气体,熔融还原处理大宗固态含铁物料,不仅实现了混合熔渣中铁氧化物的熔融还原炼铁,而且实现了大宗固态含铁物料的熔融还原炼铁,控制氧势,铁氧化物得到充分还原为金属铁,渣-金分离,得到铁水与熔渣;
(2)经熔渣处理,熔融钢渣中夹杂的生铁及继续被还原的金属铁开始聚集、长大,当接近一定尺寸后,开始沉降,大部分沉降到熔渣底部,形成整块铁锭;自然冷却过程中,熔渣中铁组分富集于金属铁,磷组分迁移、富集于富磷相,并实现聚集、长大,混合熔渣中硅与钙组分继续迁移、富集于富硅钙相,并实现长大;混合熔渣中磷组分迁移、富集于Ca2SiO4-Ca3(PO4)2相,分布于富硅钙相与其它矿物相的两相之间的相界面,利于选矿分离。装有混合熔渣的保温装置置于旋转平台上旋转,加速金属铁、富磷相的聚集、长大与沉降,缩短沉降时间,改善沉降效果,提高生产效率;
(3)采用人工分拣、磁选结合的方法,分离沉降在底部的金属铁、富磷相,实现混合熔渣中铁组分、硅钙组分、磷组分的高效回收;由于金属铁、富磷相沉降在底部,因此,需分选炉渣量小,磨矿、磁选成本低;分离过程采用物理选矿(磁选),分离的介质为水,水在选矿过程中可以循环,因而分离过程中不会产生环境污染,使得整个混合熔渣工艺具有流程短、操作简单、铁、硅、磷、钙回收率高、无废水产生,具有高效、清洁、环保的特点;尾矿可作为水泥原料、建筑材料、代替碎石作骨料和路材、磷肥、采用湿法冶金方法将含磷组分分离出来,尾矿利用价值大,应用范围广;
(4)熔渣实现调质后,水硬性矿物C2S增加,可直接用作矿渣水泥、水泥调整剂、水泥生产中的添加剂,进一步通过加入熔融转炉钢渣、电炉熔融还原钢渣、电炉熔融氧化钢渣、石灰、粉煤灰、碱性铁贫矿、铝土矿、粘土、熔融高炉熔渣中的一种或几种,调整碱度,喷入氧化性气体,调整氧化铁含量,使其更接近于所需的水泥熟料组成,具有高的A矿,水硬性胶粘矿物增加,胶粘性增加,水泥的早期强度增加,可以直接作为水泥熟料。
(5)该方法可以连续或间断进行,满足了工业生产的实际需要。
(6)本发明不仅实现了混合熔渣中铁、硅、钙、磷组分的高效回收,而且实现了利用熔融还原大规模处理固态含铁物料,生产铁水、富硅钙相与富磷相,是一种新的熔融还原炼铁工艺。
本发明的混合熔渣熔融还原生产与调质处理的方法,与现有技术相比,其有益效果是:
(1)含碳保温脱模耐火材料不仅保护了保温装置,而且使冷却后的缓冷渣易于从保温装置中脱除;
(2)本发明的原料是出渣口中流出的液态熔融高炉熔渣(≥1300℃)和熔融钢渣(≥1500℃),蕴含着丰富的热能资源,具有高温度、高热量的特点,充分利用了熔渣物理热资源,高效节约能源;液态熔融高炉熔渣与熔融钢渣含有大量的热态冶金熔剂,都是物理化学性质优良的熔渣体系,实现了冶金资源与热资源的高效利用;熔融高炉熔渣为还原性熔渣,熔融钢渣为氧化性熔渣,充分利用了两种熔渣高反应化学活性;
(3)本发明不仅实现了混合熔渣中铁氧化物熔融还原炼铁,而且实现了利用熔融还原大规模处理固态含铁物料,是一种新的熔融还原炼铁工艺;
(4)加入固态含铁物料与热熔融高炉熔渣避免了熔渣温度过高,保护含碳保温脱模耐火材料,提高保温装置的寿命;抑制熔渣中粒铁及被还原的金属铁的氧化,提高金属铁的回收率;加入固态含铁物料与热熔融高炉熔渣提高了原料处理量,不仅可以处理液态熔渣,而且可以处理少量固态含铁物料,原料适应性强;加入固态含铁物料实现了熔渣氧化反应释放的化学热与熔渣物理热的高效利用;
(5)自然冷却过程中,熔渣中铁组分与磷组分分别迁移、富集于金属铁、富磷相,并实现聚集、长大,混合熔渣中硅与钙组分继续迁移、富集于富硅钙相,并实现长大;混合熔渣中磷组分迁移、富集于Ca2SiO4-Ca3(PO4)2相,分布于富硅钙相与其它矿物相的两相之间的相界面,利于选矿分离。装有熔渣的保温装置置于旋转平台上旋转,加速金属铁、富磷相的聚集、长大与沉降,缩短沉降时间,改善沉降效果,提高生产效率;
(6)自由氧化钙与自由氧化镁消失,金属铁与铁氧化物几乎消失,熔渣中自由氧化钙与氧化镁消失,熔渣实现调质,矿物可磨性增加,熔渣实现调质,尾矿的回收利用有2种:①作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥使用;②采用湿法冶金、选矿方法或选矿-湿法冶金联合法将尾矿中含磷组分分离出来。尾矿利用价值大,应用范围广;
(7)熔渣实现调质后,水硬性矿物C2S增加,可直接用作矿渣水泥、水泥调整剂、水泥生产中的添加剂,进一步通过加入熔融转炉钢渣、电炉熔融还原钢渣、电炉熔融氧化钢渣、石灰、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、粘土一种或几种混合,调整碱度,喷入氧化性气体,调整氧化铁含量,生成铁酸盐,使其更接近于所需的水泥熟料组成,具有高的A矿,水硬性胶粘矿物增加,胶粘性增加,水泥的早期强度增加,可以直接作为水泥熟料;
(8)热消耗小,成本低,可操作性强;本发明不仅实现了混合熔渣中铁、硅、钙、磷组分的高效回收,而且实现了利用熔融还原大规模处理固态含铁物料,生产铁水、富硅钙相与富磷相,是一种新的熔融还原炼铁工艺。本发明充分利用高炉熔渣和熔融钢渣的物理热资源和热态冶金熔剂,以及高炉熔渣的还原性和熔融钢渣的氧化性,通过向高炉熔渣和熔融钢渣的混合熔渣中,加入还原剂、含铁物料,加热至熔融状态,喷吹氧化性气体,进行熔融还原炼铁,实现了大宗含铁物料熔融还原炼铁,渣-金分离,获得铁水与熔渣,熔渣分离过程中,熔渣中铁组分、磷组分分别迁移、富集于金属铁、富磷相,并实现聚集、长大与沉降,硅钙组分迁移、富集于富硅钙相,实现长大,实现混合熔渣中铁组分、硅钙组分、磷组分的高效分离回收;熔渣可直接处理生产水泥熟料、水泥调整剂、水泥添加剂,而且可以处理固态物料,同时实现熔渣调质处理,应用范围更广,达到资源高效综合利用。该方法反应时间短、金属回收率高、生产成本低、原料适应性强、处理量大、环境友好、经济收益高、可有效解决冶金资源与热能高效回。
附图说明
图1为本发明的混合熔渣熔融还原生产与调质处理的方法的工艺流程图。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
本发明实施例,采用的工艺流程图如图1所示。
实施例1
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的的普通高炉熔渣和从钢渣出渣口获得的转炉炼钢熔融钢渣混合,得到混合熔渣,加入内有石墨-白云石质复合保温耐火材料的保温渣罐中,再加入煤粉和普通铁精矿金属化球团,得到反应混合熔渣,喷入预热温度为1200℃的煤粉,加热至熔融状态,进行熔融还原,保证反应装置中(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1350~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):混合后的反应混合熔渣,温度为1350℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为2.7,加入硅石,碱度CaO/SiO2调控为0.6;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的燃料与空气;其中,空气的预热温度为30℃,燃料的预热温度为200℃;燃料与空气的喷吹方式为采用耐火喷枪插入反应混合熔渣吹入;在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1350~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):喷吹气体结束后,反应混合熔渣的温度为1390~1397℃,在设定范围内;
对应(b):反应混合熔渣的碱度CaO/SiO2比值=0.6~0.7,在设定范围内;
(3)当反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法一:
(1)冷却:将还原后的反应混合熔渣,旋转冷却至室温,获得缓冷渣;其中,旋转冷却,是将装有混合熔渣的保温装置置于旋转平台上,旋转平台的旋转速度依熔渣质量与保温装置高度或深度而定,旋转时间依熔渣质量与熔渣凝固情况而定;
