WO2019071790A1 - 由含锌与铁的混合熔渣回收有价组分的方法 - Google Patents

由含锌与铁的混合熔渣回收有价组分的方法 Download PDF

Info

Publication number
WO2019071790A1
WO2019071790A1 PCT/CN2017/115645 CN2017115645W WO2019071790A1 WO 2019071790 A1 WO2019071790 A1 WO 2019071790A1 CN 2017115645 W CN2017115645 W CN 2017115645W WO 2019071790 A1 WO2019071790 A1 WO 2019071790A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
iron
smelting
copper
furnace
Prior art date
Application number
PCT/CN2017/115645
Other languages
English (en)
French (fr)
Inventor
张力
张武
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2019071790A1 publication Critical patent/WO2019071790A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of comprehensive utilization of resources and slag metallurgy, and particularly relates to a method for recovering valuable components from a mixed slag containing zinc and iron.
  • the zinc smelting process includes two processes of wet zinc smelting and vertical tank zinc smelting.
  • the two processes produce a large amount of zinc smelting slag, wherein the wet zinc smelting produces zinc leaching slag, iron slag residue, pickled iron slag, goethite Slag, hematite slag, etc.
  • vertical tank zinc smelting produces vertical tank zinc slag.
  • the zinc smelting furnace slag contains secondary resources such as copper, iron, zinc, lead, indium, gold and silver, of which the iron content is as high as 50%, far exceeding the recoverable grade of iron ore (recoverable grade, iron content >26wt%).
  • the copper content is as high as 2%, far exceeding the recoverable grade of copper ore (recoverable grade, copper content >0.2wt%), and the zinc content is as high as 25%.
  • zinc smelting slag is treated and recycled by a volatile kiln, a fumigating furnace, a blast furnace, a vortex smelting process, etc., and only some components such as lead, zinc, and silver are recovered, and the recovery of valuable components such as copper, iron, and gold is not considered.
  • the energy consumption is high and the pollution is large.
  • Lead smelting slag is produced in the process of lead smelting process "sintering-blast furnace reduction-smoke furnace” or "oxidation blowing-high lead slag reduction-smoke furnace".
  • Lead smelting slag includes lead smelting slag and smelting furnace slag.
  • "Sintering blast furnace reduction” or "solid high-lead slag reduction” or “liquid high-lead slag reduction process” reduction process produces lead-containing smelting slag
  • lead-containing smelting slag is produced by smelting furnace to produce smelting furnace slag
  • lead smelting slag (smoke
  • the furnace slag and lead-containing smelting slag contain copper, gold, silver, iron, zinc, lead and other components, which are important secondary resources.
  • the temperature of lead smelting slag (lead smelting slag or smelting furnace slag) is ⁇ 1100 °C, and lead smelting slag is not only an important physical thermal resource.
  • Blast furnace slag, steel slag and ferroalloy slag contain high content of metal iron, iron oxide, chromium oxide, phosphorus pentoxide, SiO 2 , CaO, MgO and other valuable components are important secondary resources; from blast furnace, refining
  • the steel furnace and the iron alloy furnace discharge the molten slag temperature ⁇ 1300 ° C. Therefore, the molten blast furnace slag, molten steel slag and molten iron alloy slag are also important physical thermal resources.
  • Zinc smelting furnace slag, lead smelting slag, blast furnace slag, steel slag, iron alloy slag contain a large amount of metallurgical fluxes such as SiO 2 , CaO, MgO, Al 2 O 3 , etc., which have strong chemical reaction activity and are slag systems with excellent physical and chemical properties.
  • the molten zinc smelting furnace slag, molten lead smelting slag, molten blast furnace slag, molten steel slag and molten iron alloy slag flowing out from the metallurgical furnace contain abundant thermal energy resources and contain a large amount of hot metallurgical flux.
  • the chemical composition and mineral composition of zinc smelting furnace slag, lead smelting slag, blast furnace slag, steel slag and ferroalloy slag are similar to cement clinker.
  • the present invention provides a method for recovering valuable components from a mixed slag containing zinc and iron, which is capable of reducing slag containing copper (slag containing copper ⁇ 0.1 wt%), which can be realized High-efficiency recovery and production of copper, gold, silver, iron, zinc, lead, indium, phosphorus, calcium, silicon, sodium, potassium and other components, obtaining low copper iron-containing materials (iron concentrate and pig iron), high metal recovery rate
  • the production cost is low, the environment is friendly, and the economic benefits are high.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • the zinc smelting slag is added to the smelting reaction device through which the heat preservation device or the slag can flow out, And adding one or more of lead smelting slag, blast furnace slag, steel slag and iron alloy slag, stirring and mixing to form mixed slag;
  • the mixed slag is heated to a molten state to form a reaction slag, uniformly mixed, and the reaction slag is monitored in real time, and the reaction slag is simultaneously adjusted to satisfy both conditions a and b, and the slag after completion of the reaction is obtained, or the reaction is completed.
  • the molten slag is poured into the heat preservation device;
  • the temperature of the reaction slag is controlled to be 1100 to 1450 ° C;
  • step S2 separation and recovery: the slag obtained in step S1 is kept for 5 to 50 minutes, and settled and separated, and the middle and upper iron-containing silicate mineral phase, the bottom copper-rich phase, the middle and lower iron-rich phase are obtained, and the zinc-containing component is formed at the same time.
  • Lead component, indium-containing component and soot-containing soot, gold-silver component migrates and enriches into copper-rich phase; each phase is recovered.
  • the condition a is regulated by: when the temperature of the reaction slag is ⁇ 1100 ° C, by the heating function of the reaction device itself, or by adding fuel or molten zinc smelting furnace slag or molten copper to the slag.
  • One or more kinds of slag, molten nickel smelting slag, molten lead smelting slag, molten blast furnace slag, molten steel slag, molten iron alloy slag and when injected into the fuel, simultaneously injecting a preheated oxidizing gas to make the temperature of the reaction slag Up to the range of 1100 ⁇ 1450 ° C;
  • reaction slag When the temperature of the reaction slag is >1450 ° C, copper-containing materials, zinc smelting slag, lead-containing materials, nickel smelting slag, blast furnace slag, steel slag, iron alloy slag, metallurgical flux, iron-containing materials, and fluorine-containing materials are added to the reaction slag. One or more of the materials, so that the temperature of the mixed slag reaches a range of 1100 ⁇ 1450 ° C;
  • the condition b is regulated by adding an alkaline material and/or an alkaline iron-containing material to the reaction slag when the alkalinity CaO/SiO 2 ratio of the reaction slag is ⁇ 0.15;
  • reaction slag When the alkalinity CaO/SiO 2 ratio of the reaction slag is >1.8, an acidic material and/or an acidic iron-containing material is added to the reaction slag.
  • the heat preservation device is a pourable smelting reaction slag irrigation or insulation pit
  • the smelting reaction device through which the slag can flow is a rotatable smelting reaction device or a smelting reaction device with a slag port or an iron port; wherein the rotatory smelting reaction device is a converter, a smelting reaction slag pot;
  • the smelting reaction device with slag or iron slag can flow out is a plasma furnace, a direct current arc furnace, an alternating current arc furnace, a submerged arc furnace, a blast furnace, a blast furnace, an induction furnace, a cupola, a side blow pool melting furnace, and a bottom blowing Molten pool melting furnace, top blowing molten pool melting furnace, reverberatory furnace, Osmet furnace, Aisa furnace, Waten Kraft melting pool melting furnace, side blowing rotary furnace, bottom blowing rotary furnace, top blowing rotary furnace One or more.
  • the copper and iron oxides in the slag should be simultaneously reduced to metallic copper and FeO, and the metallic iron content in the slag is ⁇ 3%.
  • the amount of the reducing agent and/or the solid carbon-containing iron-containing material in the slag is reduced to copper and iron oxide in the slag to metallic copper and
  • the theoretical amount of FeO is 110-140%; the carbon-containing iron-containing materials are steel dust and soot, iron concentrate carbon-containing pre-reduction pellets, iron concentrate carbon-containing metallized pellets, and wet zinc smelting kiln Slag, coke oven dust and soot.
  • the zinc smelting slag is one or two of slag produced by wet zinc smelting and slag produced by pyrometallurgical slag; zinc smelting slag is in a molten state or a hot or cold state, and the molten smelting method
  • the zinc slag is obtained from a vortex melting furnace, a blast furnace, a smelting furnace, an electric furnace slag outlet, and the hot zinc smelting slag is obtained from a kiln discharge port of the volatilization kiln, a slag outlet of the vertical tank, or the zinc smelting slag is heated to a molten state;
  • the slag produced by the wet zinc smelting is one or more of zinc leaching slag, volatile kiln residue, copper cadmium slag, iron slag residue, pickled iron slag, goethite slag, and hematite slag.
  • the slag produced by the pyrometallurgical zinc slag is one or more of a vertical tank zinc slag, a vortex smelting slag, a blast furnace slag, a smelting furnace slag, and an electric furnace slag;
  • the slag produced by the wet zinc smelting needs to be subjected to drying and dehydration treatment; the vortex smelting furnace slag, the blast furnace slag, the smelting furnace slag, the electric furnace slag are obtained from the smelting furnace slag outlet, and the volatile kiln slag is obtained from the volatilization kiln discharge port.
  • the vertical tank zinc slag is obtained from the vertical tank discharge port.
  • the copper-containing material is copper slag, copper tailings, crude copper fire refining slag, zinc smelting slag, zinc smelting soot and dust, lead and zinc tailings, lead smelting slag, lead copper, arsenic Bronze, crude lead fire refining slag, lead smelting soot and dust, lead acid battery, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit board, tin smelting slag, nickel smelting slag, tin tail One or several of the mines;
  • the copper slag is one or more of slag generated by "smelting smelting”, slag generated by “copper blasting”, igniting furnace slag, copper slag flotation tail slag, and wet copper slag slag;
  • the metallurgical flux is a mineral or slag containing CaO or SiO 2 , preferably one or more of quartz sand, gold-silver quartz sand, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite or limestone.
  • quartz sand preferably one or more of quartz sand, gold-silver quartz sand, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite or limestone.
  • the iron-containing material is ordinary iron concentrate, ordinary iron concentrate direct reduced iron, ordinary iron concentrate sintered ore, ordinary iron concentrate pellet, ordinary iron concentrate metallized pellet, ordinary iron concentrate carbon-bearing pre- Reducing pellets, steel slag, zinc smelting slag, coke smelting soot and dust, steel soot and dust, nickel smelting slag, copper slag, lead smelting slag, zinc smelting slag, tin smelting slag, red mud, high calcium after sodium removal One or more of red mud, coal dust ash, and sulfuric acid slag;
  • the nickel smelting slag is one or more of nickel smelting slag produced by the “smelting smelting” process, depleted slag after being blown by the “copper ice nickel blowing” process, and nickel slag slag generated by top blowing smelting;
  • the lead smelting slag is a smelting furnace slag and a lead-containing smelting slag, wherein “ISP lead-zinc blast furnace reduction” or “sinter blast furnace reduction” or “solid high-lead slag reduction” or “liquid high lead slag reduction” process is produced.
  • Lead-containing smelting slag, lead-containing smelting slag is smelted by a fuming furnace to produce lead-containing smelting furnace slag;
  • the steel soot and dust mud include blast furnace gas mud, converter dust mud, electric furnace dust, hot/cold rolling sludge, sintering dust, pellet dust, dust collection in ironworks, blast furnace gas ash, electric furnace dust ash, steel rolling oxidation Iron sheet
  • the blast furnace slag, the steel slag and the iron alloy slag are in a molten state or a cold state, wherein the molten blast furnace slag, the steel slag and the iron alloy slag are obtained from the slag outlet, or the cold blast furnace slag, the steel slag and the iron alloy slag are heated to a molten state. ;
  • the steel slag is one or more of molten iron pre-desulfurization slag, converter slag, electric furnace slag, VOD/VAD slag, VD slag, and tundish slag;
  • the iron alloy slag is slag generated in the production process of iron alloy, including slag produced by smelting carbon ferromanganese, slag produced by smelting ferrochrome, slag produced by smelting ferronickel, slag produced by smelting ferrovanadium, slag produced by smelting ferrosilicon Smelting slag produced by strontium iron and slag produced by smelting ferromolybdenum;
  • the fluorine-containing material is one or more of fluorite, CaF 2 and fluorine-containing blast furnace slag;
  • the copper-containing material, the iron-containing material and the fluorine-containing material are all pellets or powdery materials or granulation; wherein, the granular material has a particle size of ⁇ 150 ⁇ m, the granular material has a particle size of 5-25 mm, and the powdery material is sprayed.
  • the method is sprayed into, the granular material is added by spraying or feeding, and the loading gas is one or more of preheated argon gas, nitrogen gas, reducing gas and oxidizing gas, and the preheating temperature is 0-1200 ° C. .
  • the alkaline material is one or more of lime powder, red mud, high-calcium red mud after desodiumification, calcium carbide slag, dolomite powder or quicklime powder;
  • the basic iron-containing material is CaO/SiO 2 >1 one or more of alkaline sintered ore, steel slag, iron alloy slag, alkaline iron concentrate, alkaline pre-reduction pellet, alkaline metallized pellet, and alkaline blast furnace slag;
  • the acidic material is one or more of silica, fly ash and coal gangue;
  • the acidic iron-containing material is CaO/SiO 2 ⁇ 1 acid sinter, acid iron concentrate, acid pre-reduction pellet, acid One or more of metallized pellets, copper slag, lead smelting slag, zinc smelting slag, nickel smelting slag, tin smelting slag, iron alloy slag, and acid blast furnace slag.
  • the separation and recovery in step S2 is carried out as follows: the copper-rich state containing the hot or cold state Phase, sent to converter or blowing furnace for copper smelting, or slow cooling and magnetic separation to separate metal iron and then sent to converter or blowing furnace for copper smelting, or magnetic separation of metal iron or separation of metal iron without magnetic separation, Direct reduction, the reduction product is separated by magnetic separation and then sent to a converter or a blowing furnace for copper smelting;
  • the zinc-containing component, the lead-containing component, the cerium-containing component and the indium-containing component are volatilized, and are collected into the dust as an oxide;
  • the slag treatment is carried out by any of the following methods A-G:
  • Method C for pouring glass ceramics or as slag wool
  • Method D retaining the iron-containing silicate mineral phase and/or the iron-rich phase iron-containing slag in a smelting reaction device or pouring the slag into a heat preservation device, blowing into the iron-containing slag Preheating oxidizing gas at a temperature of 0 to 1200 ° C, and ensuring that the silicate slag temperature is >1460 ° C; when the slag oxidized ferrous content is ⁇ 1%, obtaining oxidized slag; the oxidized slag Direct air cooling or water quenching, used as slag cement, cement conditioner, additive in cement production or cement clinker;
  • Method E For the production of high value-added cement clinker, the method is as follows:
  • Method F the iron-containing silicate mineral phase and/or the iron-rich phase iron-containing slag as a blast furnace ironmaking raw material or a direct reduction ironmaking raw material: the iron-containing silicate mineral phase and/or After the iron-rich slag of the iron-rich phase is air-cooled, water-quenched or slow-cooled, it is used as a blast furnace ironmaking or direct reduction ironmaking raw material, and after direct reduction, magnetic separation or electric furnace melting is used, and the magnetic separation product is metal iron. With tailings, electric furnace melting, the product is molten iron and slag;
  • the separation is performed by the following method: magnetic separation after slag modification: into the heat preservation device
  • the slag is blown into an oxidizing gas having a preheating temperature of 0 to 1200 ° C, and the slag temperature is ensured to be >1250 ° C to complete the transformation of the magnetite in the slag; the oxidized slag is slowly cooled to room temperature and broken.
  • magnetic separation the product is magnetite concentrate and tailings, tailings as building materials;
  • the iron-containing silicate mineral phase and/or the iron-rich phase iron-containing slag smelting reduction ironmaking includes the following steps:
  • the preheating temperature of the oxidizing gas is 0 to 1200 ° C
  • the temperature of the slag after the completion of the reaction is 1350 to 1670 ° C
  • the alkalinity CaO / SiO 2 ratio of the slag after the completion of the reaction 0.6 to 2.4;