(2)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度为20~400μm,磨矿,磁选分离出剩余金属铁,金属铁的回收率为95%;
(3)分离出金属铁后,熔渣实现调质处理,得到尾矿,尾矿中TFe含量0.408%;
(4)尾矿的回收利用为建筑材料;
(5)尾矿中,富磷相采用选矿-湿法冶金联合法将含磷组分分离出来;富磷相中P2O5含量为18%,采用重选粗选后,在采用2wt%稀盐酸,其中,重选富磷相和稀盐酸的固液比为1∶2(g∶L),将P2O5分离出来,回收率为60%。
实施例2
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的的普通高炉熔渣和从钢渣出渣口获得的转炉炼钢熔融钢渣混合,获得混合熔渣,加入内有碳素-镁质复合保温耐火材料的转炉中,再加入烟煤和普通铁精矿直接还原铁,得到反应混合熔渣,喷入预热温度为800℃的煤粉,加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):混合后的反应混合熔渣,温度为1570℃,在设定范围内;
对应(b):混合后的反应混合熔渣碱度CaO/SiO2为1.8~1.9,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的氧气;其中,氧气的预热温度为800℃;氧气的喷吹方式为采用耐火喷枪插入反应混合熔渣吹入;在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体过程中,反应混合熔渣的温度升温至1613~1617℃,加入常温的普通铁精矿球团矿2kg,喷吹气体结束后,反应混合熔渣的温度为1590~1600℃;
对应(b):反应混合熔渣的碱度CaO/SiO2比值=1.9~2.0,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法E,还原后的熔渣倒入内有石墨-半硅质复合保温耐火材料的保温渣罐中,熔渣温度为1540℃;
还原后的熔渣,进行炉外熔渣处理的方法如下:
步骤一,再混合熔渣熔融还原炼铁:
(1)喷吹气体:将耐火喷枪插入还原后的熔渣中,向保温渣罐内还原后的熔渣中喷入预热的空气,空气的喷吹方式为采用耐火喷枪置于还原后的熔渣侧面吹入,其中,空气的预热温度为1200℃;空气的喷吹时间与流量为90L/(min·kg);
(2)控制还原与氧化过程:
在喷吹过程中,通过调控同时保证(e)、(f)和(g)三个参数:
(e)还原后的熔渣的温度在1350~1600℃;
(f)还原后的熔渣的碱度CaO/SiO2比值=0.6~2.6;
(g)还原后的熔渣中,剩余铁氧化物还原成金属铁;
调控方法为:
对应(e):喷吹气体结束后,还原后的熔渣的温度为1570~1580℃,在设定范围内;
对应(f):还原后的熔渣的碱度CaO/SiO2比值=2.0~2.1,在设定范围内;
对应(g):还原后的熔渣中,剩余铁氧化物充分还原成金属铁;
步骤二,再分离和利用:
(1)冷却:将二次还原后熔渣,旋转冷却至室温,获得缓冷渣;
(2)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度为20~400μm,磨矿,磁选分离出剩余金属铁,金属铁的回收率为94%;
(3)分离出金属铁后,熔渣实现调质处理,得到尾矿,尾矿中TFe含量0.526%;
(4)尾矿的回收利用为路材;
(5)尾矿中,富磷相中P2O5含量为25%,用作磷肥。
实施例3
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的转炉炼钢熔融钢渣混合,获得混合熔渣,加入内有沥青-尖晶石质复合保温耐火材料的转炉中,再加入煤粉和普通铁精矿含碳预还原球团,得到反应混合熔渣,喷入预热温度为100℃的煤粉,加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):
混合后的反应混合熔渣,温度为1583℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为0.4~0.5<0.6,加入生石灰粉,调控后反应混合熔渣的碱度CaO/SiO2比值=1.2;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的空气;空气的预热温度为30℃;空气的喷吹方式为采用耐火喷枪置于反应混合熔渣上方吹入;喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):喷吹气体过程中,反应混合熔渣的温度升温至1620~1626℃,加入普通铁精矿球团矿1kg,喷吹气体结束后,反应混合熔渣的温度为1589~1592℃;
对应(b):反应混合熔渣的碱度CaO/SiO2比值=1.5~1.6,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法A,处理的方法如下:
还原后的熔渣直接水淬,用作水泥熟料。
实施例4
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的普通高炉熔渣、从钢渣出渣口获得的转炉炼钢熔融钢渣和从钢渣出渣口获得的电炉炼钢熔融氧化钢渣混合,获得混合熔渣,加入内有烟煤-硅质复合保温耐火材料的转炉中,再加入焦粉和普通铁精矿含碳预还原球团,得到反应混合熔渣,喷入预热温度为1200℃的煤粉,加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):混合后的反应混合熔渣,温度为1430℃,在设定范围内;
对应(b):混合后的反应混合熔渣碱度CaO/SiO2为2.4,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的空气;空气的预热温度为300℃;空气喷吹方式为采用耐火喷枪置于反应混合熔渣侧面吹入;喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):喷吹气体结束后,反应混合熔渣的温度为1476~1482℃,在设定范围内;
对应(b):反应混合熔渣的碱度CaO/SiO2比值=2.4~2.5,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法B,处理的方法如下:
(1)还原后的熔渣倒入内有石墨-粘土质复合保温耐火材料的等离子炉,向还原后的熔渣中吹入预热的氧气,氧气的预热温度为600℃,喷吹结束后,熔渣内Fe2O3为3.78wt%≥2wt%完成熔渣的氧化,获得氧化后的熔渣;
其中,整个过程中,要保证(c)熔渣温度≥1450℃;
对应(c):
渣罐内熔渣温度为1420℃,通过等离子自身加热后,渣罐内熔渣温度为1450℃;
(2)氧化后的熔渣直接水淬,用作水泥熟料。
实施例5
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的电炉炼钢熔融氧化钢渣混合,获得混合熔渣,加入内有无烟煤-硅质复合保温耐火材料的转炉中,再加入焦粉和普通铁精矿烧结矿,得到反应混合熔渣,喷入预热温度为500℃的燃料-煤粉,加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):混合后的反应混合熔渣,温度为1556℃,在设定范围内;
对应(b):混合后的反应混合熔渣碱度CaO/SiO2为2.4,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的空气;空气的预热温度为25℃;空气的喷吹方式为采用耐火喷枪置于反应混合熔渣上部吹入;喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体过程中,反应混合熔渣温度升至1606~1611℃,采用耐火喷枪以喷吹的方式,加入平均粒度为150μm的高炉烟尘粉状物料10kg,载入气体为氮气,调控喷吹气体结束后,反应混合熔渣的温度为1580~1590℃;
对应(b):
反应混合熔渣的碱度CaO/SiO2比值=1.5~1.6,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法D,处理的方法如下:
全部还原后的熔渣返回到反应混合熔渣的转炉中,作为热态冶金熔剂,调整混合熔渣成分,控制混合熔渣碱度、温度、粘度。
实施例6
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的电炉炼钢熔融氧化钢渣混合,获得混合熔渣,加入内有碳-硅质复合保温耐火材料的熔炼反应渣罐中,再加入煤粉和普通铁精矿,得到反应混合熔渣,喷吹预热温度为0℃的燃料-煤粉,加热至熔融状态,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):混合后的反应混合熔渣,温度为1510℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为0.55,向熔炼反应渣罐中加入白云石5kg,调控后,反应混合熔渣碱度CaO/SiO2为2.1;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的氧气,氧气的预热温度为1100℃;氧气的喷吹方式为采用耐火喷枪插入反应混合熔渣吹入;在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体结束后,反应混合熔渣的温度为1546~1550℃,在设定范围内;
对应(b):
反应混合熔渣的碱度CaO/SiO2比值=2.1~2.2,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法C,处理的方法如下:
还原后的熔渣处理生产高附加值的水泥熟料
(1)还原后的熔渣倒入内有冶金焦-冷态钢渣质复合保温耐火材料的保温渣罐中,还原后的熔渣温度为1440℃,加入电炉熔融还原钢渣、石灰、粉煤灰,充分混合,得到还原后的熔渣混合物料;
(2)向还原后的熔渣混合物料中吹入氧气,当熔渣混合物料氧化铁质量百分含量为2wt%时,完成熔渣混合物料的氧化,获得氧化后的熔渣混合物料;
其中,整个过程中,通过调控保证(d)熔渣混合物料温度≥1450℃;
对应(d):
熔渣混合物料温度为1440℃,喷入预热燃料-煤粉,燃烧放热,补充热量,调控后温度为1460℃,满足温度≥1450℃;
(3)氧化后的熔渣混合物料,水淬,制得高附加值的水泥熟料。
实施例7
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的电炉炼钢熔融氧化钢渣混合,获得混合熔渣,加入内有石墨-冷态高炉渣复合保温耐火材料的矿热炉中,再加入煤粉和粉煤灰,得到反应混合熔渣,通过矿热炉加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):
混合后的反应混合熔渣,温度为1450℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为1.0,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的氧气-氮气混合气,氧气-氮气混合气的预热温度为500℃;混合气体中,氧气与氮气的体积比为1∶2,氧气-氮气混合气的喷吹方式为采用耐火喷枪置于反应混合熔渣侧面吹入;在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/Si02比值=0.6~2.6;
调控方法为:
对应(a):喷吹气体结束后,反应混合熔渣的温度为1490~1498℃,在设定范围内;
对应(b):反应混合熔渣的碱度CaO/SiO2比值=0.9~1.0,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法A,处理的方法如下:
还原后的熔渣直接水淬,用作矿渣水泥。
实施例8
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的普通高炉熔渣、从钢渣出渣口获得的转炉炼钢熔融钢渣混合,获得混合熔渣,加入内有碳-硅质复合保温耐火材料的直流电弧炉中,再加入煤粉和普通铁精矿金属化球团,得到反应混合熔渣,通过直流电弧炉加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):混合后的反应混合熔渣,温度为1581℃,在设定范围内;
对应(b):混合后的反应混合熔渣碱度CaO/SiO2为1.8,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的氧气,氧气的预热温度为900℃;氧气的喷吹方式为采用耐火喷枪插入反应混合熔渣吹入;在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体过程中,反应混合熔渣温度升至1611~1615℃,采用耐火喷枪以喷吹的方式,加入平均粒度为140μm的转炉烟尘粉状物料8kg,载入气体为空气,调控喷吹气体结束后,反应混合熔渣的温度为1580~1589℃;
对应(b):
反应混合熔渣的碱度CaO/SiO2比值=1.7~1.8,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤3,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法E,处理的方法如下:
步骤一,再混合熔渣熔融还原炼铁:
(1)喷吹气体:将炉外熔渣倒入内有褐煤-高铝质耐火保温材料的保温地坑,温度为1540~1545℃,向其喷吹经过预热的燃料与空气;燃料与空气的喷吹方式为采用耐火喷枪置于反应混合熔渣侧面吹入;其中,空气的预热温度为30℃,燃料的预热温度为0℃;空气的喷吹时间与流量为1L/(min·kg);
(2)控制还原与氧化过程:
在喷吹过程中,通过调控同时保证(e)、(f)和(g)三个参数:
(e)还原后的熔渣的温度在1350~1600℃;
(f)还原后的熔渣的碱度CaO/SiO2比值=0.6~2.6;
(g)还原后的熔渣中,剩余铁氧化物还原成金属铁;
调控方法为:
对应(a):
喷吹气体结束后,炉外熔渣的温度为1596~1600℃,在设定范围内;
对应(b):
炉外熔渣中,剩余铁氧化物还原成金属铁,还原充足;
对应(c):
反应混合熔渣的碱度CaO/SiO2比值=2.5~2.6,在设定范围内;
步骤二,再分离和利用:
(1)冷却:将二次还原后的熔渣,自然冷却至室温,获得缓冷渣;
(2)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度为20~400μm,磨矿,磁选分离出剩余金属铁,金属铁的回收率为97%;
(3)分离出金属铁后,熔渣实现调质处理,得到尾矿,尾矿中TFe含量0.458%;
(4)尾矿的回收利用为水泥原料;
(5)尾矿中,富磷相采用湿法冶金法将含磷组分分离出来;富磷相中P2O5含量为30%,采用2wt%稀硫酸,其中,重选富磷相和稀硫酸的固液比为1∶2(g∶L),将P2O5分离出来,回收率为83%。
实施例9
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的转炉炼钢熔融钢渣混合,得到混合熔渣,加入内有石墨-镁质复合保温耐火材料的感应炉中,再加入煤粉和氧化铁皮,得到反应混合熔渣,通过感应炉加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):
混合后的反应混合熔渣,温度为1526℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为1.9,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的富氧空气,其中,富氧空气的预热温度为25℃;富氧空气中,氧气占富氧空气的体积比为30%,富氧空气用耐火喷枪插入反应混合熔渣吹入;
在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体过程中,反应混合熔渣温度升至1559~1563℃,在设定范围内;
对应(b):
反应混合熔渣的碱度CaO/SiO2比值=1.9~2.0,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法B,处理的方法如下:
(1)还原后的熔渣倒入内有石墨-冷态高炉质复合保温耐火材料的熔炼反应渣罐,温度为1512℃,采用耐火喷枪向还原后的熔渣中吹入预热的氧气,氧气的预热温度为30℃,喷吹结束后,熔渣内Fe2O3为2.94wt%>2wt%,完成熔渣的氧化,获得氧化后的熔渣;
其中,整个过程中,通过调控控制(c)熔渣温度≥1450℃;
对应(c):
渣罐内熔渣温度为1520℃,在设定范围内;
(2)氧化后的熔渣直接水淬,用作水泥生产中的添加剂。
实施例10
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融:
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的转炉炼钢熔融钢渣混合,得到混合熔渣,加入内有石墨-白云石质复合保温耐火材料的等离子炉中,再加入煤粉和氧化铁皮,得到反应混合熔渣,通过等离子炉加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):
混合后的反应混合熔渣,温度为1456℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为0.42,向等离子炉中加入石灰粉,调整碱度CaO/SiO2为2.0,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的空气-氩气混合气;其中,空气-氩气混合气的预热温度为25℃,其中,空气与氩气的混合体积比为3∶2;空气-氩气混合气的喷吹方式为采用耐火喷枪插入反应混合熔渣吹入;
在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体过程中,反应混合熔渣温度升至1490~1500℃,在设定范围内;
对应(b):
反应混合熔渣的碱度CaO/SiO2比值=2.0~2.1,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤3,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法C,此时,混合熔渣的金属铁的回收率为90%;
还原后的熔渣,进行炉外熔渣处理的方法如下:
还原后的熔渣处理生产高附加值的水泥熟料
(1)还原后的熔渣倒入内有石墨-白云石质复合保温耐火材料的矿热炉中,还原后的熔渣温度为1440℃,加入电炉熔融氧化钢渣、熔融转炉钢渣、铝土矿、碱性铁贫矿、高炉熔渣,充分混合,获得还原后的熔渣的混合物料;
(2)向还原后的熔渣混合物料中吹入氧气,氧气的温度为0℃,当熔渣混合物料氧化铁质量百分含量为2wt%时,完成熔渣混合物料的氧化,获得氧化后的熔渣混合物料;
其中,
(d)熔渣混合物料温度≥1450℃;
对应(d):
熔渣混合物料温度为1440℃,通过矿热炉加热,调控后温度为1470℃,满足温度≥1450℃;
(3)氧化后的熔渣混合物料,水淬,制得高附加值的水泥熟料。
实施例11
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融:
将从高炉出渣口获得的普通高炉熔渣和从钢渣熔炼出渣口获得的转炉炼钢熔融钢渣混合,得到混合熔渣,加入内有沥青-尖晶石质复合保温耐火材料的转炉中,再加入煤粉和普通铁精矿含碳预还原球团,得到反应混合熔渣,喷入预热温度为1200℃的煤粉,加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):
混合后的反应混合熔渣,温度为1460℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为0.5,加入生石灰粉,调控后反应混合熔渣的碱度CaO/SiO2比值=2.57;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的空气-氮气混合气;其中,空气-氮气混合气的预热温度为600℃,其中,空气与氮气的混合体积比为5∶1;空气-氮气混合气的喷吹方式采用耐火喷枪置于反应混合熔渣上部吹入;
在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):喷吹气体过程中,反应混合熔渣的温度升温至1502~1508℃,在设定范围内;
对应(b):反应混合熔渣的碱度CaO/SiO2比值=2.57~2.6,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法A,此时,混合熔渣的金属铁的回收率为92%;
还原后的熔渣,进行炉外熔渣处理的方法如下:
还原后的熔渣直接水淬,用作微晶玻璃材料。
实施例12
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融:
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的电炉炼钢熔融氧化钢渣混合,得到混合熔渣,加入内有石墨-粘土质复合保温耐火材料的转炉中,再加入无烟煤和普通铁精矿含碳预还原球团,得到反应混合熔渣,喷吹预热温度为0℃的煤粉,加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):
混合后的反应混合熔渣,温度为1430℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为2.3,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的氧气-氩气混合气;氧气-氩气混合气的预热温度为0℃,其中,氧气与氩气的混合体积比为1∶2;氧气-氩气混合气采用耐火喷枪从上部吹入;
在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体结束后,反应混合熔渣的温度为1470~1480℃,在设定范围内;
对应(b):
反应混合熔渣的碱度CaO/SiO2比值=2.3~2.4,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法B,处理的方法如下:
(1)还原后的熔渣倒入内有烟煤-硅质复合保温耐火材料的保温渣罐,向还原后的熔渣中吹入预热的氧气,喷吹结束后,熔渣内Fe2O3为3.24wt%>2wt%,完成熔渣的氧化,获得氧化后的熔渣;
其中,要保证(c)熔渣温度≥1450℃;
对应(c):
渣罐内熔渣温度为1430℃,喷入煤粉后,渣罐内熔渣温度为1450℃;
(2)氧化后的熔渣直接水淬,用作水泥调整剂。
实施例13
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融:
将从高炉出渣口获得的普通高炉熔渣、从钢渣出渣口获得的转炉炼钢熔融钢渣混合,得到混合熔渣,加入内有石油沥青胶-橄榄石质复合保温耐火材料的交流电弧炉中,再加入煤粉和普通铁精矿金属化球团,得到反应混合熔渣,通过交流电弧炉加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):
混合后的反应混合熔渣,温度为1562℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为2.6,在设定范围内;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的富氧空气,富氧空气的预热温度为1200℃;富氧空气采用耐火喷枪从反应混合熔渣侧面吹入;富氧空气中,氧气占富氧空气的体积比为22%;
喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体过程中,反应混合熔渣温度升至1618~1622℃,加入普通钢渣20kg,调控结束后,反应混合熔渣的温度为1546~1550℃;
对应(b):
反应混合熔渣的碱度CaO/SiO2比值=2.4~2.5,在设定范围内;
(3)反应混合熔渣中,铁氧化物熔融还原为金属铁,形成铁水,渣-金分离,获得铁水与还原后的熔渣,金属铁水实现聚集、长大与沉降;
步骤2,分离再利用:
采用方法二:(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法E,还原后的熔渣倒入内有石油沥青焦-粘土质的可倾倒的保温渣罐中,温度为1500~1509℃,进行再处理;
还原后的熔渣,进行炉外熔渣处理的方法如下:
步骤一,再混合熔渣熔融还原炼铁:
(1)喷吹气体:采用耐火喷枪置于还原后的熔渣上部,向还原后的熔渣中,喷吹经过预热的空气;其中,空气的预热温度为30℃;空气的喷吹时间与流量为60L/(min·kg);
(2)控制还原与氧化过程:
在喷吹过程中,通过调控同时保证(e)、(f)和(g)三个参数:
(e)还原后的熔渣的温度在1350~1600℃;
(f)还原后的熔渣的碱度CaO/SiO2比值=0.6~2.6;
(g)还原后的熔渣中,剩余铁氧化物还原成金属铁;
调控方法为:
对应(e):喷吹气体结束后,还原后的熔渣的温度为1537~1542℃,在设定范围内;
对应(f):
还原后的熔渣的碱度CaO/SiO2比值=2.7~2.8,不满足碱度的要求,加入高炉熔渣,作为热态溶剂,调整后,碱度CaO/SiO2比值=2.4~2.5;
对应(g):
还原后的熔渣中,剩余铁氧化物没有充分还原成金属铁,还原性不足,向还原后的熔渣加入还原剂-煤粉10kg后,剩余铁氧化物还原成金属铁;
步骤二,再分离和利用:
(1)冷却:将二次还原后的反应混合熔渣,自然冷却至室温,获得缓冷渣;
(2)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度为20~400μm,磨矿,磁选分离出剩余金属铁,金属铁的回收率为97%;
(3)分离出金属铁后,熔渣实现调质处理,得到尾矿,尾矿中TFe含量0.432%;
(4)尾矿的回收利用代替碎石作骨料;
(5)尾矿中,富磷相采用选矿法将含磷组分分离出来;磷组分的回收率为62%。
实施例14
一种混合熔渣熔融还原生产与调质处理的方法,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融:
将从高炉出渣口获得的普通高炉熔渣和从钢渣出渣口获得的转炉炼钢熔融钢渣混合,得到混合熔渣,加入内有沥青-尖晶石质复合保温耐火材料的转炉中,再加入煤粉和普通铁精矿含碳预还原球团,得到反应混合熔渣,喷入预热温度为300℃煤粉,加热至熔融状态,进行熔融还原,通过调控保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在1400~1600℃;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
对应(a):混合后的反应混合熔渣,温度为1547℃,在设定范围内;
对应(b):
混合后的反应混合熔渣碱度CaO/SiO2为0.5,加入白云石粉和石灰粉,两者的混合质量比为1∶1,调控后反应混合熔渣的碱度CaO/SiO2比值=2.6;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的空气-氩气混合气,空气-氩气混合气的预热温度为30℃,空气与氩气的混合体积比为3∶2;空气-氩气混合气的喷吹方式采用耐火喷枪插入反应混合熔渣吹入;
在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在1400~1600℃;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
喷吹气体过程中,反应混合熔渣的温度升温至1595~1600℃,在设定范围内;
对应(b):反应混合熔渣的碱度CaO/SiO2比值=2.5~2.6,在设定范围内;
步骤2,分离再利用:
采用方法二:
(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;(2)还原后的熔渣进行炉外熔渣处理;(3)铁水送往转炉炼钢;
其中,还原后的熔渣,进行炉外熔渣处理的方法,采用方法A,熔渣后处理的方法如下:
还原后的熔渣浇注用作铸石材料。

Claims (13)

1.一种混合熔渣熔融还原生产与调质处理的方法,其特征在于,按照以下步骤进行:
步骤1,熔融还原:
(1)物料混合熔融:
将高炉熔渣、熔融钢渣形成的混合熔渣,加入保温装置、可倾倒的熔炼反应装置或固定式的熔炼反应装置中,向混合熔渣中加入还原剂和含铁物料,得到反应混合熔渣,将反应混合熔渣,加热至熔融状态,进行熔融还原,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度控制在设定温度范围内;
(b)反应混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
设定温度范围为1350~1600℃;
当反应装置采用保温装置时,反应混合熔渣的温度范围设定为1350~1600℃;
当反应装置采用可倾倒的熔炼反应装置或固定式的熔炼反应装置时,反应混合熔渣的温度范围设定为1400~1600℃;
控制反应混合熔渣的温度在设定温度范围的方法为:
当反应混合熔渣的温度<设定温度范围下限时,通过反应装置自身的加热功能,或向反应混合熔渣中加入燃料和/或熔融钢渣,使反应混合熔渣的温度达到设定温度范围内;
当反应混合熔渣的温度>设定温度范围上限时,向反应混合熔渣中加入固态含铁物料和/或高炉熔渣,进行降温,使反应混合熔渣的温度达到设定温度范围内;
对应(b):
当反应混合熔渣中碱度CaO/SiO2比值<0.6时,向反应混合熔渣中加入石灰粉、白云石粉或生石灰粉中的一种或几种,使反应混合熔渣中碱度CaO/SiO2比值=0.6~2.6;
当反应混合熔渣中碱度CaO/SiO2比值>2.6时,向反应混合熔渣中加入硅石,使反应混合熔渣中碱度CaO/SiO2比值=0.6~2.6;
(2)喷吹氧化性气体:
向反应混合熔渣中,喷吹经过预热的氧化性气体;其中氧化性气体的预热温度为0~1200℃;在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应混合熔渣的温度在设定温度范围内;
(b)混合熔渣的碱度CaO/SiO2比值=0.6~2.6;
调控方法为:
对应(a):
采用步骤1(1)中的控制反应混合熔渣的温度在设定温度范围的方法;
对应(b):
采用步骤1(1)中的控制反应混合熔渣碱度的方法;
步骤2,分离再利用:
采用以下方法中的一种:
方法一:当反应装置采用保温装置时,进行如下步骤:
(1)冷却:将还原后的反应混合熔渣,冷却至室温,获得缓冷渣;
(2)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度为20~400μm,磨矿,磁选分离出剩余金属铁;
(3)分离出金属铁后,熔渣实现调质处理,得到尾矿;
(4)尾矿的回收利用有2种:①作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥使用;②采用湿法冶金、选矿方法或选矿-湿法冶金联合法将尾矿中含磷组分分离出来;
方法二:当反应装置采用可倾倒的熔炼反应装置或固定式的熔炼反应装置时,进行如下步骤:
(1)还原后的反应混合熔渣形成铁水和还原后的熔渣;
(2)还原后的熔渣进行炉外熔渣处理;
(3)铁水送往转炉炼钢;
其中,
还原后的熔渣,进行炉外熔渣处理的方法,采用方法A、方法B、方法C、方法D、方法E中的一种:
方法A:还原后的熔渣空冷或水淬
还原后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂、水泥熟料、矿渣棉、铸石、微晶玻璃材料或建筑材料;
方法B:还原后的熔渣氧化后空冷或水淬
(1)还原后的熔渣倒入可倾倒的保温装置、可倾倒的熔炼反应装置或固定式的熔炼反应装置中,向还原后的熔渣中吹入预热的氧化性气体,当熔渣氧化铁含量≥2wt%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;
其中,整个过程中,要保证(c)熔渣温度≥1450℃;
对应(c):
采用的控制方法为:
当温度低于<1450℃,喷入预热燃料,燃烧放热,补充热量,或装置自身加热,使熔渣温度≥1450℃;
(2)氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法C:还原后的熔渣处理生产高附加值的水泥熟料