  • Method I Pour the mixed slag after reduction into a slag pot, and slowly cool to room temperature to obtain slow cooling slag; metal The iron is settled to the bottom of the reaction device to form iron slag; the remaining metal slag contained in the slow cooling slag is crushed to a particle size of 20-400 ⁇ m, and the remaining metal iron and tailings are separated by magnetic separation;
  • Method II mixed slag after reduction, sedimentation, slag-gold separation, obtaining molten iron and reduced slag; reducing slag, according to one or several of A to E, slag treatment; molten iron Send to converter or electric furnace steelmaking;
  • the iron-rich phase water quenching or air cooling or pouring into a heat preservation device to slow cooling or by manual sorting and re-election as a blast furnace ironmaking raw material or direct reduction ironmaking raw material or smelting reduction ironmaking raw material or flotation
  • Copper extraction raw materials or magnetic separation of metal iron for use as raw materials for copper smelting or direct reduction of iron during flotation, the flotation products are copper-bearing concentrates and iron concentrates, copper concentrates are returned to copper smelting systems, iron concentrates
  • the reduction product is magnetically separated and separated, the metal iron and tailings are obtained, and the tailings are returned to the copper smelting system;
  • the direct reduction process uses any one of a rotary hearth furnace, a tunnel kiln, a car bottom furnace, a shaft furnace, a rotary kiln, and an induction furnace as a reduction device, using a gas-based or coal-based reduction technology
  • the gas base is natural gas and/or Gas
  • coal-based is one or several of anthracite, bituminous coal, lignite, coking coal, coke powder, coke
  • reduction temperature is 900-1400 ° C
  • alkalinity CaO / SiO 2 ratio 0.8 ⁇ 1.5
  • the secondary combustion of the slag surface provides heat, and the gas flowing out of the furnace can be used as a heat source for the drying furnace material and the heat preservation device;
  • the red mud contains potassium, sodium, dust, and steel soot containing lead, zinc, antimony, and indium silver, when these materials are added, some indium, antimony, potassium, and sodium groups are added. It is volatilized and enters the soot as an oxide.
  • the cooling mode is natural cooling or rotary cooling or centrifugal cooling
  • the sedimentation mode is natural sedimentation or rotary sedimentation or centrifugal sedimentation
  • the mixing is uniformly mixed by natural mixing or stirring, and the stirring and mixing are one or several of argon stirring, nitrogen stirring, nitrogen-argon mixed gas stirring, reducing gas stirring, oxidizing gas stirring, electromagnetic stirring, mechanical stirring.
  • the stirring and mixing are one or several of argon stirring, nitrogen stirring, nitrogen-argon mixed gas stirring, reducing gas stirring, oxidizing gas stirring, electromagnetic stirring, mechanical stirring.
  • the fuel and the reducing agent are one or more of a solid, liquid or gaseous fuel, which is injected by spraying or feeding, and the blowing and charging gas is a preheated oxidizing gas, One or more of nitrogen or argon, the preheating temperature is 0 to 1200 ° C;
  • the solid fuel and the reducing agent are one or more of coal powder, coke powder, coke, fly ash, bituminous coal or anthracite coal, and the shape is granular or powder, and the granular material has a particle size of 5 to 25 mm, and the granular material particle size ⁇ 150 ⁇ m, the liquid fuel and the reducing agent are heavy oil, and the gaseous fuel and reducing agent are gas and/or natural gas;
  • the oxidizing gas is one of preheated air, oxygen, oxygen-enriched air, argon-air, argon-oxygen, nitrogen-air, nitrogen-oxygen.
  • the method for recovering valuable components from a mixed slag containing zinc and iron which can treat hot slag and make full use of molten zinc smelting slag and molten metallurgical slag (melted lead smelting slag, molten blast furnace slag) , one or more of molten steel slag and molten iron alloy slag) physical thermal resources and hot metallurgical flux, which can also process cold slag, realize slag metallurgy by slag mixing or cold mixing; and solve current slag A lot of accumulation, environmental pollution problems, and heavy metal pollution problems.
  • the iron-rich phase includes a plurality of metal iron, FeO phase, and fayalite phase, and is used as a raw material for blast furnace ironmaking or direct reduction or smelting reduction ironmaking.
  • the copper component and the gold and silver components in the mixed slag are respectively enriched in the copper-rich phase, and the copper-rich phase contains a plurality of copper, glacial copper, matte phase, and iron-containing components, and is grown up. With sedimentation, or part of the copper component enters the iron-rich phase.
  • the zinc-containing component, the lead-containing component, the cerium-containing component and the indium-containing component in the mixed slag are respectively concentrated in the soot and recovered; part of the sodium-containing component and the potassium-containing component are volatilized into the soot.
  • the slag contains copper ⁇ 0.1 wt%.
  • the slag is quenched and tempered, and the upper and lower tail slags are eliminated by the limiting factors. They can be used as cement raw materials or building materials or instead of crushed stone as aggregate and road material or as blast furnace ironmaking or direct reduction ironmaking or smelting reduction ironmaking. Raw material or phosphate fertilizer.
  • the process adopts mixed slag, and the whole process does not need heating or a small amount of compensation for heat; the process uses mixed slag, and the whole process can process cold materials without metallurgical flux or a small amount of metallurgical flux.
  • the method of the present invention can be carried out continuously or intermittently to meet industrial production needs.
  • the invention realizes comprehensive utilization of valuable components of copper, iron, zinc, lead, indium, gold, silver, phosphorus, calcium, sodium, potassium and silicon components in non-ferrous metallurgical slag and steel metallurgical slag, and solves the current slag A lot of accumulation, environmental pollution problems.
  • the invention can treat iron alloy slag, steel slag, blast furnace slag, lead smelting slag, zinc smelting furnace slag and copper and iron materials on a large scale, which can solve the problem of heavy metal element pollution and realize the recovery of heavy metal components.
  • the present invention can handle a small amount of cold copper-containing or iron-containing materials.
  • the raw material of the present invention may be one or more of liquid molten zinc smelting slag ( ⁇ 1100 ° C) and molten metallurgical slag (melted lead smelting slag, molten blast furnace slag, molten steel slag, molten iron alloy slag) flowing out of the slag discharge port.
  • molten metallurgical slag melted lead smelting slag, molten blast furnace slag, molten steel slag, molten iron alloy slag
  • Species, ⁇ 1100 °C featuring high temperature and high heat, making full use of slag physical heat resources
  • mixed slag contains a large amount of hot metallurgical flux, which is a slag system with excellent physical and chemical properties. Efficient utilization of metallurgical resources and thermal resources; fully utilizing the characteristics of high reactivity chemical reactivity of mixed slag, and achieving slag metallurgy.
  • the present invention controls the oxygen potential by slag mixing, so that the copper group, the gold component and the silver component in the slag are concentrated to the copper-rich phase, thereby achieving aggregation, growth and sedimentation, zinc component and lead component.
  • the bismuth component, the sodium component, the potassium component and the indium component are volatilized, and are taken into the soot as an oxide for recovery.
  • the cold material is added to avoid the slag temperature is too high, and the life of the heat preservation device is increased; the cold material is added to increase the raw material processing amount, and not only the liquid slag but also a small amount of cold materials can be processed.
  • the raw material adaptability is strong; the addition of the cold material realizes the efficient use of the chemical heat released by the slag metallurgical reaction and the physical heat of the slag.
  • the copper component and the gold and silver components in the slag are respectively concentrated in the copper-rich phase, and the aggregation, growth and sedimentation are realized;
  • the iron component in the slag is enriched in the iron-rich phase And realize aggregation, growth and sedimentation;
  • the phosphorus component, the silicon component and the calcium component in the slag are respectively concentrated in the iron-containing silicate mineral phase, and are realized to float;
  • the heat preservation device equipped with the slag is placed in rotation Rotating on the platform accelerates the accumulation, growth and settlement of the copper-rich phase and the iron-rich phase; the addition of fluorine-containing materials accelerates the accumulation, growth and sedimentation of the copper-rich phase and the iron-rich phase.
  • the phosphorus component in the slag of the method of the invention migrates and is concentrated in the iron-containing silicate mineral phase, and realizes floating; in the middle and upper iron-containing silicate mineral phase, the mineral grindability is increased, and the slag is adjusted. quality.
  • the method of the invention adopts the methods of manual sorting, magnetic separation, re-election or slag-gold sedimentation to respectively carry out the iron-containing silicate mineral phase, the iron-rich phase and the copper-rich phase distributed in the upper part, the middle part and the bottom part. Separation, realization of copper group in slag High-efficiency recovery of fractions, gold and silver, iron components, indium components, antimony components, sodium components, potassium components, silicon components, calcium components and phosphorus components, and the slag contains copper ⁇ 0.1 wt%;
  • Tailings are used as cement raw materials, building materials, instead of crushed stone as aggregate, road material or phosphate fertilizer or as blast furnace ironmaking or direct A reduced or fused reduced feedstock.
  • the iron-rich phase can be used as a raw material for blast furnace ironmaking or direct reduction or smelting reduction to produce metal iron and molten iron; a low copper iron-rich phase and an iron-containing silicate phase are used as blast furnace ironmaking or direct reduction or slag smelting reduction Raw materials for the production of metal iron and molten iron.
  • the invention can treat the hot slag, fully utilize the molten copper slag and the molten metallurgical slag physical heat resource and the hot metallurgical flux, and can also treat the cold slag and materials, and utilize the mixed slag metallurgical reaction to pass the slag.
  • the present invention provides a method for recovering valuable components from a mixed slag containing zinc and iron, comprising the steps of:
  • Step S1 slag mixing:
  • the zinc smelting slag is added to the smelting reaction device through which the heat preservation device or the slag can flow out, and one of lead smelting slag (smoke furnace slag and/or lead smelting slag), blast furnace slag, steel slag and iron alloy slag or a plurality of forms of mixed slag;
  • the mixed slag is heated to a molten state to form a reaction slag; the mixture is uniformly mixed, and the reaction slag is monitored in real time, and the following parameters (a) and (b) are simultaneously controlled to obtain the slag after completion of the reaction, or the reaction is obtained.
  • the finished slag is poured into the heat preservation device;
  • the control method is: corresponding to (a): the method of controlling the temperature of the reaction slag in the set temperature range is:
  • the heating function of the reaction device itself or the addition of fuel or molten zinc smelting slag (vortex smelting slag and/or blast furnace slag), molten copper slag to the slag
  • molten nickel smelting slag, molten lead smelting slag, molten blast furnace slag, molten steel slag, and molten iron alloy slag When the fuel is injected, the preheated oxidizing gas is simultaneously injected to bring the temperature of the reaction slag to reach Within the set temperature range;
  • the copper-containing material, the zinc smelting slag, the lead-containing material, the nickel smelting slag, the blast furnace slag are added to the reaction slag containing copper and iron.
  • One or more of steel slag, iron alloy slag, metallurgical flux, iron-containing material, and fluorine-containing material so that the temperature of the mixed slag reaches a set temperature range.
  • the slag After 5 to 50 minutes of heat preservation, the slag after the completion of the reaction, sedimentation, and slag-gold separation, obtain the bottom molten state of copper-rich phase, the middle and lower molten iron-rich phase and the middle-upper molten iron-containing silicate mineral phase, and simultaneously generate The zinc-containing component, the lead-containing component, and the indium-containing component enter the soot, wherein the gold and silver components migrate to the copper-rich phase; one of the following methods is employed:
  • the iron-rich phase is obtained by water quenching or air cooling or pouring into a heat preservation device, or by manual sorting and re-election, as a raw material for blast furnace ironmaking or direct reduction of ironmaking raw materials or smelting reduction of ironmaking raw materials or flotation Copper raw material or magnetic separation to separate metal iron as raw material for copper smelting or direct reduction ironmaking; flotation products are copper-containing concentrates and iron concentrates, copper concentrates are returned to copper smelting system, iron concentrates are used as blast furnace ironmaking materials or Directly reducing ironmaking raw materials or smelting reduction ironmaking raw materials; wherein, in the direct reduction process, after reduction and magnetic separation of the reduction products, metal iron and tailings are obtained, and the tailings are returned to the copper smelting system;
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace as a reduction device.
  • the gas-based or coal-based reduction technology is used to reduce the gas base to natural gas and/or gas, and the coal base is reduced to One or more of anthracite, bituminous coal, lignite, coking coal, coke breeze or coke, the reduction temperature is 900-1400 ° C, and the alkalinity CaO/SiO 2 ratio is 0.8-1.5.
  • the iron-containing silicate mineral phase in the step (1) is subjected to slag treatment, and one of the methods A to G is adopted:
  • Iron-containing silicate mineral phase as cement raw material Iron-containing silicate mineral phase as cement raw material
  • the iron-containing silicate mineral phase is directly quenched or air-cooled as a cement raw material or further processed into a high value-added cement raw material;
  • Method B Part or all of the iron-containing silicate mineral phase is returned to the copper-containing reaction slag:
  • Part or all of the iron-containing silicate mineral phase is returned to the copper-containing reaction slag, as a hot metallurgical flux, the copper-containing reaction slag component is adjusted, and the copper-containing reaction slag temperature is controlled;
  • Method C pouring a glass ceramic with a silicate mineral phase or as a slag wool
  • Method D Air-cooling or water quenching after oxidation of iron-containing silicate slag:
  • the iron-containing silicate slag remains in the smelting reaction device or the slag is poured into the heat-preserving device, and the pre-heated oxidizing gas is blown into the slag, and when the slag oxidized ferrous content is ⁇ 1%, Complete oxidation of the slag to obtain oxidized slag, wherein the preheating temperature of the oxidizing gas is 0 to 1200 ° C; and throughout the process, ensure (c) silicate slag temperature > 1460 ° C;
  • Corresponding (c) control method when the temperature of the iron-containing silicate slag is ⁇ 1460 ° C, the preheated fuel and the preheated oxidizing gas are injected, the heat is burned, the heat is supplemented, or the device itself is heated to make the silicic acid Salt slag temperature > 1460 ° C;
  • Method E Treatment of high value-added cement clinker by treatment with iron silicate slag:
  • the iron-containing silicate slag remains in the smelting reaction device or the slag is poured into the heat preservation device, and is added to the slag
  • Method F slag containing iron silicate mineral phase as blast furnace ironmaking raw material or direct reduction ironmaking raw material: slag containing iron silicate mineral phase is air-cooled, water quenched or slowly cooled, and used as blast furnace ironmaking Or directly reduce the ironmaking raw material, after direct reduction, using magnetic separation or electric furnace melting, the magnetic separation product is metal iron and tailings, electric furnace melting, the product is molten iron and molten slag;
  • the separation is performed by the following method: magnetic separation after the slag modification: the slag in the heat preservation device is blown into the preheating of 0 to 1200 ° C Hot oxidizing gas, and ensure that its slag temperature is >1250 °C, complete the transformation of magnetite in the slag; slowly cool the slag after oxidation to room temperature, crush and magnetic separation, the product is magnetite concentrate With tailings, tailings as building materials.
  • G-1 Retaining the slag containing the iron silicate mineral phase in the smelting reaction device or pouring the slag into the heat preservation device, or adding the iron-containing material, adding a reducing agent to the slag, performing smelting reduction, and monitoring the reaction in real time.
  • the slag is obtained by controlling and simultaneously ensuring the following two parameters (a1) and (b1), and obtaining the slag after completion of the reaction;