(1)还原后的熔渣倒入可倾倒的保温装置、可倾倒的熔炼反应装置或固定式的熔炼反应装置中,加入熔融转炉钢渣、电炉熔融还原钢渣、电炉熔融氧化钢渣、石灰、粉煤灰、碱性铁贫矿、铝土矿、高炉熔渣中的一种或几种,充分混合,获得还原后的熔渣混合物料;
(2)向还原后的熔渣混合物料中吹入预热的氧化性气体,当熔渣混合物料氧化铁含量≥2wt%,完成熔渣混合物料的氧化,获得氧化后的熔渣混合物料,其中,氧化性气体的预热温度为0~1200℃;
其中,整个过程中,要保证(d)熔渣混合物料温度≥1450℃;
对应(d),
采用的控制方法为:
当温度低于<1450℃,喷入预热燃料,燃烧放热,补充热量,或装置自身加热,使熔渣混合物料温度在≥1450℃;
(3)氧化后的熔渣混合物料,进行空冷或水淬,制得高附加值的水泥熟料;
方法D:部分或全部还原后的熔渣返回到混合熔渣
部分或全部还原后的熔渣返回到混合熔渣,作为热态冶金熔剂,调整混合熔渣成分,控制混合熔渣碱度、温度或粘度;
方法E:还原后的熔渣再处理
还原后的熔渣倒入保温装置,进行再处理:
步骤一,再混合熔渣熔融还原炼铁:
(1)喷吹气体:向保温装置内还原后的熔渣中喷入预热的氧化性气体,其中,氧化性气体的预热温度为0~1200℃;氧化性气体的喷吹时间与流量的关系为1~90L/(min·kg);
(2)控制还原与氧化过程:
在喷吹过程中,通过调控同时保证(e)、(f)和(g)三个参数:
(e)还原后的熔渣的温度在1350~1600℃;
(f)还原后的熔渣的碱度CaO/SiO2比值=0.6~2.6;
(g)还原后的熔渣中,剩余铁氧化物还原成金属铁;
调控方法为:
对应(e)的调控方法:采用步骤1中的对应(a)的调控方法调节;
对应(f)的调控方法:
当碱度不在设定范围内时,通过向还原后的熔渣中添加热态溶剂,使碱度CaO/SiO2比值=0.6~2.6;其中,热态溶剂为高炉熔渣和/或熔融钢渣;
对应(g):
当还原后的熔渣中还原性不足时,向还原后的熔渣中加入还原剂,使剩余铁氧化物还原成金属铁;
步骤二,再分离和利用:
采用步骤2中的方法一或方法二中的方法A或方法D中的一种,进行处理。
2.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤1(1)中,所述的高炉熔渣为从高炉出渣口获得的普通高炉熔渣,含有TiO2的质量分数≤4%,高炉熔渣的温度≥1300℃;所述的熔融钢渣是从转炉钢渣出渣口获得的转炉炼钢熔融钢渣、从电炉钢渣出渣口获得电炉炼钢熔融氧化钢渣中的一种或两种,熔融钢渣的温度≥1500℃。
3.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤1(1)中,所述的含铁物料为含铁物料是普通铁精矿、普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、普通铁精矿直接还原铁、普通钢渣、高炉瓦斯灰、高炉烟尘、转炉烟尘、氧化铁皮、湿法炼锌过程的锌浸出渣、氧化铝生产过程产生的赤泥、粉煤灰、铜渣、硫酸烧渣中的一种或几种。
4.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤1(1)和步骤2中,所述的还原剂是煤粉、焦粉、烟煤、无烟煤中的一种。
5.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述的保温装置为可倾倒的保温装置和不可倾倒的保温装置;所述的不可倾倒的保温装置为保温地坑;所述的可倾倒的保温装置为保温渣罐;所述的可倾倒的熔炼反应装置为可倾倒的转炉、可倾倒的熔炼反应渣罐或感应炉;所述的固定式的熔炼反应装置为底部带有渣口或铁口的反应装置;所述的固定式的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉或反射炉。
6.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤1(1)中,所述的反应装置内层有含碳保温脱模耐火材料;所述的含碳保温脱模耐火材料是含碳复合耐火材料;碳是碳素、石墨、石油沥青焦、冶金焦、沥青、无烟煤、烟煤、褐煤中的一种或几种,耐火材料是硅质、半硅质、粘土质、高铝质、镁质、白云石质、橄榄石质、尖晶石质、冷态高炉渣、冷态钢渣中的一种或几种。
7.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述的控制反应混合熔渣的温度在设定温度范围的方法中,所述的燃料的预热温度为0~1200℃,熔融钢渣的温度为≥1500℃;燃料和氧化性气体从喷枪枪口喷入反应混合熔渣;所述的喷枪采用耐火喷枪插入混合熔渣或置于混合熔渣上部或侧面喷入燃料;
所述的控制反应混合熔渣的温度在设定温度范围的方法中,所述的固态含铁物料为普通铁精矿、普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、普通铁精矿直接还原铁、普通钢渣、高炉瓦斯灰、高炉烟尘、转炉烟尘、氧化铁皮、湿法炼锌过程的锌浸出渣、氧化铝生产过程产生的赤泥、粉煤灰、铜渣、硫酸烧渣中的一种或几种。
8.如权利要求7所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述的固态含铁物料是粉状物料或球状物料,其中,粉状物料的粒度是≤150μm;粉状物料以喷吹的方式加入混合熔渣,载入气体为空气、氮气、氩气、氮气-空气混合气、氮气-氧气混合气或空气-氩气混合气;所述的喷吹方式采用耐火喷枪以喷吹的方式加入反应熔渣。
9.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述的氧化性气体为空气、氧气、富氧空气、氧气-氮气混合气、空气-氮气混合气、氧气-氩气混合气、空气-氩气混合气中的一种或几种;采用耐火喷枪向混合熔渣中喷吹氧化性气体,采用耐火喷枪插入混合熔渣或置于混合熔渣上部或侧面喷入氧化性气体。
10.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤2,方法一(1)中,所述的冷却为自然冷却或旋转冷却;所述的旋转冷却,将装有混合熔渣的保温装置置于旋转平台上,旋转平台的旋转速度依熔渣质量与保温装置高度或深度而定,旋转时间依熔渣质量与熔渣凝固情况而定。
11.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤2,方法一(2)中,所述的混合熔渣的金属铁回收率为90~95%;所述的方法E再分离和利用采用方法一时,所述的混合熔渣的金属铁回收率为95~97%。
12.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤2,方法一(4)中,所述的湿法冶金是稀酸浸出法,其中稀酸浸出法是无机酸浸、有机酸浸中的一种;所述的无机酸选用硫酸、盐酸、磷酸的一种或几种任意比例混合,有机酸选用草酸、乙酸、柠檬酸中的一种或几种任意比例混合。
13.如权利要求1所述的混合熔渣熔融还原生产与调质处理的方法,其特征在于,所述步骤1和步骤2中,所述的燃料是煤粉,燃料的预热温度为0~1200℃。
CN201610570916.XA 2016-07-18 2016-07-18 一种混合熔渣熔融还原生产与调质处理的方法 Active CN106191344B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610570916.XA CN106191344B (zh) 2016-07-18 2016-07-18 一种混合熔渣熔融还原生产与调质处理的方法
PCT/CN2016/097119 WO2018014419A1 (zh) 2016-07-18 2016-08-29 一种混合熔渣熔融还原生产与调质处理的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610570916.XA CN106191344B (zh) 2016-07-18 2016-07-18 一种混合熔渣熔融还原生产与调质处理的方法

Publications (2)

Publication Number Publication Date