  • the control method is: Corresponding (a1): The method for controlling the temperature of the reaction slag in the set temperature range is:
  • the heating function of the reaction device itself is added, or the fuel and the preheated oxidizing gas are added to the slag to make the temperature of the reaction slag reach the set temperature range;
  • reaction slag When the temperature of the reaction slag is lower than the upper limit of the set temperature range, one or more of a metallurgical flux, an iron-containing material or a fluorine-containing material is added to the reaction slag to bring the temperature of the reaction slag to a set temperature range. .
  • Corresponding (b1) when the ratio of alkalinity CaO/SiO 2 in the reaction slag is less than 0.6, the alkaline material and/or the alkaline iron-containing material are added to the slag;
  • the temperature range and the alkalinity control method are the same as the method G-1;
  • Method I Perform the following steps:
  • Method II Perform the following steps:
  • the gas produced by the reduction is secondarily burned on the surface of the slag to provide heat, and the gas flowing out of the furnace can be used as a heat source for the drying charge and the heat preservation device.
  • the reduction product is separated by magnetic separation and then sent to converter or rotary furnace for copper smelting; the iron-rich phase layer in the middle is used as blast furnace ironmaking raw material or directly reduces ironmaking raw material or smelting reduction ironmaking raw material Or flotation of copper raw materials or magnetic separation of metal iron for use as a raw material for copper smelting or direct reduction; in the flotation process, the flotation product is a copper-bearing concentrate and iron concentrate, copper concentrate returns to the copper smelting system, iron The concentrate is used as a blast furnace ironmaking raw material or a direct reduction ironmaking raw material or a smelting reduction ironmaking raw material; wherein, in the direct reduction process, after the reduction product is magnetically separated and separated, the metal iron and the tailings are
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace as a reduction device.
  • the zinc smelting furnace slag is one or two of slag produced by wet zinc smelting and slag produced by pyrometallurgical slag, wherein the slag produced by wet zinc smelting is zinc leaching slag and volatile kiln
  • the slag produced by wet zinc smelting is zinc leaching slag and volatile kiln
  • One or more of slag, iron slag, pickled iron slag, goethite slag, hematite slag, slag produced by pyrometallurgical smelting is vertical tank zinc slag, vortex smelting slag, blast furnace slag
  • the slag of the smelting furnace and the slag of the electric furnace is vertical tank zinc slag, vortex smelting slag, blast furnace slag
  • the zinc smelting furnace slag is in a molten state, a hot state or a cold state, wherein: the wet zinc slag is subjected to drying and dehydration treatment, and the vortex melting furnace slag, the blast furnace slag, the fumigating furnace slag, and the electric furnace slag are obtained from the smelting furnace slag opening.
  • the volatile kiln slag is obtained from the outlet of the volatilization kiln, and the zinc slag of the vertical tank is obtained from the slag outlet of the vertical tank, or the zinc smelting slag is heated to a molten state.
  • the temperature of the molten zinc smelting slag (vortex smelting slag and/or blast furnace slag) ⁇ 1100 ° C
  • the temperature of the molten steel slag ⁇ 1500 ° C
  • the molten blast furnace slag ⁇ 1300 ° C
  • the molten iron alloy slag ⁇ 1500 ° C
  • the molten lead smelting slag is ⁇ 1000 °C.
  • the smelting reaction device through which the slag can flow out is a rotatable smelting reaction device or a smelting reaction device with a slag port or an iron port.
  • the heat preservation device is a pourable smelting reaction slag irrigation and heat preservation pit.
  • the rotatable smelting reaction device is a converter and a smelting reaction slag pot.
  • the smelting reaction device with the slag port or the iron slag flowing out is a plasma furnace, a direct current arc furnace, an alternating current arc furnace, a submerged arc furnace, a blast furnace, a blast furnace, an induction furnace, a cupola, and a side blowing molten pool melting furnace.
  • Bottom blowing pool melting furnace top blowing molten pool melting furnace, reverberatory furnace, Osmet furnace, Aisa furnace, Waten Kraft melting pool melting furnace, side blowing rotary furnace, bottom blowing rotary furnace, top blowing back One or more of the converters.
  • the metal iron content in the slag is ⁇ 3 by ensuring reduction of copper and iron oxides in the slag to metallic copper and FeO. %.
  • a reducing agent and a solid carbon-containing iron-containing material By adding one or both of a reducing agent and a solid carbon-containing iron-containing material, the amount of the reducing agent and/or the solid carbon-containing iron-containing material in the slag is reduced to copper and iron oxide in the slag to metallic copper and The theoretical amount of FeO is 110-140%; the carbon-containing iron-containing material is steel Dust and soot, iron concentrates containing carbon pre-reducing pellets, iron concentrates containing carbon metallized pellets, wet zinc smelting kiln slag, coke oven dust and soot.
  • the fuel and the reducing agent are one or more of a solid, a liquid or a gas, which are sprayed by means of a spray, which is a preheated oxidizing gas, nitrogen gas or argon gas.
  • a spray which is a preheated oxidizing gas, nitrogen gas or argon gas.
  • the preheating temperature is 0 to 1200 °C.
  • the solid fuel and the reducing agent are one or more of coal powder, fly ash, coke powder, coke, bituminous coal or anthracite coal, and the shape is granular or powdery or massive, and the granular material has a particle size of 5 to 25 ⁇ m, powdery.
  • the particle size of the material is ⁇ 150 ⁇ m
  • the liquid fuel and the reducing agent are heavy oil
  • the gaseous fuel and reducing agent are one or both of gas and/or natural gas.
  • the copper-containing material is copper slag, copper tailings, crude copper fire refining slag, zinc smelting slag, zinc smelting soot and dust, lead and zinc tailings, lead smelting slag, lead copper , arsenic matte, coarse lead fire refining slag, lead smelting soot and dust, lead acid battery, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit board, tin smelting slag, nickel smelting slag, One or several of tin tailings.
  • the copper slag is one or more of slag generated by "smelting smelting”, slag generated by “copper blasting”, igniting furnace slag, copper slag flotation tailings, and wet copper slag.
  • Zinc smelting slag is zinc smelting slag produced by wet zinc smelting and pyrometallurgical smelting, including leaching slag, iron slag, copper cadmium slag, goethite slag, hematite slag, volatile kiln slag, vertical tank smelting slag , electric furnace zinc slag.
  • Lead smelting slag is lead-containing slag and lead-containing smelting slag, "ISP lead-zinc blast furnace reduction” or “sinter blast furnace reduction” or “solid high-lead slag reduction” or “liquid high lead slag reduction process” reduction process to produce lead
  • ISP lead-zinc blast furnace reduction or "sinter blast furnace reduction” or "solid high-lead slag reduction” or "liquid high lead slag reduction process” reduction process to produce lead
  • the smelting slag and the lead-containing smelting slag are smelted by a smelting furnace to produce lead-containing smelting furnace slag.
  • the nickel smelting slag is one or more of the nickel smelting slag produced by the “smelting smelting” process, the depleted slag after the “copper ice nickel blowing” process, and the nickel slag slag produced by the top blowing smelting.
  • the metallurgical flux is a mineral or slag containing CaO or SiO 2 , specifically one or more of quartz sand, gold-silver-sand quartz sand, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite or limestone.
  • the blast furnace slag, the steel slag and the iron alloy slag are in a molten state or in a cold state, wherein: the molten slag (lead smelting slag, blast furnace slag, steel slag and iron alloy slag) is obtained from the slag outlet, or the cold slag (lead smelting slag, high)
  • the slag, steel slag and iron alloy slag are heated to a molten state.
  • the steel slag is molten iron pre-desulfurization slag (desulfurization slag, desiliconization slag, dephosphorization slag), converter slag, electric furnace slag, VOD/VAD slag, VD slag, and tundish slag.
  • Ferroalloy slag is the slag produced in the production process of iron alloy, including slag produced by smelting carbon ferromanganese, slag produced by smelting ferrochrome, slag produced by smelting ferronickel, slag produced by smelting ferrovanadium, slag produced by smelting ferrosilicon, smelting Slag produced by strontium iron, slag produced by smelting ferromolybdenum.
  • the iron-containing material is ordinary iron concentrate, ordinary iron concentrate direct reduced iron, ordinary iron concentrate ore, ordinary iron concentrate pellet, ordinary iron concentrate metallized pellet, ordinary iron concentrate carbon pre-reduction ball Group, steel slag, zinc smelting slag, coke smelting soot and dust, steel soot and dust, nickel smelting slag, copper slag, lead smelting slag, zinc smelting slag, tin smelting slag, red mud, sodium removal after high-calcium red mud One or several of coal powder ash and sulfuric acid slag.
  • the copper-containing material and the iron-containing material are in a hot or cold state, wherein the hot material is directly obtained from the metallurgical furnace discharge port or the slag outlet.
  • the wet zinc slag and dust must be dehydrated and dried.
  • Steel soot and dust include blast furnace gas mud, converter dust mud, electric furnace dust, hot/cold rolling sludge, sintering dust, pellet dust, dust collection from the ironworks, blast furnace gas ash, electric furnace dust ash, steel oxide scale.
  • zinc smelting slag and soot, lead smelting slag and soot contain indium, antimony, lead, silver and zinc; red mud contains sodium and potassium, and steel soot and dust contain indium, antimony, silver and sodium. Potassium, the above materials all have iron; lead smelting slag and zinc smelting slag contain copper, copper soot and dust contain indium and antimony, in the method of the invention, indium, antimony, sodium, potassium, zinc, lead will be oxide The form enters the soot and is recycled.
  • the fluorine-containing material is one or more of fluorite, CaF 2 or fluorine-containing blast furnace slag.
  • the copper-containing material, the iron-containing material and the fluorine-containing material are pellets or powdery materials or granulation; wherein the granular material has a particle size of 5 to 25 ⁇ m, and the powdery material has a particle size of ⁇ 150 ⁇ m.
  • the powdery material is sprayed by spraying, and the loading gas is one or more of preheated argon gas, nitrogen gas, reducing gas (gas and/or natural gas), and oxidizing gas, and the preheating temperature is 0 to 1200 ° C, the blowing method is one or several types in which a refractory spray gun is inserted into the slag or placed in the upper portion or the side or bottom of the reaction slag.
  • the copper-containing material and the iron-containing material are in a hot or cold state, and the hot material is a hot material directly produced from a metallurgical furnace, and the temperature of the hot material is 200 to 1750 °C.
  • the copper component and the gold and silver components in the slag are concentrated in the copper-rich phase, and aggregation, growth and sedimentation are achieved, and the copper-rich phase contains copper and white copper.
  • the copper-rich phase contains copper and white copper.
  • the iron component is enriched in the iron-rich phase to achieve aggregation, growth and sedimentation, and the iron-rich phase includes a plurality of metal iron, FeO phase, and fayalite phase, and is used as a raw material for blast furnace ironmaking or direct reduction or smelting reduction ironmaking;
  • the silicon, calcium and phosphorus components migrate and are enriched in the iron-containing silicate mineral phase;
  • the zinc component, the lead component, the indium component and the strontium component in the slag respectively enter the soot and are recovered as oxides.
  • step S1 the method of controlling the temperature of the mixed slag in the set temperature range is as follows:
  • one or more of zinc smelting slag, copper-containing material, iron-containing material, blast furnace slag, steel slag, iron alloy slag, metallurgical flux or fluorine-containing material are added. Avoid excessive temperature and protect refractory materials; another function of adding fluorine-containing materials is to reduce the viscosity, accelerate the accumulation of copper-rich phase and iron-rich phase in the slag, grow up and settle, and facilitate the silicate to float.
  • the alkaline material is one or more of lime powder, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite powder or quicklime powder;
  • the alkaline iron-containing material is CaO/SiO 2 >1 iron-containing material;
  • the basic iron-containing material is alkaline sintered ore, steel slag, iron alloy slag, alkaline iron concentrate, alkaline pre-reduction pellet or alkali One or more of a metallized pellet and an alkaline blast furnace slag.
  • the acidic material is one or more of silica, fly ash and coal gangue; the acidic iron-containing material is CaO/SiO 2 ⁇ 1.
  • Iron-containing material; the acidic iron-containing material is acid sinter, acid iron concentrate, acid pre-reduction pellet, acid metallized pellet, copper slag, lead smelting slag, zinc smelting slag, nickel smelting slag, tin smelting One or more of slag, iron alloy slag, and acid blast furnace slag.
  • the copper-rich phase and the iron-rich phase in the slag are aggregated, grown and settled, which is favorable for the silicate to float, and the copper-rich phase contains copper, blister copper, matte phase, and iron component. Species or partially enriched in iron-rich phase.
  • the mixed slag is thoroughly mixed, and the mixing mode is natural mixing or stirring mixing, and the stirring and mixing is one of the following modes: argon stirring, One or more of nitrogen agitation, argon-nitrogen mixed gas, reducing gas (gas and/or natural gas), oxidizing gas, electromagnetic stirring, and mechanical agitation.
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a car bottom furnace, a shaft furnace, a rotary kiln, an induction furnace as a reduction device, and uses a gas-based or coal-based reduction technology
  • the gas base is natural gas and/or gas.
  • the coal base is reduced to one or more of anthracite, bituminous coal, lignite, coking coal, coke powder and coke, the reduction temperature is 900-1400 ° C, and the alkalinity CaO/SiO 2 ratio is 0.7-1.9.
  • the oxidizing gas is one of preheated air, oxygen, oxygen-enriched air, nitrogen-oxygen, nitrogen-air, argon-air, argon-oxygen, and the preheating temperature is 0.
  • the blowing method is to insert a slag into a molten slag or to be placed on the upper or side of the reaction slag containing copper and iron.
  • the cooling mode is natural cooling or rotary cooling or centrifugal cooling
  • the sedimentation mode is natural sedimentation or rotary sedimentation or centrifugal sedimentation.
  • the specific operation of the rotation and the centrifugal cooling is: the device containing the slag after the reaction is completed is placed on the rotating platform, and is rotated according to a certain speed, and the rotation speed is determined according to the slag quality and the height of the heat preservation device or Depending on the depth, the rotation time depends on the quality of the slag and the solidification of the slag; the device containing the slag after the completion of the reaction is placed on a rotating platform for the purpose of accelerating the accumulation of the copper-rich phase, the iron-rich phase, and growing up. With the settlement, it is beneficial to the silicate (phosphorus-rich phase) to float and shorten the settling time.
  • silicate phosphorus-rich phase
  • step S2 during the slag cooling process after the completion of the reaction, most of the copper-rich phase settles in the middle and lower portions due to the difference in density and the size of the mineral, and the iron-rich phase settles in the middle and upper portions.
  • the copper component and the gold-silver component in the slag after the reaction is completed continue to migrate, enriched in the copper-rich phase, and grow and settle, or a part of the copper component is enriched in the iron-rich phase;
  • the iron components in the mixed slag continue to migrate, enrich in the iron-rich phase, and achieve growth and sedimentation.
  • the gravity sorting method is a shaker sorting, a chute sorting or a combination of the two.
  • the slag contains copper ⁇ 0.1%, the iron recovery rate is ⁇ 96%, and the zinc recovery rate is ⁇ 95%, lead
  • the recovery rate is ⁇ 95%, the recovery rate of indium is ⁇ 91%, the gold enrichment rate is ⁇ 91%, the silver enrichment rate is ⁇ 91%, the nickel enrichment rate is ⁇ 92%, and the cobalt is rich.
  • the collection rate is ⁇ 94%, the recovery rate of strontium is ⁇ 91%, the recovery rate of sodium is ⁇ 92%, and the recovery rate of potassium is ⁇ 93%.
  • the copper content of the slag refers to the slag phase after the copper-rich phase separation, specifically the copper content in the iron-rich phase and the iron-containing silicate mineral phase, and the nickel and cobalt enrichment ratio refers to the nickel in the copper-rich phase.
  • the content of cobalt accounts for the percentage of the total amount of nickel and cobalt in the raw material.
  • the enrichment ratio of gold and silver refers to the percentage of gold and silver in the copper-rich phase as a percentage of the total amount of gold and silver in the raw material.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding zinc smelting slag (cold zinc leaching slag) to DC arc furnace, adding cold blast furnace slag, VOD/VAD slag and iron alloy slag produced by smelting carbon ferromanganese, liquid high lead slag reduction furnace
  • the cold lead-containing smelting slag forms a mixed slag; the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction slag is electromagnetically stirred to achieve natural mixing; the reaction slag is monitored in real time.
  • the slag after the completion of the reaction is obtained; corresponding to (a): the temperature of the reaction slag containing copper and iron is 1,660 ° C, and the refractory spray gun is inserted into the reaction slag.
  • Step 2 separation and recovery method 1: heat preservation for 48 min, slag natural sedimentation, slag-gold separation, obtain molten copper-rich phase, iron-rich phase and iron-containing silicate mineral phase, and simultaneously produce zinc-containing components, lead-containing The components, the cerium-containing component and the indium-containing component are recycled into the soot, and the following steps are performed:
  • the molten iron-containing silicate mineral phase is treated by external slag treatment, and the method F is used.
  • the iron-containing silicate slag is air-cooled, it is used as a direct reduction ironmaking raw material, and is directly reduced by a rotary kiln.
  • Gas-based reduction technology gas-based reducing agent is natural gas and gas, the reduction temperature is 900 ° C, the alkalinity CaO / SiO 2 ratio is 0.8, after reduction, the metal iron and slag are obtained by magnetic furnace melting, the melting temperature is 1550 ° C ;
  • the molten iron-rich phase is poured into the heat preservation device, and is used as a raw material for blast furnace ironmaking after air cooling;
  • the zinc-containing component, the lead-containing component, the cerium-containing component, the indium-containing component, the sodium-containing component and the potassium-containing component are volatilized into the dust to be recovered.
  • the finally obtained slag contains copper ⁇ 0.1%, zinc recovery rate is 97%, lead recovery rate is 96%, iron recovery rate is 98%, indium recovery rate is 92%, hydrazine recovery rate is 91%, gold rich
  • the collection rate was 92%, the silver enrichment rate was 91%, the sodium recovery rate was 93%, and the potassium recovery rate was 94%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding zinc smelting slag (the volatile kiln residue obtained from the outlet of the volatile kiln) to the pourable smelting reaction slag, and adding the ferroalloy slag produced by the molten smelting ferrochrome obtained from the slag outlet, Forming a mixed slag; spraying an anthracite and coke having a particle size of 20 mm with an oxygen-enriched air having a preheating temperature of 1000 ° C, and blowing the natural gas to heat the mixed slag to a molten state to form a reaction slag containing copper and iron.
  • zinc smelting slag the volatile kiln residue obtained from the outlet of the volatile kiln
  • the reaction slag is electromagnetically stirred to achieve mixing; the reaction slag is monitored in real time, and the two parameters of (a) and (b) are simultaneously controlled to obtain the slag after the completion of the reaction; corresponding to (a) the reaction slag containing copper and iron
  • the temperature is 1660 °C, and the refractory spray gun is used to insert into the reaction slag.
  • the argon gas is used as the carrier gas, and the powder is sprayed into the room temperature powder particle size ⁇ 150 ⁇ m copper slag, copper-containing soot, copper and copper-containing garbage, copper-containing circuit board, ordinary iron essence.
  • Step 2 separation and recovery method 2: heat preservation for 50 min, the slag after the completion of the reaction is naturally settled, slag-gold separation, obtaining a molten copper-rich phase, an iron-rich phase and a ferrosilicate-containing mineral phase, and simultaneously forming a zinc-containing group
  • the fraction, the lead-containing component, the antimony-containing component and the indium-containing component enter the soot recovery, and the following steps are performed:
  • the iron-containing silicate mineral phase and the iron-rich phase are treated by the method G for slag treatment, and the slag is smelted to reduce ironmaking.
  • the specific steps are as follows:
  • the finally obtained slag contains copper ⁇ 0.1%, zinc recovery rate is 96%, lead recovery rate is 97%, iron recovery rate is 96%, indium recovery rate is 92%, hydrazine recovery rate is 92%, gold rich
  • the collection rate was 93%, the silver enrichment rate was 93%, the sodium recovery rate was 94%, and the potassium recovery rate was 93%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding zinc smelting slag (cold volatilization kiln residue) to a DC arc furnace, and simultaneously adding steel slag obtained from the slag tapping port of the converter to form a mixed slag; using oxygen having a preheating temperature of 400 ° C, The particle size is 20mm anthracite, coke grain and coal powder, and the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the slag is mixed; the slag is monitored in real time, and the control is ensured simultaneously (a And (b) two parameters to obtain the slag after completion of the reaction; corresponding to (a): the temperature of the reaction slag containing copper and iron is 1685 ° C, adding acid metallized pellets to the reaction slag, copper smelting Slag and copper-containing blowing slag, at the same time adding copper soot, lead smelting slag, ordinary iron concentrate pellets
  • Step 2 separation and recovery method 2: heat preservation for 40 min, slag natural sedimentation, slag-gold separation, obtain molten copper-rich phase, iron-rich phase and iron-containing silicate mineral phase, and simultaneously produce zinc-containing components, lead-containing
  • the components, the cerium-containing component and the indium-containing component are recycled into the soot to be recovered as follows:
  • the molten iron-rich phase and the iron-containing silicate mineral phase are used as direct reduction ironmaking raw materials.
  • some zinc components, lead components, indium components and strontium components are volatilized into the soot; direct reduction process
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is 98%, the zinc recovery rate is 97%, the lead recovery rate is 96%, the indium recovery rate is 94%, and the ruthenium recovery rate is 93%.
  • the gold enrichment rate is 91%, and the silver enrichment rate is 92%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding cold zinc smelting slag (iron slag) to the plasma furnace, and simultaneously adding the converter steel slag obtained from the slag outlet, the electric furnace steel slag and the iron alloy slag obtained by smelting the nickel iron to form a mixed slag;
  • the molten slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction slag is sprayed with argon gas having a preheating temperature of 400 ° C to achieve mixing;
  • the reaction slag is monitored in real time, and (a) and (b) Two parameters, obtaining the slag after completion of the reaction; corresponding to (a) the temperature of the slag containing copper and iron is 1670 ° C, adding red mud, sulfuric acid slag, fluorite, lead ice to the reaction slag Copper, leaded soot, zinc-containing soot, arsenic matte and wet zinc slag,
  • Step 2 separation and recovery method 2: heat preservation for 32 min, slag natural sedimentation, slag-gold separation, obtain molten copper-rich phase, iron-rich phase and iron-containing silicate mineral phase, and simultaneously produce zinc-containing components, lead-containing
  • the component, the cerium-containing component and the indium-containing component are introduced into the soot and recovered as an oxide, and the following steps are carried out:
  • the finally obtained slag contains copper ⁇ 0.1%, the recovery of iron is 96%, the recovery of zinc is 96%, the recovery of lead is 95%, the recovery of indium is 92%, and the recovery of hydrazine is 92%.
  • Gold enrichment rate is 93%, silver enrichment rate It is 92%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding zinc smelting slag (hot state vertical tank zinc slag, molten vortex smelting slag obtained by slag outlet, molten blast furnace slag and electric furnace slag) to the insulated slag tank, and adding the converter obtained from the slag outlet
  • the molten steel slag is melted to form a mixed slag; the air having a preheating temperature of 800 ° C is sprayed with a particle size of 20 mm of bituminous coal and coal powder, and the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction is carried out.
  • the slag is mixed; the reaction slag is monitored in real time, and the slag after the completion of the reaction is obtained by controlling both parameters (a) and (b); corresponding to (a): the reaction slag temperature of copper and iron is 1410 °C; (b): reaction between copper and iron slag basicity CaO / SiO 2 ratio of 1.5, are within the required range; slag metal iron content of 2.2%.
  • Step 2 separation and recovery using method 5: the slag after the completion of the reaction is poured into the thermal insulation slag tank, heat preservation for 28 min, slag treatment, the following steps:
  • the zinc-containing component, the indium-containing component, the cerium-containing component and the lead-containing component are volatilized, and are collected into the soot.
  • the finally obtained slag contains copper ⁇ 0.15%, iron recovery rate is 98%, zinc recovery rate is 97%, lead recovery rate is 96%, indium recovery rate is 93%, and ruthenium recovery rate is 92%.
  • the gold enrichment rate is 96%, and the silver enrichment rate is 93%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding cold zinc smelting slag (salted iron slag, goethite slag, hematite slag) to an AC electric arc furnace, and simultaneously adding cold iron smelting ferromanganese slag and smelting ferrosilicon
  • the produced iron alloy slag forms a mixed slag; the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and an argon-nitrogen mixed gas having a preheating temperature of 600 ° C is sprayed and mixed; the reaction melting is monitored in real time.
  • the slag is obtained by controlling and simultaneously satisfying the two parameters (a) and (b) to obtain the slag after the completion of the reaction; corresponding to (a): the temperature of the reaction slag containing copper and iron is 1040 ° C, and the preheating temperature is added to the reaction slag.
  • Step 2 separation and recovery using method 1: heat preservation for 38 min, slag natural sedimentation, slag-gold separation, obtaining molten copper-rich phase, iron-rich phase and iron-containing silicate mineral phase, simultaneously forming zinc-containing components, containing indium
  • the component, the cerium-containing component and the lead-containing component are volatilized into the dust to be recovered, and the following steps are performed:
  • the zinc-containing component, the indium-containing component, the cerium-containing component, the lead-containing component, the sodium-containing component and the potassium-containing component are volatilized, and are collected into the soot.
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 97%, zinc recovery rate is 96%, lead recovery rate At 96%, the recovery of indium is 93%, the recovery of germanium is 94%, the enrichment rate of gold is 93%, the enrichment rate of silver is 92%, the recovery of sodium is 93%, and the recovery of potassium is It is 95%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding zinc smelting slag (cold vertical tank zinc slag slag) to the submerged arc furnace, adding slag produced by smelting ferroniobium obtained by the slag outlet and smelting slag produced by smelting ferromolybdenum to form mixed slag;
  • the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction slag is sprayed with nitrogen gas having a preheating temperature of 1100 ° C to achieve mixing;
  • the reaction slag is monitored in real time, and the control is ensured simultaneously (a) And (b) two parameters to obtain the slag after completion of the reaction; corresponding to (a): the temperature of the reaction slag containing copper and iron is 1320 ° C; (b): the alkali of the reaction slag containing copper and iron
  • the ratio of CaO/SiO 2 is 0.8, which is within
  • Step 2 separation and recovery method 4: heat preservation for 32 min, slag natural sedimentation, slag-gold separation to obtain a molten copper-rich phase, iron-rich phase, iron-containing silicate mineral phase, and simultaneously produce zinc-containing components, lead-containing group
  • the fraction, the niobium-containing component and the indium-containing component are recycled into the soot to be recovered as follows:
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 96%, zinc recovery rate is 97%, lead recovery rate is 97%, indium recovery rate is 94%, and ruthenium recovery rate is 95%.
  • the gold enrichment rate is 93%, and the silver enrichment rate is 91%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: adding zinc smelting slag (melting vortex melting furnace slag obtained from the slag outlet) to the blast furnace, adding blast furnace slag and electric furnace steel slag obtained from the slag outlet to form mixed slag; using preheating temperature of 600
  • the air of °C is sprayed with 20mm bituminous coal and coal powder, and the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction slag is mixed; the reaction slag is monitored in real time, and the control is simultaneously controlled.
  • the two parameters (a) and (b) are guaranteed to obtain the slag after the completion of the reaction; corresponding to (a): the temperature of the reaction slag containing copper and iron is 1330 ° C; (b): the reaction melting of copper and iron
  • the alkalinity CaO/SiO 2 ratio of the slag is 1.0, which is within the required range; the metal iron content in the slag is 2.6%.
  • Step 2 separation and recovery method 3: heat preservation for 19 min, slag natural sedimentation, slag-gold separation, obtain copper-rich phase and middle-middle iron-containing silicate mineral phase and iron-rich phase, and simultaneously produce zinc-containing components, lead-containing
  • the components, the cerium-containing component and the indium-containing component are recycled into the soot to be recovered as follows:
  • the iron-rich phase is subjected to water quenching or air cooling or pouring into a heat preservation device for slow cooling, it is used as a blast furnace ironmaking raw material or directly reduces ironmaking.
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 97%, zinc recovery rate is 95%, lead recovery rate is 96%, indium recovery rate is 93%, and ruthenium recovery rate is 92%.
  • the gold enrichment rate is 91%, and the silver enrichment rate is 92%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: the zinc smelting slag (melting blast furnace slag obtained from the slag outlet) is added to the side blowing rotary kiln, and the molten blast furnace slag and VD slag obtained from the slag outlet are added to form mixed slag;
  • the mixed slag is heated to a molten state to form a slag containing copper and iron, and argon gas having a preheating temperature of 800 ° C is sprayed to mix the slag;
  • the reaction slag is monitored in real time, and (a) and ( b) Two parameters to obtain the slag after the completion of the reaction; corresponding to (a): the slag temperature of copper and iron is 1340 ° C; (b): the slag basicity CaO / SiO 2 ratio of copper and iron 1.2, all meet the requirements; the coke particles with a particle size of 20 mm are sprayed with air having a preheating temperature of 900
  • Step 2 separation and recovery method 2: heat preservation for 30 min, slag natural sedimentation, slag-gold separation, obtaining the lower molten copper-rich phase, the upper middle iron-rich phase and the iron-containing silicate mineral phase iron-containing slag
  • the zinc-containing component, the lead-containing component, the cerium-containing component and the indium-containing component are generated, and the dust is recovered, and the following steps are performed:
  • the upper middle iron-containing slag is poured into the smelting device, and the step S2 is used to separate and recover the method, the middle method C, and the middle and upper slag is poured into the glass ceramics;
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 98%, zinc recovery rate is 96%, lead recovery rate is 97%, indium recovery rate is 94%, and ruthenium recovery rate is 93%.
  • the gold enrichment rate is 90%, and the silver enrichment rate is 92%.
  • a method for recovering valuable components from a mixed slag containing zinc and iron comprising the steps of:
  • Step 1 slag mixing: zinc smelting slag (melted electric furnace slag obtained from the slag outlet) is added to the thermal insulation pit, and the molten steel slag obtained by the slag discharge port and the molten copper smelting slag are added to form a mixed slag; Oxygen-enriched air with a temperature of 200 °C, sprayed bituminous coal with particle size ⁇ 150 ⁇ m, heated mixed slag to molten state, formed copper-containing reaction slag, and mixed reaction slag; real-time monitoring of reaction slag, through regulation and guarantee (a) and (b) two parameters to obtain the slag after completion of the reaction; corresponding to (a): the temperature of the copper-containing reaction slag is 1430 ° C; (b): the alkalinity CaO / SiO 2 of the copper-containing reaction slag The ratio is 1.5, which is within the required range; the metal iron content in the slag is 1.9%.
  • Step 2 separation and recovery method 5: The slag after the completion of the reaction is carried out as follows:
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is 97%, the zinc recovery rate is 97%, the lead recovery rate is 96%, the indium recovery rate is 94%, and the ruthenium recovery rate is 91%.
  • the gold enrichment rate is 93%, and the silver enrichment rate is 92%.