CN106191344A true CN106191344A (zh) 2016-12-07
CN106191344B CN106191344B (zh) 2018-05-04

Family

ID=57494497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610570916.XA Active CN106191344B (zh) 2016-07-18 2016-07-18 一种混合熔渣熔融还原生产与调质处理的方法

Country Status (2)

Country Link
CN (1) CN106191344B (zh)
WO (1) WO2018014419A1 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106755656A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金一步法回收的方法
CN106755653A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土或铌熔渣冶金熔融还原生产的方法
CN106755652A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛熔渣冶金一步法回收的方法
CN106755658A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛熔渣冶金还原生产的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法
CN106755657A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛混合熔渣冶金熔融还原回收的方法
CN106755655A (zh) * 2016-12-10 2017-05-31 东北大学 一种混合熔渣冶金熔融还原的回收方法
WO2018014418A1 (zh) * 2016-07-18 2018-01-25 东北大学 一种混合熔渣熔融还原回收与调质处理的方法
CN107699699A (zh) * 2017-10-10 2018-02-16 东北大学 锌冶炼炉渣熔融还原生产的方法
CN107723470A (zh) * 2017-10-10 2018-02-23 东北大学 一种由含铜与铁的混合熔渣生产的方法
CN108264224A (zh) * 2017-12-30 2018-07-10 王虎 一种在转炉炼钢过程中将钢渣熔炼成矿物棉料的冶炼工艺
CN108642224A (zh) * 2018-05-15 2018-10-12 鞍钢股份有限公司 一种利用高炉渣和铁水改质转炉渣的方法
CN108862402A (zh) * 2018-08-29 2018-11-23 北京科技大学 一种回收钢渣中铁资源的方法
WO2019071792A1 (zh) * 2017-10-10 2019-04-18 东北大学 含锌与铁的熔渣熔融还原生产的方法
WO2019071793A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含铜熔渣回收有价组分的方法
WO2019071794A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含铜与铁的混合熔渣回收有价组分的方法
WO2019071795A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含铜熔渣生产的方法
WO2019071797A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含镍与铁的混合熔渣生产的方法
CN112080598A (zh) * 2020-08-27 2020-12-15 内蒙古科技大学 综合利用钢铁冶炼炉渣资源的方法及系统和高炉渣罐
WO2021072562A1 (es) * 2019-10-16 2021-04-22 Universidad De Concepcion Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales
CN113462840A (zh) * 2021-06-07 2021-10-01 吉立鹏 一种转炉渣和脱硫渣的铁、热和渣的综合利用方法
CN115138448A (zh) * 2022-07-25 2022-10-04 江苏省镔鑫钢铁集团有限公司 一种转炉钢渣部分替代烧结石灰石、白云石的方法
CN115181828A (zh) * 2022-07-20 2022-10-14 中冶节能环保有限责任公司 一种熔融钢渣喷粉还原方法及装置
CN115305304A (zh) * 2022-08-14 2022-11-08 新疆八一钢铁股份有限公司 一种欧冶炉的多元炉料结构炼铁方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676942A (zh) * 2018-05-18 2018-10-19 廖辉明 一种含铁和或锌铅铜锡等物料与熔融钢渣协同处理回收方法
CN112960917B (zh) * 2021-01-28 2022-11-08 天津水泥工业设计研究院有限公司 一种利用建筑垃圾在线调节熔融还原炉造渣碱度的方法
CN114107588B (zh) * 2021-11-03 2022-10-11 临沂市钢铁产业协同创新中心 一种高纯铁水的制备方法
CN114751661B (zh) * 2022-01-14 2023-02-28 新疆交通建设集团股份有限公司 热泼渣处理方法以及用途
CN114540628B (zh) * 2022-01-20 2023-11-14 云南云铜锌业股份有限公司 一种处理浸锌渣、锌冶炼石膏渣和高炉瓦斯灰的方法
CN114774680A (zh) * 2022-04-24 2022-07-22 酒泉钢铁(集团)有限责任公司 一种拜耳法赤泥和转炉og泥的混合处理方法
CN115029607B (zh) * 2022-04-28 2023-04-25 中国恩菲工程技术有限公司 中碳准贝氏体钢以及利用富铁有色冶金渣制备其的方法
CN115470589A (zh) * 2022-09-21 2022-12-13 中冶南方工程技术有限公司 一种高炉喷吹位置确定方法、终端设备及存储介质
CN116535115A (zh) * 2023-05-16 2023-08-04 冀东水泥(烟台)有限责任公司 一种利用煤气化渣生产水泥熟料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141722A (en) * 1976-02-10 1979-02-27 Osaka Iron & Steel Co., Ltd. Method of treating ferruginous slags
CN1239516A (zh) * 1997-09-15 1999-12-22 “霍尔德班克”财务格拉鲁斯公司 钢渣和铁载体再加工得到生铁和对环境安全的渣的方法
CN103343174A (zh) * 2013-07-11 2013-10-09 东北大学 一种从含钛混合熔渣中分离钛铁钒钙的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100467620C (zh) * 2007-07-16 2009-03-11 武汉钢铁(集团)公司 一种高磷矿的熔融还原脱磷方法
JP5157557B2 (ja) * 2008-03-20 2013-03-06 Jfeスチール株式会社 スラグ処理方法
CN101348842B (zh) * 2008-08-19 2010-08-25 昆明理工大学 一种氧气顶吹熔融还原炼铁方法
CN102154531B (zh) * 2011-03-25 2012-12-05 喀左县钒钛资源综合开发利用工程技术研究中心 一种用含钛高炉渣生产人造金红石的方法