Abstract

一种由含锌与铁的混合熔渣回收有价组分的方法,其包括以下步骤:S1、将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中,并加入铅冶炼渣、高炉渣、钢渣和铁合金渣中的一种或多种,形成混合熔渣;将混合熔渣加热至熔融状态,形成反应熔渣,实时监测反应熔渣,通过调控反应熔渣的温度及碱度CaO/SiO2比值,获得反应完成后的熔渣;S2、将步骤S1得到的熔渣,沉降分离获得含铁硅酸盐矿物相、富铜相、富铁相,同时生成含锌、含铅、含铟与含铋组分的烟尘,金银组分迁移、富集进入富铜相;对各相进行回收处理。该方法能够降低渣含铜(渣含铜<0.1wt%),能够实现有价组分的高效回收生产,获得低铜含铁物料,金属回收率高,生产成本低,环境友好,经济收益高。

Description

由含锌与铁的混合熔渣回收有价组分的方法 技术领域
本发明属于资源综合利用与熔渣冶金技术领域,具体涉及一种由含锌与铁的混合熔渣回收有价组分的方法。
背景技术
锌冶炼工艺包括湿法炼锌与竖罐炼锌两种工艺,两种工艺产生大量锌冶炼炉渣,其中湿法炼锌产生锌浸出渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣等,竖罐炼锌产生竖罐炼锌炉渣。锌冶炼炉渣含有铜、铁、锌、铅、铟、金、银等二次资源,其中铁含量高达50%,远超铁矿石的可采品位(可采品位,铁含量>26wt%),铜含量高达2%,远超铜矿可采品位(可采品位,铜含量>0.2wt%),锌含量高达25%。目前,锌冶炼渣采用挥发窑、烟化炉、鼓风炉、旋涡熔炼等工艺进行处理回收,仅回收部分铅、锌、银等组分,没有考虑铜、铁、金等有价组分的回收,而且能耗高,污染大。
目前,大量锌冶炼炉渣堆积,锌冶炼炉渣含有大量重金属离子,不仅带来严重的环境污染,而且造成资源浪费。如何清洁、高效利用锌冶炼炉渣势在必行。
铅的火法冶炼过程“烧结-鼓风炉还原-烟化炉”或“氧化吹炼-高铅渣还原-烟化炉”等工艺中,产生铅冶炼渣。铅冶炼渣包括含铅熔炼渣与烟化炉渣。“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生烟化炉渣,铅冶炼渣(烟化炉炉渣与含铅熔炼渣)含有铜、金、银、铁、锌、铅等组分,是重要的二次资源。铅冶炼渣(含铅熔炼渣或烟化炉炉渣)温度在≥1100℃,铅冶炼渣不仅是重要的物理热资源。
高炉渣、钢渣与铁合金炉渣含有较高含量的金属铁、铁氧化物、铬氧化物、五氧化二磷、SiO2、CaO、MgO等有价组分是重要的二次资源;由高炉、炼钢炉与铁合金炉排放出熔融炉渣温度≥1300℃,因此,熔融高炉渣、熔融钢渣与熔融铁合金炉渣也是重要的物理热资源。锌冶炼炉渣、铅冶炼渣、高炉渣、钢渣、铁合金炉渣中含有大量SiO2、CaO、MgO、Al2O3等冶金熔剂,化学反应活性强,是物理化学性质优良的熔渣体系,是冶金熟料。且由冶金炉流出的熔融锌冶炼炉渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣与熔融铁合金炉渣,蕴含丰富热能资源,含大量热态冶金熔剂。锌冶炼炉渣、铅冶炼渣、高炉渣、钢渣与铁合金炉渣化学组成、矿物组成与水泥熟料相近。
综上,大量含锌与铁冶金炉渣堆积,炉渣含有大量重金属离子,不仅带来严重的环境污染,而且造成资源浪费。因此,如何清洁、高效利用含锌与铁冶炼炉渣回收有价组分是一个亟待解决的问题。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种由含锌与铁的混合熔渣回收有价组分的方法,该方法能够降低渣含铜(渣含铜<0.1wt%),能够实现铜、金、银、铁、锌、铅、铟、磷、钙、硅、钠、钾等组分的高效回收与生产,获得低铜含铁物料(铁精矿与生铁),金属回收率高,生产成本低,环境友好,经济收益高。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案如下:
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
S1、炉渣混合:将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中, 并加入铅冶炼渣、高炉渣、钢渣和铁合金渣中的一种或多种,搅拌混合,形成混合熔渣;
将混合熔渣加热至熔融状态,形成反应熔渣,混合均匀,实时监测反应熔渣,通过调控使反应熔渣同时满足a和b两个条件,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
其中,a:调控反应熔渣的温度为1100~1450℃;
b:调控反应熔渣的碱度CaO/SiO2比值=0.15~1.8;
S2、分离回收:步骤S1得到的熔渣,保温5~50min,沉降分离,获得中上部含铁硅酸盐矿物相、底部富铜相、中下部富铁相,同时生成含锌组分、含铅组分、含铟组分与含铋组分的烟尘,金银组分迁移、富集进入富铜相;对各相进行回收处理。
根据本发明,在步骤S1中,条件a的调控方法为:当反应熔渣的温度<1100℃时,通过反应装置自身的加热功能,或向熔渣中加入燃料或熔融锌冶炼炉渣、熔融铜渣、熔融镍冶炼渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣、熔融铁合金渣的一种或多种,喷入燃料时,同时喷入预热的氧化性气体,使反应熔渣的温度达到1100~1450℃范围内;
当反应熔渣的温度>1450℃时,向反应熔渣中加入含铜物料、锌冶炼渣、含铅物料、镍冶炼渣、高炉渣、钢渣、铁合金渣、冶金熔剂、含铁物料、含氟物料中的一种或几种,使混合熔渣的温度达到1100~1450℃范围内;
在步骤S1中,条件b的调控方法为:当反应熔渣的碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料和/或碱性含铁物料;
当反应熔渣的碱度CaO/SiO2比值>1.8时,向反应熔渣中加入酸性物料和/或酸性含铁物料。
根据本发明,所述保温装置为可倾倒的熔炼反应渣灌或保温地坑;
所述熔渣可流出的熔炼反应装置为可转动的熔炼反应装置或带有渣口或铁口的熔炼反应装置;其中,所述可转动的熔炼反应装置为转炉、熔炼反应渣罐;所述带有渣口或铁口熔渣可流出的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉中的一种或多种。
根据本发明,在所述步骤S1中,满足所述条件a和b的同时,应同时满足所述熔渣中铜和铁氧化物还原为金属铜和FeO,熔渣中金属铁含量<3%。通过加入还原剂、含固体碳的含铁物料中的一种或两种,熔渣中还原剂和/或含固体碳的含铁物料用量为熔渣中铜和铁氧化物还原为金属铜和FeO的理论量110~140%;所述含碳的含铁物料为钢铁尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣、焦炭炉尘泥与烟灰。
根据本发明,所述锌冶炼渣是湿法炼锌产生的炉渣、火法炼锌产生的炉渣中的一种或两种;锌冶炼渣为熔融态或热态或冷态,熔融火法炼锌渣由旋涡熔炼炉、鼓风炉、烟化炉、电炉出渣口获得,热态锌冶炼渣由挥发窑出料口、竖罐出渣口获得,或将锌冶炼渣加热至熔融状态;
其中,所述湿法炼锌产生的炉渣是锌浸出渣、挥发窑渣、铜镉渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣中的一种或多种,所述火法炼锌产生的炉渣是竖罐炼锌炉渣、旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣中的一种或多种; 所述湿法炼锌产生的炉渣均需经过烘干、脱水处理;旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣由熔炼炉出渣口获得,挥发窑渣由挥发窑出料口获得,竖罐炼锌炉渣由竖罐出料口获得。
根据本发明,所述含铜物料是铜渣、选铜尾矿、粗铜火法精炼渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾渣、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、镍冶炼渣、锡尾矿中的一种或几种;
所述铜渣是“造锍熔炼”产生的炉渣、“铜鋶吹炼”产生的炉渣、火法贫化炉渣、铜渣浮选尾渣、湿法炼铜渣中的一种或几种;
所述冶金熔剂为含CaO或SiO2的矿物与炉渣,优选为石英砂、含金银石英砂、赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种;
所述含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、镍冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;
所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣中一种或多种;
所述铅冶炼渣为烟化炉炉渣与含铅熔炼渣,其中,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原”工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;
所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热/冷轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;
所述高炉渣、钢渣与铁合金渣为熔融态或冷态,其中,熔融态的高炉渣、钢渣与铁合金渣由出渣口获得,或将冷态的高炉渣、钢渣与铁合金渣加热至熔融状态;
所述钢渣为铁水预脱硫渣、转炉渣、电炉渣、VOD/VAD渣、VD渣、中间包弃渣中的一种或多种;
所述铁合金炉渣为铁合金生产过程中产生的炉渣,包括冶炼碳素锰铁产生的炉渣、冶炼铬铁产生的炉渣、冶炼镍铁产生的炉渣、冶炼钒铁产生的炉渣、冶炼硅铁产生的炉渣、冶炼铌铁产生的炉渣和冶炼钼铁产生的炉渣;
所述含氟物料是萤石、CaF2、含氟高炉渣中的一种或几种;
所述含铜物料、含铁物料和含氟物料均为球团或粉状物料或制粒;其中,粉状物料的粒度≤150μm,粒状物料粒度为5-25mm,粉状物料以喷吹的方式喷入,粒状物料以喷吹或投料的方式加入,载入气体为预热的氩气、氮气、还原性气体、氧化性气体中的一种或多种,预热温度为0-1200℃。
根据本发明,所述碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中一种或几种;所述碱性含铁物料为CaO/SiO2>1碱性烧结矿、钢渣、铁合金渣、碱性铁精矿、碱性预还原球团、碱性金属化球团、碱性高炉渣中的一种或几种;
所述酸性物料为硅石、粉煤灰、煤矸石中的一种或多种;所述酸性含铁物料为CaO/SiO2≤1酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、酸性高炉渣中的一种或几种。
根据本发明,在步骤S2中的分离回收进行如下处理:含有热态或冷态所述富铜 相,送往转炉或吹炼炉炼铜,或缓冷破碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
所述含锌组分、含铅组分、含铋组分与含铟组分挥发,以氧化物形式进入烟尘回收;
含有所述含铁硅酸盐矿物相和/或所述富铁相,采用以下方法A-G中的任一种进行熔渣处理:
方法A:水淬或空冷后,直接用于水泥原料:
方法B:返回到反应混合熔渣中作为热态冶金熔剂:
方法C:用于浇筑微晶玻璃或作为矿渣棉;
方法D:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中,吹入温度为0~1200℃的预热氧化性气体,并保证硅酸盐熔渣温度>1460℃;当熔渣氧化亚铁含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法E:用于生产高附加值的水泥熟料,方法如下:
E-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后高钙赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
E-2、向所述熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1460℃;当氧化亚铁含量<1%,获得氧化后的熔渣;
E-3、对所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣作为高炉炼铁原料或直接还原炼铁原料:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
或,将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入预热温度为0~1200℃的氧化性气体,并保证熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
方法G:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣熔融还原炼铁,包括如下步骤:
G-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足以下条件:反应熔渣的温度为1350~1670℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
G-2、向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时满足以下条件:反应完成后的熔渣的温度为1350~1670℃和反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4;
G-3、采用以下两种方法中的一种进行分离回收:
方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,缓慢冷却至室温,获得缓冷渣;金属 铁沉降到反应装置的底部,形成铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
方法Ⅱ:还原后的混合熔渣,沉降,渣-金分离,获得铁水与还原后的熔渣;还原后的熔渣,按照A~E中的一种或几种,进行熔渣处理;铁水送往转炉或电炉炼钢;
或,含有所述富铁相水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原炼铁的原料;浮选过程中,浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
所述直接还原过程采用转底炉、隧道窑、车底炉、竖炉、回转窑、感应炉中的任一种作为还原设备,利用气基或煤基还原技术,气基为天然气和/或煤气,煤基为无烟煤、烟煤、褐煤、焦煤、焦粉、焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5;还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源;
此外,因赤泥中含有钾、钠,尘泥与钢铁烟灰中含有铅、锌、铋、铟银,所以添加这些原料时,部分铟组分、铋组分、含钾组分、含钠组分挥发,以氧化物形式进入烟尘。
根据本发明,所述的步骤S2中,冷却方式为自然冷却或旋转冷却或离心冷却,沉降方式为自然沉降或旋转沉降或离心沉降;
所述混合均匀为自然混合或搅拌混合,搅拌混合为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌、机械搅拌中的一种或几种。
根据本发明,所述燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,所述喷吹载入气体为预热的氧化性气体、氮气或氩气中的一种或多种,所述预热的温度为0~1200℃;
所述固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm,所述液体燃料与还原剂为重油,所述气体燃料与还原剂为煤气和/或天然气;
所述氧化性气体为预热的空气、氧气、富氧空气、氩气-空气、氩气-氧气、氮气-空气、氮气-氧气中的一种。
与现有技术相比,本发明的特点是:
(1)本发明的由含锌与铁的混合熔渣回收有价组分的方法,既可以处理热态熔渣,充分利用熔融锌冶炼渣与熔融冶金渣(熔融铅冶炼渣、熔融高炉渣、熔融钢渣、熔融铁合金渣中的一种或几种)物理热资源和热态冶金熔剂,又可以处理冷态炉渣,通过熔渣混合或冷态混合,实现了熔渣冶金;并解决目前炉渣大量堆积,环境污染问题,及重金属元素污染问题。
(2)混合熔渣中的熔渣冶金反应,铁氧化物充分释放出来,形成游离态的铁氧化物,实现富铁相的长大与沉降,混合熔渣中的金属铁组分聚集、长大与沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼铁或直接还原或熔融还原炼铁的原料。
(3)混合熔渣中的铜组分、金银组分分别富集于富铜相,富铜相包含铜、白冰铜、冰铜相、含铁成分中的多种,并实现长大与沉降,或部分铜组分进入富铁相。
(4)混合熔渣中的含锌组分、含铅组分、含铋组分与含铟组分分别富集于烟灰,加以回收;部分含钠组分、含钾组分挥发进入烟尘。
(5)混合熔渣中的硅、钙与磷组分迁移、富集于含铁硅酸盐矿物相,上浮。
(6)混合熔渣中自由氧化钙与氧化镁消失,混合熔渣实现调质。
(7)采用人工分拣、磁选、重选或渣-金沉降的方法,分离沉降在底部富铜相、中下部富铁相与中上部的含铁硅酸盐矿物相,实现混合熔渣中铜组分、金银组分、铁组分、磷、钙与硅组分的高效回收,渣含铜<0.1wt%。
(8)可以处理固态含铜、铁物料,包括铜精矿,同时实现熔渣调质处理,达到资源高效综合利用。
(9)熔渣实现调质,中上部尾渣利用限制因素消失,可作为水泥原料或建筑材料或代替碎石作骨料和路材或作为高炉炼铁或直接还原炼铁或熔融还原炼铁的原料或磷肥。
(10)本工艺采用混合熔渣,整个过程无需加热或少量补偿热量;本工艺采用混合熔渣,整个过程无需冶金熔剂或少量补偿冶金熔剂,可以处理冷态物料。
(11)本发明方法可连续或间断的进行,满足工业生产需要。
(三)有益效果
(1)本发明实现有色冶金炉渣与钢铁冶金炉渣中铜、铁、锌、铅、铟、金、银、磷、钙、钠、钾与硅组分有价组分的综合利用,解决目前炉渣大量堆积,环境污染问题。
(2)本发明可以大规模处理铁合金炉渣、钢渣、高炉渣、铅冶炼渣、锌冶炼炉渣与含铜、铁物料,可以解决重金属元素污染问题,实现重金属组分的回收。
(3)本发明可以处理少量冷态含铜、含铁物料。
(4)本发明的原料可以是出渣口中流出的液态熔融锌冶炼炉渣(≥1100℃)和熔融冶金渣(熔融铅冶炼渣、熔融高炉渣、熔融钢渣、熔融铁合金渣中的一种或几种,≥1100℃),具有高温度、高热量的特点,充分利用了熔渣物理热资源;混合熔渣中含有大量的热态冶金熔剂,都是物理化学性质优良的熔渣体系,实现了冶金资源与热资源的高效利用;充分利用了混合熔渣高反应化学活性的特点,实现了熔渣冶金。
(5)本发明通过熔渣混合,控制氧势,使熔渣中铜组、金组分与银组分富集到富铜相,实现聚集、长大与沉降,锌组分、铅组分、铋组分、钠组分、钾组分与铟组分挥发,以氧化物形式进入烟尘加以回收。
(6)本发明方法中,加入冷态物料避免了熔渣温度过高,提高保温装置的寿命;加入冷态物料提高了原料处理量,不仅可以处理液态熔渣,而且可以处理少量冷态物料,原料适应性强;加入冷态物料实现了熔渣冶金反应释放的化学热与熔渣物理热的高效利用。
(7)本发明方法自然沉降过程中,熔渣中铜组分、金银组分分别富集于富铜相,并实现聚集、长大与沉降;熔渣中铁组分富集于富铁相,并实现聚集、长大与沉降;熔渣中磷组分、硅组分与钙组分分别富集于含铁硅酸盐矿物相,并实现上浮;装有熔渣的保温装置置于旋转平台上旋转,加速富铜相、富铁相的聚集、长大与沉降;含氟物料的加入,加速富铜相、富铁相的聚集、长大与沉降。
(8)本发明方法熔渣中磷组分迁移、富集于含铁硅酸盐矿物相,并实现上浮;中上部含铁硅酸盐矿物相中,矿物可磨性增加,熔渣实现调质。
(9)本发明方法采用人工分拣、磁选、重选或渣-金沉降的方法,分别对分布在上部、中部与底部的含铁硅酸盐矿物相、富铁相、富铜相进行分离,实现熔渣中铜组 分、金银、铁组分、铟组分、铋组分、钠组分、钾组分、硅组分、钙组分与磷组分等的高效回收,渣含铜<0.1wt%;
由于富铁相、富铜相沉降在中、下部,因此,需分选炉渣量小,矿物可磨性增加,分离成本低;后续的分离过程采用磁选或重选,分离的介质为水,不会产生环境污染,使得整个熔渣处理工艺具有流程短、操作简单、回收率高,尾矿作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥或作为高炉炼铁或直接还原或熔融还原的原料。
(10)富铁相可以作为高炉炼铁或直接还原或熔融还原的原料,生产金属铁与铁水;低铜富铁相与含铁硅酸盐相作为高炉炼铁或直接还原或熔渣熔融还原的原料,生产金属铁与铁水。
(11)本发明既可以处理热态熔渣,充分利用熔融铜渣与熔融冶金渣物理热资源和热态冶金熔剂,又可以处理冷态炉渣与物料,利用混合熔渣冶金反应,通过熔渣混合或冷态混合后加热,实现了熔渣冶金,熔渣中铜迁移、富集于富铜相,并实现聚集、长大与沉降;铁组分迁移、富集于富铁相,实现聚集、长大与沉降;硅、钙与磷组分迁移、富集于含铁硅酸盐矿物相,实现上浮,采用人工分拣、磁选、重选或渣-金沉降的方法,分离沉降在不同部位的富铜相、富铁相与上部的含铁硅酸盐矿物相,其中,富铜相包含铜、白冰铜、冰铜相、含铁成分中的多种,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,实现混合熔渣中有价组分的高效回收;可以处理固态含锌、铁物料,同时实现熔渣调质处理。
具体实施方式
本发明提出一种由含锌与铁的混合熔渣回收有价组分的方法,其包括以下步骤:
步骤S1,炉渣混合:
将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中,并加入铅冶炼渣(烟化炉炉渣和/或含铅熔炼渣)、高炉渣、钢渣和铁合金渣中的一种或多种形成混合熔渣;
将混合熔渣加热至熔融状态,形成反应熔渣;混合均匀,实时监测反应熔渣,通过调控同时保证如下(a)和(b)两个参数,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
(a)反应熔渣的温度为1100~1450℃;
(b)反应熔渣的碱度CaO/SiO2比值=0.15~1.8;
调控方法为:对应(a):控制反应熔渣的温度在设定温度范围的方法为:
当反应熔渣的温度<设定温度范围下限1100℃时,通过反应装置自身的加热功能,或向熔渣中加入燃料或熔融锌冶炼炉渣(旋涡熔炼渣和/或鼓风炉渣)、熔融铜渣、熔融镍冶炼渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣、熔融铁合金渣的一种或多种,喷入燃料时,同时喷入预热的氧化性气体,使反应熔渣的温度达到设定温度范围内;
当含铜与铁的反应熔渣的温度>设定温度范围上限1450℃时,向含铜与铁的反应熔渣中加入含铜物料、锌冶炼渣、含铅物料、镍冶炼渣、高炉渣、钢渣、铁合金渣、冶金熔剂、含铁物料、含氟物料中的一种或几种,使混合熔渣的温度达到设定温度范围内。
对应(b):当含铜与铁的反应熔渣中碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料和/或碱性含铁物料;
当含铜与铁的反应熔渣中碱度CaO/SiO2比值>1.8时,向反应熔渣中加入酸性物料和/或酸性含铁物料。
步骤S2,分离回收:
保温5~50min,反应完成后的熔渣,沉降,渣-金分离,获得底部熔融态富铜相、中下部熔融态富铁相与中上部的熔融态含铁硅酸盐矿物相,同时生成含锌组分、含铅组分与含铟组分进入烟尘,其中,金、银组分迁移到所述富铜相;采用以下方法中的一种:
方法一:采用熔渣可流出熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行熔渣处理;
(2)熔融态富铜相,送往转炉或吹炼炉炼铜或碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(3)含锌组分、含铅组分、含铟组分、含铋组分、含钠组分、含钾组分挥发,以氧化物进入烟尘回收;
(4)富铁相进行水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原炼铁的原料;浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5。
其中,步骤(1)中的含铁硅酸盐矿物相,进行熔渣处理,采用方法A~G中的一种:
方法A:含铁硅酸盐矿物相作为水泥原料:
含铁硅酸盐矿物相水淬或空冷直接作为水泥原料或进一步处理成高附加值的水泥原料;
方法B:部分或全部含铁硅酸盐矿物相返回到含铜反应熔渣:
部分或全部含铁硅酸盐矿物相返回到含铜反应熔渣,作为热态冶金熔剂,调整含铜反应熔渣成分,控制含铜反应熔渣温度;
方法C:含铁硅酸盐矿物相浇筑微晶玻璃或作为矿渣棉;
方法D:含铁硅酸盐熔渣氧化后空冷或水淬:
(1)含铁硅酸盐熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向熔渣中,吹入预热的氧化性气体,当熔渣氧化亚铁含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(c)硅酸盐熔渣温度>1460℃;
对应(c)采用的控制方法:当含铁硅酸盐熔渣温度<1460℃,喷入预热燃料与预热的氧化性气体,燃烧放热、补充热量,或装置自身加热,使硅酸盐熔渣温度>1460℃;
(2)氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法E:含铁硅酸盐熔渣处理生产高附加值的水泥熟料:
(1)含铁硅酸盐熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向熔渣中,加 入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后高钙赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
(2)向熔渣混合物料中吹入预热的氧化性气体,当氧化亚铁含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(d)熔渣混合物料温度>1460℃;温度控制方法同方法D步骤(1)中的硅酸盐熔渣温度控制方法;
(3)氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:含铁硅酸盐矿物相的熔渣作为高炉炼铁原料或直接还原炼铁原料:将含铁硅酸盐矿物相的熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
或,将含铁硅酸盐矿物相的熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入0~1200℃的预热的氧化性气体,并保证其熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将上述氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料。
方法G:含铁硅酸盐熔渣熔融还原炼铁:
G-1、将含铁硅酸盐矿物相的熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,或加入含铁物料,熔渣中加入还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时保证如下(a1)和(b1)两个参数,获得反应完成后的熔渣;
(a1)反应熔渣的温度为1350~1670℃;
(b1)反应熔渣的碱度CaO/SiO2比值=0.6~2.4。
调控方法为:对应(a1):控制反应熔渣的温度在设定温度范围的方法为:
当反应熔渣的温度<设定温度范围下限时,通过反应装置自身的加热功能,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到设定温度范围内;
当反应熔渣的温度>设定温度范围上限时,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到设定温度范围内。
对应(b1):当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含铁物料;
当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料。
G-2、向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时保证(a2)和(b2)两个参数:(a2)反应完成后的熔渣的温度为1350~1670℃;(b2)反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4。
其中,设定温度范围和碱度调控方法同方法G-1步骤;
G-3、分离回收:采用以下方法中的一种:
方法Ⅰ:进行如下步骤:
(a)冷却:将还原后的混合熔渣倒入保温渣罐,缓慢冷却至室温,获得缓冷渣;
(b)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
(c)尾矿的回收利用,作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥使用;
方法Ⅱ:进行如下步骤:
(a)还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;
(b)还原后的熔渣,进行炉外熔渣处理,具体方式为:采用步骤S2的分离回收方法一中的方法A~E中的一种或几种,进行炉外熔渣处理;
(c)铁水,送往转炉或电炉炼钢;
(d)部分含锌组分、含铅组分与含铟组分挥发,以氧化物形式进入烟尘回收。
(e)部分铟组分、铋组分、钠组分、钾组分挥发进入烟尘加以回收;
(f)还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源。
方法二:采用熔渣可流出的熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)获得的熔融态富铁相与含铁硅酸盐矿物相,采用方法一中所述方法A~G中的一种或几种进行熔渣处理;
(2)熔融态富铜相,送往转炉炼铜或吹炼炉炼铜原料,或碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(3)部分含锌组分、含铅组分、含铟组分与含铋组分挥发,以氧化物进入烟尘回收;
(4)部分钠组分、钾组分挥发进入烟尘。
方法三:采用熔渣可转动的转炉与反应渣罐时,反应完成后的熔渣进行如下步骤:
(1)获得的熔融态含铁硅酸盐矿物相,采用方法一中所述方法A~G中的一种或几种进行熔渣处理;
(2)富铁相进行水淬或空冷或倒入保温装置缓冷后,作为高炉炼铁原料或直接还原炼铁,与方法一步骤(4)相同;
(3)熔融态富铜相或倒入保温装置缓冷后,送往转炉或吹炼炉炼铜,或碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(4)部分含锌组分、含铅组分、含铟组分与含铋组分挥发,以氧化物进入烟尘回收;
(5)部分钠组分、钾组分挥发进入烟尘。
方法四:采用熔渣可转动的转炉与反应渣罐时,反应完成后的熔渣进行如下步骤:
(1)获得的熔融态含铁硅酸盐矿物相与富铁相,采用方法一中所述方法A~G中的一种或几种进行熔渣处理;
(2)熔融态富铜相,送往转炉或吹炼炉炼铜,或缓冷后碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(3)部分含锌组分、含铅组分、含铟组分与含铋组分挥发,以氧化物进入烟尘回收;
(4)部分钠组分、钾组分挥发进入烟尘。
方法五:采用保温装置或采用熔渣可流出的熔炼反应装置,将熔渣倒入保温装置时,反应完成后的熔渣进行如下步骤:
(1)沉降冷却:反应完成后的熔渣缓慢冷却至室温,获得缓冷渣;富铜相沉降到 反应装置的底部,形成富铜坨;含铁硅酸盐矿物相上浮;富铜相金属坨和含铁硅酸盐矿物中间的缓冷渣为富铁相,同时生成含锌组分与含铅组分;金银组分迁移到富铜相;
(2)分离:人工或重选分离取出沉降在底部的富铜坨;
磁选分离金属铁后再送往转炉或吹炼炉炼铜,或碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;中部的富铁相层作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原的原料;在浮选过程中,浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5;
(3)人工取出上部的含铁硅酸盐矿物相,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料:作为水泥原料、建筑材料、代替碎石作骨料、路材使用;
(4)部分含锌组分、含铅组分、含铟组分与含铋挥发,以氧化物进入烟尘回收;
(5)部分钠组分、钾组分挥发进入烟尘。
所述步骤S1与S2中,锌冶炼炉渣是湿法炼锌产生的炉渣与火法炼锌产生的炉渣中的一种或两种,其中湿法炼锌产生的炉渣是锌浸出渣、挥发窑渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣中的一种或多种,火法炼锌产生的炉渣是竖罐炼锌炉渣、旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉炉渣中的一种或多种。
锌冶炼炉渣为熔融态、热态或冷态,其中:湿法炼锌渣需经烘干、脱水处理,旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣由熔炼炉出渣口获得,挥发窑渣由挥发窑出料口获得,竖罐炼锌炉渣由竖罐出渣口获得,或将锌冶炼渣加热至熔融状态。
所述步骤S1与S2中,熔融锌冶炼渣的温度(旋涡熔炼渣和/或鼓风炉渣)≥1100℃,熔融钢渣的温度≥1500℃,熔融高炉渣≥1300℃,熔融铁合金炉渣≥1500℃,熔融铅冶炼渣≥1000℃。
所述步骤S1与S2中,熔渣可流出的熔炼反应装置为可转动的熔炼反应装置或带有渣口或铁口的熔炼反应装置。
其中:所述的保温装置为可倾倒的熔炼反应渣灌、保温地坑。所述的可转动的熔炼反应装置为转炉、熔炼反应渣罐。所述的带有渣口或铁口熔渣可流出的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉中的一种或多种。
所述步骤S1中,通过调控保证上述(a)和(b)两个参数的情况下,同时通过保证熔渣中铜和铁氧化物还原为金属铜和FeO,熔渣中金属铁含量<3%。通过加入还原剂、含固体碳的含铁物料中的一种或两种,熔渣中还原剂和/或含固体碳的含铁物料用量为熔渣中铜和铁氧化物还原为金属铜和FeO的理论量110~140%;所述含碳的含铁物料为钢铁 尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣、焦炭炉尘泥与烟灰。
所述步骤S1与S2中,所述的燃料与还原剂为固体、液体或气体中的一种或多种,以喷吹的方式喷入,为预热的氧化性气体、氮气、氩气中的一种或几种,预热温度为0~1200℃。固体燃料与还原剂为煤粉、粉煤灰、焦粉、焦炭、烟煤或无烟煤中的一种或多种,形状为粒状或粉状或块状,粒状物料的粒度为5~25μm,粉状物料的粒度为≤150μm,液体燃料与还原剂为重油,气体燃料与还原剂为煤气和/或天然气中的一种或两种。
所述步骤S1与S2中,含铜物料是铜渣、选铜尾矿、粗铜火法精炼渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾渣、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、镍冶炼渣、锡尾矿中的一种或几种。
其中,铜渣是“造锍熔炼”产生的炉渣、“铜鋶吹炼”产生的炉渣、火法贫化炉渣、铜渣浮选尾渣、湿法炼铜渣中的一种或几种。
锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、电炉炼锌渣。
铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣。
镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣中一种或多种。
冶金熔剂为含CaO或SiO2的矿物与炉渣,具体为石英砂、含金银石英砂、赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种。
高炉渣、钢渣与铁合金渣为熔融态,或冷态,其中:熔融态炉渣(铅冶炼渣、高炉渣、钢渣与铁合金渣)由出渣口获得,或将冷态炉渣(铅冶炼渣、高炉渣、钢渣与铁合金渣)加热至熔融状态。钢渣为铁水预脱硫渣(脱硫渣、脱硅渣、脱磷渣)、转炉渣、电炉渣、VOD/VAD渣、VD渣、中间包弃渣。铁合金炉渣为铁合金生产过程中产生的炉渣,包括冶炼碳素锰铁产生的炉渣、冶炼铬铁产生的炉渣、冶炼镍铁产生的炉渣、冶炼钒铁产生的炉渣、冶炼硅铁产生的炉渣、冶炼铌铁产生的炉渣、冶炼钼铁产生的炉渣。
含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、镍冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种。
含铜物料与含铁物料为热态或冷态,其中热态物料由冶金炉出料口或出渣口直接获得。湿法炼锌渣与尘泥需经脱水、干燥。
钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热/冷轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮。
在上述的原料中,锌冶炼渣与烟灰、铅冶炼渣与烟灰含有铟、铋、铅、银与锌;赤泥中含有钠与钾,钢铁烟尘与尘泥含有铟、铋、银、钠与钾,以上物料都有铁;铅冶炼渣与锌冶炼渣都含有铜,铜烟灰与尘泥含有铟与铋,在发明的方法中,铟、铋、钠、钾、锌、铅会以氧化物的形式进入烟尘,从而进行回收。含氟物料是萤石、CaF2或含氟高炉渣中的一种或几种。
所述步骤S1与S2中,含铜物料、含铁物料和含氟物料均为球团或粉状物料或制粒;其中,粒状物料的粒度为5~25μm,粉状物料的粒度为≤150μm,粉状物料以喷吹的方式喷入,载入气体为预热的氩气、氮气、还原性气体(煤气和/或天然气)、氧化性气体中的一种或多种,预热温度为0~1200℃,所述的喷吹方式为采用耐火喷枪插入熔渣或置于反应熔渣上部或侧面或底部吹入中的一种或几种。
含铜物料与含铁物料为热态或冷态,所述的热态物料是从冶金炉中直接产出的热态物料,热态物料温度为200~1750℃。
所述步骤S1与S2中,熔渣反应过程中,熔渣中铜组分、金银组分富集于富铜相,并实现聚集、长大与沉降,富铜相包含铜、白冰铜、冰铜相、含铁成分中的多种,并实现长大与沉降,或部分进入富铁相。铁组分富集于富铁相,实现聚集、长大与沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼铁或直接还原或熔融还原炼铁的原料;硅、钙与磷组分迁移、富集于含铁硅酸盐矿物相;熔渣中锌组分、铅组分、铟组分、铋组分分别进入烟尘,以氧化物的形式回收。
所述步骤S1中,控制混合熔渣的温度在设定温度范围的方法中:
当混合熔渣的温度>设定温度上限时,加入锌冶炼渣、含铜物料、含铁物料、高炉渣、钢渣、铁合金渣、冶金熔剂或含氟物料中的一种或几种,目的是避免温度过高,保护耐火材料;加入含氟物料的另一个作用是降低粘度,加速熔渣中富铜相、富铁相聚集、长大与沉降,有利于硅酸盐上浮。
所述步骤S1与S2中,调整碱度时,所述的碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中一种或几种;所述的碱性含铁物料为CaO/SiO2>1含铁物料;所述碱性含铁物料为碱性烧结矿、钢渣、铁合金渣、碱性铁精矿、碱性预还原球团或碱性金属化球团、碱性高炉渣中一种或几种。
所述步骤S1与S2中,调整碱度时,所述的酸性物料为硅石、粉煤灰、煤矸石中的一种或多种;所述的酸性含铁物料为CaO/SiO2≤1的含铁物料;所述的酸性含铁物料为酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、酸性高炉渣的一种或几种。
所述步骤S1与S2中,熔渣中富铜相、富铁相聚集、长大与沉降,有利于硅酸盐上浮,富铜相包含铜、白冰铜、冰铜相、铁成分中的多种或部分富集于富铁相。
所述步骤S1中,保证(a)和(b)两个参数的同时,使混合熔渣充分混合,混合方式为自然混合或搅拌混合,搅拌混合为以下方式中的一种:氩气搅拌、氮气搅拌、氩气-氮气混合气、还原性气体(煤气和/或天然气)、氧化性气体、电磁搅拌、机械搅拌中的一种或多种。
所述步骤S2中,直接还原过程采用转底炉、隧道窑、车底炉、竖炉、回转窑、感应炉作为还原设备,利用气基或煤基还原技术,气基为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉、焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.7~1.9。
所述步骤S1与S2中,氧化性气体为预热的空气、氧气、富氧空气、氮气-氧气、氮气-空气、氩气-空气、氩气-氧气中的一种,预热温度为0-1200℃,所述的喷吹方式为采用耐火喷枪插入熔渣或置于含铜与铁的反应熔渣上部或侧面吹入。
所述步骤S2中,冷却方式为自然冷却或旋转冷却或离心冷却,沉降方式为自然沉降或旋转沉降或离心沉降。
所述步骤S2中,旋转与离心冷却的具体操作为:装有反应完成后的熔渣的装置置于旋转平台上,按照一定速度进行旋转,旋转速度依熔渣质量与保温装置高度或 深度而定,旋转时间依熔渣质量与熔渣凝固情况而定;将装有反应完成后的熔渣的装置置于旋转平台上旋转,目的是加速富铜相、富铁相聚集、长大与沉降,有利于硅酸盐(富磷相)上浮,缩短沉降时间。
所述步骤S2中,反应完成后的熔渣冷却过程中,由于密度不同与矿物大小不同,大部分富铜相沉降于中下部,富铁相沉降于中上部。
所述步骤S2中,反应完成后的熔渣中铜组分、金银组分继续迁移、富集于富铜相,并实现长大与沉降,或部分铜组分富集于富铁相;混合熔渣中铁组分分别继续迁移、富集于富铁相,并实现长大与沉降。
所述步骤S2中,重力分选法是摇床分选、溜槽分选或二者相结合。
采用本发明的方法,最后获得的富铁相及含铁硅酸盐矿物相的渣中,渣含铜≤0.1%,铁的回收率为≥96%,锌的回收率为≥95%,铅的回收率为≥95%,铟的回收率为≥91%,金的富集率为≥91%,银的富集率为≥91%,镍的富集率为≥92%,钴的富集率为≥94%,铋的回收率为≥91%,钠的回收率为≥92%,钾的回收率为≥93%。
其中,渣含铜是指富铜相分离后的渣相,具体为富铁相与含铁硅酸盐矿物相中的含铜量,镍、钴的富集率是指在富铜相中镍、钴的含量占原料中对应镍、钴总量的百分比,金、银的富集率是指富铜相中金、银的含量占原料中金、银总量的百分比。
为了更好的解释本发明,以便于理解,通过以下实施例,对本发明作详细描述。其中,以下实施例中所用处理方法与原料未明确指出的,均可采用本领域常规技术,除非另有说明,本发明中所用的百分数均为重量百分数。
实施例1
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(冷态锌浸出渣)加入直流电弧炉,同时加入冷态高炉渣、VOD/VAD渣和冶炼碳素锰铁产生的铁合金炉渣,液态高铅渣还原炉的冷态含铅熔炼渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣电磁搅拌,实现自然混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1660℃,采用耐火喷枪插入反应熔渣中,以氮气为载入气,喷入常温粉状粒度≤150μm的铜渣、含铜烟灰、杂铜和含铜垃圾和含铜电路板,同时加入高炉瓦斯泥、电炉尘泥、转炉尘泥、普通铁精矿、普通铁精矿直接还原铁和高炉瓦斯灰,使温度降至1380℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值=1.8,向反应熔渣中加入硅石、粉煤灰和煤矸石混合物,使含铜与铁的反应熔渣碱度比值降至1.4;熔渣中金属铁含量为0.5%。
步骤2,分离回收采用方法一:保温48min,熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行炉外熔渣处理,采用方法F,含铁硅酸盐熔渣空冷后,用作直接还原炼铁原料,采用回转窑进行直接还原,利用气基还原技术,气基还原剂为天然气和煤气,还原温度为900℃,碱度CaO/SiO2比值为0.8,还原后采用磁电炉熔分获得金属铁与熔渣,熔分温度为1550℃;
(2)熔融态富铜相,送往转炉炼铜;
(3)熔融态富铁相倒入保温装置,空冷后作为高炉炼铁原料;
(4)含锌组分、含铅组分、含铋组分、含铟组分、含钠组分与含钾组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,锌回收率为97%,铅回收率为96%,铁回收率为98%,铟的回收率为92%,铋的回收率为91%,金的富集率为92%,银的富集率为91%,钠的回收率为93%,钾的回收率为94%。
实施例2
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(由挥发窑出料口获得的挥发窑渣)加入可倾倒的熔炼反应渣灌,同时加入由出渣口获得的熔融态冶炼铬铁产生的铁合金炉渣,形成混合熔渣;用预热温度为1000℃的富氧空气喷吹粒度为20mm无烟煤与焦粒,并喷吹天然气,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣电磁搅拌,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后熔渣;对应(a)含铜与铁反应熔渣温度1660℃,采用耐火喷枪插入反应熔渣中,以氩气为载气,喷入常温粉状粒度≤150μm铜渣、含铜烟灰、杂铜和含铜垃圾、含铜电路板、普通铁精矿、普通铁精矿直接还原铁和普通铁精矿烧结矿,使温度降至1400℃;(b)含铜与铁反应熔渣碱度CaO/SiO2比值为2.7,向反应熔渣中加入酸性烧结矿、酸性铁精矿和酸性预还原球团,使含铜与铁反应熔渣碱度比值降至1.6;熔渣中金属铁含量为2.9%。
步骤2,分离回收采用方法二:保温50min,反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘回收,进行如下步骤:
(1)含铁硅酸盐矿物相与富铁相,采用方法G进行炉外熔渣处理,熔渣熔融还原炼铁,具体步骤如下:
(1-1)上述含铁熔渣倒入可倾倒的转炉中,向熔渣中加入粒度为20mm无烟煤与烟煤,进行熔融还原,实时监测反应熔渣,通过调控同时保证如下(a)反应熔渣的温度为1350~1670℃,和(b)反应熔渣碱度CaO/SiO2比值=0.6~2.4两个参数,获得反应完成后的熔渣;对应(a):反应熔渣的温度为1400℃,在温度范围内;对应(b):反应熔渣中碱度CaO/SiO2比值为0.8时,在碱度范围内。
(1-2)向反应完成后熔渣中喷吹预热200℃富氧空气进行熔融还原,形成还原后混合熔渣,并在喷吹过程中,通过调控同时保证(a)反应熔渣温度为1350~1670℃,和(b)反应熔渣碱度CaO/SiO2比值=0.6~2.4两个参数;
(1-3)分离回收:
(a)还原后混合熔渣,沉降渣-金分离,获得铁水与还原后熔渣;
(b)还原后熔渣,采用步骤S2方法一中法A处理做成高附加值水泥原料;
(c)铁水送往转炉或电炉炼钢;
(d)含铋组分、含钠组分以及含钾组分进入烟尘回收;
(2)熔融态富铜相送往转炉炼铜;
(3)含锌组分、含铅组分、含铋组分、含铟组分、含钠组分与含钾组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,锌回收率为96%,铅回收率为97%,铁回收率为96%,铟的回收率为92%,铋的回收率为92%,金的富集率为93%,银的富集率为93%,钠的回收率为94%,钾的回收率为93%。
实施例3
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(冷态挥发窑渣)加入直流电弧炉,同时加入由转炉炼钢出渣口获得的钢渣,形成混合熔渣;用预热温度为400℃的氧气,喷吹粒度为20mm无烟煤、焦粒与煤粉,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使熔渣实现混合;实时监测熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1685℃,向反应熔渣中加入酸性金属化球团、铜冶炼渣和含铜吹炼渣,同时加入含铜烟灰、铅冶炼渣、普通铁精矿球团矿、轧钢氧化铁磷和普通铁精矿含碳预还原球团,使温度降至1420℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值=2.4,向反应熔渣中加入酸性金属化球团、含铜熔炼渣和含铜吹炼渣的混合物,使含铜与铁的反应熔渣的碱度比值降至1.6;熔渣中金属铁含量为2.1%。
步骤2,分离回收采用方法二:保温40min,熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘加以回收,进行如下步骤:
(1)熔融态富铜相,送往转炉炼铜;
(2)熔融态富铁相与含铁硅酸盐矿物相作为直接还原炼铁原料,还原过程中,部分锌组分、铅组分、铟组分与铋组分挥发进入烟尘;直接还原过程中,采用转底炉,还原温度为1200℃,碱度CaO/SiO2比值=1.0,还原剂为粒度为≤150μm的无烟煤与粉煤;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为98%,锌的回收率为97%,铅的回收率为96%,铟的回收率为94%,铋的回收率为93%,金的富集率为91%,银的富集率为92%。
实施例4
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将冷态锌冶炼渣(铁矾渣)加入等离子炉,同时加入由出渣口获得的转炉钢渣、电炉钢渣与冶炼镍铁获得的铁合金炉渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁反应熔渣,并使反应熔渣喷吹预热温度为400℃的氩气,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a)含铜与铁的熔渣的温度为1670℃,向反应熔渣中加入赤泥、硫酸烧渣、萤石、铅冰铜、含铅烟灰、含锌烟灰、砷冰铜和湿法炼锌渣,使温度降至1450℃;(b)含铜与铁应熔渣碱度CaO/SiO2比值为2.9,向反应熔渣中加入含铜吹炼渣,使含铜与铁反应熔渣碱度比值降至1.7;喷吹天然气,并用预热温度为900℃的空气喷吹粒度为20mm的焦粒,熔渣中金属铁含量为1.8%。
步骤2,分离回收采用方法二:保温32min,熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘,以氧化物形式加以回收,进行如下步骤:
(1)熔融态富铜相,送往转炉炼铜;
(2)熔融态富铁相与含铁硅酸盐矿物相步骤S2分离回收方法一中方法F,氧化改性磁选分离:①将熔渣倒入保温渣罐,向熔渣中喷入预热温度为900℃的富氧空气,实现磁铁矿的转化;②缓冷至室温,磁选分离,获得铁精矿与尾矿;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为96%,锌的回收率为96%,铅的回收率为95%,铟的回收率为92%,铋的回收率为92%,金的富集率为93%,银的富集率 为92%。
实施例5
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(热态竖罐炼锌炉渣、出渣口获得的熔融旋涡熔炼炉渣、熔融鼓风炉炉渣与电炉渣)加入保温渣罐,同时加入由出渣口获得的转炉熔融钢渣,形成混合熔渣;用预热温度为800℃的空气,喷吹粒度为20mm烟煤与煤粉,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣温度为1410℃;(b):含铜与铁反应熔渣碱度CaO/SiO2比值为1.5,均在要求范围内;熔渣中金属铁含量为2.2%。
步骤2,分离回收采用方法五:将反应完成后的熔渣倒入保温渣罐中,保温28min,进行熔渣处理,进行如下步骤:
(1)沉降冷却:反应完成后的熔渣旋转冷却至室温,获得缓冷渣;富铜-白冰铜相沉降到反应装置的底部,形成富铜坨;含铁硅酸盐矿物相上浮;富铜坨和硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌组分、含铟组分、含铋组分及含铅组分;
(2)分离:人工取出沉降在底部的金属铜坨;中部的富铁相层磁选分离金属铁后,直接送往转炉炼铜;
(3)人工取出上部的硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;
(4)含锌组分、含铟组分、含铋组分及含铅组分挥发,进入烟尘回收。
最后获得的渣含铜<0.15%,铁的回收率为98%,锌的回收率为97%,铅的回收率为96%,铟的回收率为93%,铋的回收率为92%,金的富集率为96%,银的富集率为93%。
实施例6
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将冷态锌冶炼渣(酸洗后铁矾渣、针铁矿渣、赤铁矿渣)加入交流电弧炉,同时加入冷态冶炼钒铁产生的铁合金炉渣和冶炼硅铁产生的铁合金炉渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁反应熔渣,喷吹预热温度为600℃的氩气-氮气混合气,混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两参数,获得反应完成后熔渣;对应(a):含铜与铁反应熔渣温度为1040℃,向反应熔渣中加入预热温度为800℃的富氧空气与重油,加入熔融含铜吹炼渣,使温度升至1330℃;(b):含铜与铁反应熔渣碱度CaO/SiO2比值为0.1,向反应熔渣中加入碱性铁精矿、转炉污泥、碱性预还原球团、脱钠后高钙赤泥,使含铜与铁反应熔渣碱度比值升至0.4;熔渣中金属铁含量为1.2%。
步骤2,分离回收采用方法一:保温38min,熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相和含铁硅酸盐矿物相,同时生成含锌组分、含铟组分、含铋组分及含铅组分挥发进入烟尘加以回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相采用步骤S2分离回收方法一法A,水淬直接作水泥原料;
(2)熔融态富铜相,送往转炉炼铜;
(3)富铁相倒入保温装置冷却后直接还原炼铁;
(4)含锌组分、含铟组分、含铋组分、含铅组分、含钠组分与含钾组分挥发,进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为97%,锌的回收率为96%,铅的回收率 为96%,铟的回收率为93%,铋的回收率为94%,金的富集率为93%,银的富集率为92%,钠的回收率为93%,钾的回收率为95%。
实施例7
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(冷态竖罐炼锌炉渣)加入矿热炉,同时加入出渣口获得的冶炼铌铁产生的炉渣和冶炼钼铁产生的炉渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣喷吹预热温度为1100℃的氮气,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1320℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值为0.8,均在要求范围内;采用200℃的空气喷入粒度≤150μm煤粉,并喷入天然气,熔渣中金属铁含量为1.5%。
步骤2,分离回收采用方法四:保温32min,熔渣自然沉降,渣-金分离得熔融态富铜相、富铁相、含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘加以回收,进行如下步骤:
(1)熔融态富铜相,送转炉炼铜;
(2)熔融态富铁相与含铁硅酸盐矿物具体采用步骤S2的分离回收方法一中的方法F,水淬后,作为直接还原炼铁的原料;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为96%,锌的回收率为97%,铅的回收率为97%,铟的回收率为94%,铋的回收率为95%,金的富集率为93%,银的富集率为91%。
实施例8
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(由出渣口获得的熔融旋涡熔炼炉渣)加入鼓风炉,同时加入由出渣口获得的高炉渣与电炉钢渣,形成混合熔渣;用预热温度为600℃的空气,喷吹粒度为20mm烟煤与煤粉,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1330℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值为1.0,均在要求范围内;熔渣中金属铁含量为2.6%。
步骤2,分离回收采用方法三:保温19min,熔渣自然沉降,渣-金分离,获得富铜相与中上部含铁硅酸盐矿物相和富铁相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘加以回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相渣,倒入熔炼装置,进行炉外熔渣处理,具体采用步骤S2的分离回收方法一中的方法B,将中上部的熔渣全部返回到含铜反应熔渣,作为热态冶金熔剂,调整含铜反应熔渣成分,控制含铜反应熔渣温度;
(2)熔融态富铜相,送往转炉或吹炼炉炼铜;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收;
(4)富铁相进行水淬或空冷或倒入保温装置缓冷后,作为高炉炼铁原料或直接还原炼铁。
最后获得的渣含铜<0.1%,铁的回收率为97%,锌的回收率为95%,铅的回收率为96%,铟的回收率为93%,铋的回收率为92%,金的富集率为91%,银的富集率为92%。
实施例9
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将将锌冶炼渣(由出渣口获得的熔融鼓风炉炉渣)加入侧吹回转炉,同时加入由出渣口获得的熔融态高炉渣和VD渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁的熔渣,喷吹预热温度为800℃的氩气,使熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的熔渣温度为1340℃;(b):含铜与铁的熔渣碱度CaO/SiO2比值为1.2,均符合要求;用预热温度为900℃的空气喷吹粒度为20mm的焦粒,熔渣中金属铁含量为2.7%。
步骤2,分离回收采用方法二:保温30min,熔渣自然沉降,渣-金分离,获得下部的熔融态富铜相、中上部的富铁相和含铁硅酸盐矿物相的含铁熔渣,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘回收,进行如下步骤:
(1)中上部的含铁熔渣倒入熔炼装置,采用步骤S2分离回收方法一中法C,中上部熔渣浇筑微晶玻璃;
(2)下部熔融态富铜相,送往转炉炼铜;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为98%,锌的回收率为96%,铅的回收率为97%,铟的回收率为94%,铋的回收率为93%,金的富集率为90%,银的富集率为92%。
实施例10
一种由含锌与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:锌冶炼渣(由出渣口获得的熔融电炉渣)加入保温地坑,同时加入由出渣口获得的熔融钢渣与熔融含铜熔炼渣,形成混合熔渣;用预热温度为200℃的富氧空气,喷吹粒度≤150μm烟煤,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜反应熔渣的温度为1430℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为1.5,均在要求范围内;熔渣中金属铁含量为1.9%。
步骤2,分离回收采用方法五:将反应完成后的熔渣进行如下步骤:
(1)沉降冷却:保温48min,反应完成后的熔渣冷却至室温,获得缓冷渣;富铜相沉降到反应装置的底部,形成富铜坨;含铁硅酸盐矿物相上浮;富铜相金属坨和硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌组分与含铅组分;
(2)分离:人工取出沉降在底部的富富铜坨;中部的富铁相磁选分离金属铁后,送往转炉炼铜;
(3)人工取出上部的含铁硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;
(4)含锌组分、含铅组分、含铋组分与含铟组分进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为97%,锌的回收率为97%,铅的回收率为96%,铟的回收率为94%,铋的回收率为91%,金的富集率为93%,银的富集率为92%。

Claims (10)

  1. 一种由含锌与铁的混合熔渣回收有价组分的方法,其特征在于,包括以下步骤:
    S1、炉渣混合:将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中,并加入铅冶炼渣、高炉渣、钢渣和铁合金渣中的一种或多种,搅拌混合,形成混合熔渣;
    将混合熔渣加热至熔融状态,形成反应熔渣,混合均匀,实时监测反应熔渣,通过调控使反应熔渣同时满足a和b两个条件,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
    其中,a:调控反应熔渣的温度为1100~1450℃;
    b:调控反应熔渣的碱度CaO/SiO2比值=0.15~1.8;
    S2、分离回收:步骤S1得到的熔渣,保温5~50min,沉降分离,获得中上部含铁硅酸盐矿物相、底部富铜相、中下部富铁相,同时生成含锌组分、含铅组分、含铟组分与含铋组分的烟尘,金银组分迁移、富集进入富铜相;对各相进行回收处理。
  2. 根据权利要求1所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:在步骤S1中,条件a的调控方法为:
    当反应熔渣的温度<1100℃时,通过反应装置自身的加热功能,或向熔渣中加入燃料或熔融锌冶炼炉渣、熔融铜渣、熔融镍冶炼渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣、熔融铁合金渣的一种或多种,喷入燃料时,同时喷入预热的氧化性气体,使反应熔渣的温度达到1100~1450℃范围内;
    当反应熔渣的温度>1450℃时,向反应熔渣中加入含铜物料、锌冶炼渣、含铅物料、镍冶炼渣、高炉渣、钢渣、铁合金渣、冶金熔剂、含铁物料、含氟物料中的一种或几种,使混合熔渣的温度达到1100~1450℃范围内;
    在步骤S1中,条件b的调控方法为:
    当反应熔渣的碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料和/或碱性含铁物料;
    当反应熔渣的碱度CaO/SiO2比值>1.8时,向反应熔渣中加入酸性物料和/或酸性含铁物料。
  3. 根据权利要求1所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:所述保温装置为可倾倒的熔炼反应渣灌或保温地坑;
    所述熔渣可流出的熔炼反应装置为可转动的熔炼反应装置或带有渣口或铁口的熔炼反应装置;其中,所述可转动的熔炼反应装置为转炉、熔炼反应渣罐;所述带有渣口或铁口熔渣可流出的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉中的一种或多种。
  4. 根据权利要求1所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:在所述步骤S1中,满足所述条件a和b的同时,应同时满足所述熔渣中铜和铁氧化物还原为金属铜和FeO,熔渣中金属铁含量<3%。
  5. 根据权利要求1所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:所述锌冶炼渣是湿法炼锌产生的炉渣、火法炼锌产生的炉渣中的一种或两种;锌冶炼渣为熔融态或热态或冷态,熔融火法炼锌渣由旋涡熔炼炉、鼓风炉、烟化炉、电炉出渣口获得,热态锌冶炼渣由挥发窑出料口、竖罐出渣口获得,或将锌 冶炼渣加热至熔融状态;
    其中,所述湿法炼锌产生的炉渣是锌浸出渣、挥发窑渣、铜镉渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣中的一种或多种,所述火法炼锌产生的炉渣是竖罐炼锌炉渣、旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣中的一种或多种;所述湿法炼锌产生的炉渣均需经过烘干、脱水处理;旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣由熔炼炉出渣口获得,挥发窑渣由挥发窑出料口获得,竖罐炼锌炉渣由竖罐出料口获得。
  6. 根据权利要求2所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:所述含铜物料是铜渣、选铜尾矿、粗铜火法精炼渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾渣、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、镍冶炼渣、锡尾矿中的一种或几种;
    所述铜渣是“造锍熔炼”产生的炉渣、“铜鋶吹炼”产生的炉渣、火法贫化炉渣、铜渣浮选尾渣、湿法炼铜渣中的一种或几种;
    所述冶金熔剂为含CaO或SiO2的矿物与炉渣,优选为石英砂、含金银石英砂、赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种;
    所述含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、镍冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;
    所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣中一种或多种;
    所述铅冶炼渣为烟化炉炉渣与含铅熔炼渣,其中,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原”工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;
    所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热/冷轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;
    所述高炉渣、钢渣与铁合金渣为熔融态或冷态,其中,熔融态的高炉渣、钢渣与铁合金渣由出渣口获得,或将冷态的高炉渣、钢渣与铁合金渣加热至熔融状态;所述钢渣为铁水预脱硫渣、转炉渣、电炉渣、VOD/VAD渣、VD渣、中间包弃渣中的一种或多种;所述铁合金炉渣为铁合金生产过程中产生的炉渣,包括冶炼碳素锰铁产生的炉渣、冶炼铬铁产生的炉渣、冶炼镍铁产生的炉渣、冶炼钒铁产生的炉渣、冶炼硅铁产生的炉渣、冶炼铌铁产生的炉渣和冶炼钼铁产生的炉渣;
    所述含氟物料是萤石、CaF2、含氟高炉渣中的一种或几种;
    所述含铜物料、含铁物料和含氟物料均为球团或粉状物料或制粒;其中,粉状物料的粒度≤150μm,粒状物料粒度为5-25mm,粉状物料以喷吹的方式喷入,粒状物料以喷吹或投料的方式加入,载入气体为预热的氩气、氮气、还原性气体、氧化性气体中的一种或多种,预热温度为0-1200℃。
  7. 根据权利要求2所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:所述碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中一种或几种;所述碱性含铁物料为CaO/SiO2>1的碱性烧结矿、钢渣、铁合金渣、碱性铁精矿、碱性预还原球团、碱性金属化球团、碱性高炉渣中的一种或几种;
    所述酸性物料为硅石、粉煤灰、煤矸石中的一种或多种;所述酸性含铁物料为CaO/SiO2≤1的酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、酸性高炉渣中的一种或几种。
  8. 根据权利要求1-7任一所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:在步骤S2中的分离回收进行如下处理:
    含有热态或冷态所述富铜相,送往转炉或吹炼炉炼铜,或缓冷破碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
    所述含锌组分、含铅组分、含铋组分与含铟组分挥发,以氧化物形式进入烟尘回收;
    含有所述含铁硅酸盐矿物相和/或所述富铁相,采用以下方法A-G中的任一种进行熔渣处理:
    方法A:水淬或空冷后,直接用于水泥原料:
    方法B:返回到反应混合熔渣中作为热态冶金熔剂:
    方法C:用于浇筑微晶玻璃或作为矿渣棉;
    方法D:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中,吹入温度为0~1200℃的预热氧化性气体,并保证硅酸盐熔渣温度>1460℃;当熔渣氧化亚铁含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
    方法E:用于生产高附加值的水泥熟料,方法如下:
    E-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后高钙赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
    E-2、向所述熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1460℃;当氧化亚铁含量<1%,获得氧化后的熔渣;
    E-3、对所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
    方法F:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣作为高炉炼铁原料或直接还原炼铁原料:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
    或,将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入预热温度为0~1200℃的氧化性气体,并保证熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
    方法G:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣熔融还原炼铁,包括如下步骤:
    G-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足以下条件:反应熔渣的温度为1350~1670℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
    G-2、向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时满足以下条件:反应完成后的熔渣的温度为1350~1670℃和反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4;
    G-3、采用以下两种方法中的一种进行分离回收:
    方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,缓慢冷却至室温,获得缓冷渣;金属铁沉降到反应装置的底部,形成铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
    方法Ⅱ:还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;还原后的熔渣,按照A~E中的一种或几种,进行熔渣处理;铁水送往转炉或电炉炼钢;
    或,含有所述富铁相水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原炼铁的原料;浮选过程中,浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
    所述直接还原过程采用转底炉、隧道窑、车底炉、竖炉、回转窑、感应炉中的任一种作为还原设备,利用气基或煤基还原技术,气基为天然气和/或煤气,煤基为无烟煤、烟煤、褐煤、焦煤、焦粉、焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5。
  9. 根据权利要求8所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:所述的步骤S2中,冷却方式为自然冷却或旋转冷却或离心冷却,沉降方式为自然沉降或旋转沉降或离心沉降;
    所述混合均匀为自然混合或搅拌混合,搅拌混合为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌、机械搅拌中的一种或几种。
  10. 根据权利要求8所述的由含锌与铁的混合熔渣回收有价组分的方法,其特征在于:所述燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,所述喷吹载入气体为预热的氧化性气体、氮气或氩气中的一种或多种,所述预热的温度为0~1200℃;
    所述固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm,所述液体燃料与还原剂为重油,所述气体燃料与还原剂为煤气和/或天然气;
    所述氧化性气体为预热的空气、氧气、富氧空气、氩气-空气、氩气-氧气、氮气-空气、氮气-氧气中的一种。
PCT/CN2017/115645 2017-10-10 2017-12-12 由含锌与铁的混合熔渣回收有价组分的方法 WO2019071790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710936807.XA CN107699701A (zh) 2017-10-10 2017-10-10 由含锌与铁的混合熔渣回收有价组分的方法
CN201710936807.X 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019071790A1 true WO2019071790A1 (zh) 2019-04-18

Family

ID=61183500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115645 WO2019071790A1 (zh) 2017-10-10 2017-12-12 由含锌与铁的混合熔渣回收有价组分的方法

Country Status (2)

Country Link
CN (1) CN107699701A (zh)
WO (1) WO2019071790A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676374A (zh) * 2020-05-19 2020-09-18 方喜 一种铜冶炼烟尘及含铅二次物料清洁生产方法
IT202000009316A1 (it) * 2020-04-28 2021-10-28 Ecotec Gestione Impianti S R L Procedimento per il trattamento contemporaneo di residui dell’industria metallurgica non ferrosa, con ottenimento di prodotti valorizzabili e materie prime secondarie, in accordo con le strategie dell’economia circolare.

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676942A (zh) * 2018-05-18 2018-10-19 廖辉明 一种含铁和或锌铅铜锡等物料与熔融钢渣协同处理回收方法
CN110423889B (zh) * 2019-08-21 2021-06-22 安徽工业大学 一种热镀锌线碱洗污泥无害化处置及资源化利用方法
CN110904340A (zh) * 2019-12-10 2020-03-24 武翠莲 一种离心去除含铁混合物中有害元素和杂质的方法
CN111647704B (zh) * 2020-05-19 2021-02-26 北京科技大学 一种基于HIsmelt熔融还原炉的锌回收方法
CN113201655B (zh) * 2021-03-13 2023-06-09 江西铜业铅锌金属有限公司 一种提升PbS还原效率的铅冶炼工艺
CN113502425B (zh) * 2021-06-29 2022-06-24 北京工业大学 一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141722A (en) * 1976-02-10 1979-02-27 Osaka Iron & Steel Co., Ltd. Method of treating ferruginous slags
CN87102831A (zh) * 1987-04-20 1988-11-02 冶金部鞍山热能研究所 高温液态含铁炉渣综合利用的方法
CN106755652A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛熔渣冶金一步法回收的方法
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法
CN106755656A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金一步法回收的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141722A (en) * 1976-02-10 1979-02-27 Osaka Iron & Steel Co., Ltd. Method of treating ferruginous slags
CN87102831A (zh) * 1987-04-20 1988-11-02 冶金部鞍山热能研究所 高温液态含铁炉渣综合利用的方法
CN106755652A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛熔渣冶金一步法回收的方法
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法
CN106755656A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金一步法回收的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000009316A1 (it) * 2020-04-28 2021-10-28 Ecotec Gestione Impianti S R L Procedimento per il trattamento contemporaneo di residui dell’industria metallurgica non ferrosa, con ottenimento di prodotti valorizzabili e materie prime secondarie, in accordo con le strategie dell’economia circolare.
CN111676374A (zh) * 2020-05-19 2020-09-18 方喜 一种铜冶炼烟尘及含铅二次物料清洁生产方法

Also Published As

Publication number Publication date
CN107699701A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107653381B (zh) 含锌与铁的熔渣熔融还原生产的方法
WO2019071788A1 (zh) 一种由含铜与铁的混合熔渣生产的方法
WO2019071793A1 (zh) 一种由含铜熔渣回收有价组分的方法
WO2019071791A1 (zh) 锌冶炼炉渣熔融还原生产的方法
WO2019071796A1 (zh) 一种由含镍与铁的混合熔渣回收有价组分的方法
WO2019071798A1 (zh) 一种由镍冶炼熔渣生产的方法
WO2019071794A1 (zh) 一种由含铜与铁的混合熔渣回收有价组分的方法
WO2019071790A1 (zh) 由含锌与铁的混合熔渣回收有价组分的方法
WO2018014419A1 (zh) 一种混合熔渣熔融还原生产与调质处理的方法
WO2019071797A1 (zh) 一种由含镍与铁的混合熔渣生产的方法
WO2019071789A1 (zh) 由锌冶炼熔渣回收有价组分的方法
WO2019071795A1 (zh) 一种由含铜熔渣生产的方法
WO2019071787A1 (zh) 一种由含镍冶炼熔渣回收有价组分的方法
WO2018014418A1 (zh) 一种混合熔渣熔融还原回收与调质处理的方法
CN106755654A (zh) 一种熔渣冶金熔融还原生产的方法
WO2018014364A1 (zh) 一种含钛混合熔渣熔融还原生产和调质处理的方法
CN108676942A (zh) 一种含铁和或锌铅铜锡等物料与熔融钢渣协同处理回收方法
CN106755651A (zh) 一种含稀土和/或铌熔渣冶金一步法回收的方法
CN106119447B (zh) 一种含稀土与铌混合熔渣熔融还原生产和调质处理的方法
CN106755652A (zh) 一种含钛熔渣冶金一步法回收的方法
US8133295B2 (en) Method and apparatus for lead smelting
CN106755653A (zh) 一种含稀土或铌熔渣冶金熔融还原生产的方法
CN106755658A (zh) 一种含钛熔渣冶金还原生产的方法
CN106755659A (zh) 一种含稀土混合熔渣冶金熔融还原回收的方法
CN115261540A (zh) 赤泥中铁和尾渣回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928182

Country of ref document: EP

Kind code of ref document: A1