CN103757170A (zh) * 2013-12-13 2014-04-30 金川集团股份有限公司 一种镍冶炼炉渣喷吹还原提铁的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141722A (en) * 1976-02-10 1979-02-27 Osaka Iron & Steel Co., Ltd. Method of treating ferruginous slags
CN1239516A (zh) * 1997-09-15 1999-12-22 “霍尔德班克”财务格拉鲁斯公司 钢渣和铁载体再加工得到生铁和对环境安全的渣的方法
CN103343174A (zh) * 2013-07-11 2013-10-09 东北大学 一种从含钛混合熔渣中分离钛铁钒钙的方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018014418A1 (zh) * 2016-07-18 2018-01-25 东北大学 一种混合熔渣熔融还原回收与调质处理的方法
CN106755656A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金一步法回收的方法
CN106755653A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土或铌熔渣冶金熔融还原生产的方法
CN106755652A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛熔渣冶金一步法回收的方法
CN106755658A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛熔渣冶金还原生产的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法
CN106755657A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛混合熔渣冶金熔融还原回收的方法
CN106755655A (zh) * 2016-12-10 2017-05-31 东北大学 一种混合熔渣冶金熔融还原的回收方法
WO2019071792A1 (zh) * 2017-10-10 2019-04-18 东北大学 含锌与铁的熔渣熔融还原生产的方法
WO2019071797A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含镍与铁的混合熔渣生产的方法
CN107723470A (zh) * 2017-10-10 2018-02-23 东北大学 一种由含铜与铁的混合熔渣生产的方法
WO2019071795A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含铜熔渣生产的方法
WO2019071794A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含铜与铁的混合熔渣回收有价组分的方法
CN107699699A (zh) * 2017-10-10 2018-02-16 东北大学 锌冶炼炉渣熔融还原生产的方法
WO2019071793A1 (zh) * 2017-10-10 2019-04-18 东北大学 一种由含铜熔渣回收有价组分的方法
CN108264224A (zh) * 2017-12-30 2018-07-10 王虎 一种在转炉炼钢过程中将钢渣熔炼成矿物棉料的冶炼工艺
CN108642224A (zh) * 2018-05-15 2018-10-12 鞍钢股份有限公司 一种利用高炉渣和铁水改质转炉渣的方法
CN108862402A (zh) * 2018-08-29 2018-11-23 北京科技大学 一种回收钢渣中铁资源的方法
CN108862402B (zh) * 2018-08-29 2020-09-04 北京科技大学 一种回收钢渣中铁资源的方法
WO2021072562A1 (es) * 2019-10-16 2021-04-22 Universidad De Concepcion Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales
CN112080598A (zh) * 2020-08-27 2020-12-15 内蒙古科技大学 综合利用钢铁冶炼炉渣资源的方法及系统和高炉渣罐
CN113462840A (zh) * 2021-06-07 2021-10-01 吉立鹏 一种转炉渣和脱硫渣的铁、热和渣的综合利用方法
CN113462840B (zh) * 2021-06-07 2022-10-21 吉立鹏 一种转炉渣和脱硫渣的铁、热和渣的综合利用方法
CN115181828A (zh) * 2022-07-20 2022-10-14 中冶节能环保有限责任公司 一种熔融钢渣喷粉还原方法及装置
CN115138448A (zh) * 2022-07-25 2022-10-04 江苏省镔鑫钢铁集团有限公司 一种转炉钢渣部分替代烧结石灰石、白云石的方法
CN115138448B (zh) * 2022-07-25 2023-08-08 江苏省镔鑫钢铁集团有限公司 一种转炉钢渣部分替代烧结石灰石、白云石的方法
CN115305304A (zh) * 2022-08-14 2022-11-08 新疆八一钢铁股份有限公司 一种欧冶炉的多元炉料结构炼铁方法

Also Published As

Publication number Publication date
CN106191344B (zh) 2018-05-04
WO2018014419A1 (zh) 2018-01-25

Similar Documents

Publication Publication Date Title
CN106191344B (zh) 一种混合熔渣熔融还原生产与调质处理的方法
CN106048109B (zh) 一种混合熔渣熔融还原回收与调质处理的方法
CN106048107B (zh) 一种含钛混合熔渣熔融还原生产和调质处理的方法
CN106048108B (zh) 一种含钛混合熔渣熔融还原回收与调质处理的方法
CN106048106B (zh) 一种含稀土与铌混合熔渣熔融还原回收与调质处理的方法
CN106755654A (zh) 一种熔渣冶金熔融还原生产的方法
CN106755656A (zh) 一种熔渣冶金一步法回收的方法
CN106119447B (zh) 一种含稀土与铌混合熔渣熔融还原生产和调质处理的方法
WO2019071792A1 (zh) 含锌与铁的熔渣熔融还原生产的方法
CN106755651A (zh) 一种含稀土和/或铌熔渣冶金一步法回收的方法
WO2019071788A1 (zh) 一种由含铜与铁的混合熔渣生产的方法
CN104805250B (zh) 一种高温熔渣连续改质的工艺方法
WO2019071796A1 (zh) 一种由含镍与铁的混合熔渣回收有价组分的方法
CN107699699A (zh) 锌冶炼炉渣熔融还原生产的方法
CN101538629A (zh) 用粉铬矿冶炼铬铁合金及含铬铁水工艺及设备
CN106755652A (zh) 一种含钛熔渣冶金一步法回收的方法
CN101538634A (zh) 纯铁的冶炼工艺及设备
CN103627835A (zh) 一种处理镍冶炼炉渣的方法
WO2019071790A1 (zh) 由含锌与铁的混合熔渣回收有价组分的方法
CN103757170A (zh) 一种镍冶炼炉渣喷吹还原提铁的方法
CN107699704A (zh) 一种由含铜与铁的混合熔渣回收有价组分的方法
CN107674985A (zh) 由锌冶炼熔渣回收有价组分的方法
WO2019071797A1 (zh) 一种由含镍与铁的混合熔渣生产的方法
CN106755658A (zh) 一种含钛熔渣冶金还原生产的方法
CN106755655A (zh) 一种混合熔渣冶金熔融还原的回收方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant