WO2019071791A1 - 锌冶炼炉渣熔融还原生产的方法 - Google Patents

锌冶炼炉渣熔融还原生产的方法 Download PDF

Info

Publication number
WO2019071791A1
WO2019071791A1 PCT/CN2017/115646 CN2017115646W WO2019071791A1 WO 2019071791 A1 WO2019071791 A1 WO 2019071791A1 CN 2017115646 W CN2017115646 W CN 2017115646W WO 2019071791 A1 WO2019071791 A1 WO 2019071791A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
iron
smelting
copper
furnace
Prior art date
Application number
PCT/CN2017/115646
Other languages
English (en)
French (fr)
Inventor
张力
张武
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2019071791A1 publication Critical patent/WO2019071791A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/06Obtaining bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of comprehensive utilization of resources and slag metallurgy, and particularly relates to a method for smelting reduction production of zinc smelting furnace slag.
  • the zinc smelting process includes two processes of wet zinc smelting and vertical tank zinc smelting.
  • the two processes produce a large amount of zinc smelting slag, wherein the wet zinc smelting produces zinc leaching slag, iron slag residue, pickled iron slag, goethite Slag, hematite slag, etc.
  • vertical tank zinc smelting produces vertical tank zinc slag.
  • the zinc smelting furnace slag contains secondary resources such as copper, iron, zinc, lead, indium, gold and silver, of which the iron content is as high as 50%, far exceeding the recoverable grade of iron ore (recoverable grade, iron content >26wt%).
  • the copper content is as high as 2%, far exceeding the recoverable grade of copper ore (recoverable grade, copper content >0.2wt%), and the zinc content is as high as 25%.
  • zinc smelting slag is treated and recycled by a volatile kiln, a fumigating furnace, a blast furnace, a vortex smelting process, etc., and only some components such as lead, zinc, and silver are recovered, and the recovery of valuable components such as copper, iron, and gold is not considered.
  • the energy consumption is high and the pollution is large.
  • the present invention provides a method for smelting reduction production of zinc smelting furnace slag, which can fully utilize molten slag physical heat resources and hot metallurgical flux to treat zinc smelting slag and copper oxide mineral, Achieve slag metallurgy, fire method copper smelting and iron making, can reduce slag containing copper (slag containing copper ⁇ 0.1wt%), while achieving copper, iron, lead, zinc, gold, silver, indium, antimony, sodium, potassium, etc. Efficient recovery of components, high metal recovery rate, low production cost, environmental friendliness and high economic returns.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • S1 slag mixing: adding zinc smelting slag to the smelting reaction device through which the heat preservation device or slag can flow out, adding calcium minerals and additives, heating the slag to a molten state, forming a reaction slag containing copper and iron, At the same time, one or more of copper oxide mineral, copper sulfide mineral and copper-containing material are added, uniformly mixed, and the reaction slag is monitored in real time, and the reaction slag is simultaneously adjusted to satisfy both a and b conditions, and the reaction is obtained. After the completion of the slag, or the slag after the completion of the reaction is poured into the heat preservation device;
  • the temperature of the reaction slag is controlled to be 1100 to 1450 ° C;
  • step S2 separation and recovery: the slag obtained in step S1 is kept for 5 to 50 minutes, and the upper middle iron-containing silicate mineral phase, the bottom copper-rich phase and the middle and lower iron-rich phase are obtained by sedimentation separation, and the zinc-containing component and lead are simultaneously produced.
  • step S1 the regulation method of condition a is:
  • the temperature of the reaction slag When the temperature of the reaction slag is >1450 ° C, one or more of a copper-containing material, a zinc smelting slag, a metallurgical flux, an iron-containing material, a copper oxide mineral, and a fluorine-containing material are added to the reaction slag to make the reaction
  • the temperature of the slag reaches a range of 1100 to 1450 ° C;
  • step S1 the regulation method of condition b is:
  • the alkalinity CaO/SiO 2 ratio of the reaction slag is ⁇ 0.2
  • one of the alkaline material, the basic copper oxide mineral, the copper sulfide mineral, the copper-containing material, and the alkaline iron-containing material is added to the reaction slag.
  • the alkalinity CaO/SiO 2 ratio of the reaction slag is >2.0, one of the acidic material, the acidic copper oxide mineral, the acidic copper sulfide mineral, the acidic iron-containing material, and the acidic gold-containing silver material is added to the reaction slag.
  • the acidic material the acidic copper oxide mineral, the acidic copper sulfide mineral, the acidic iron-containing material, and the acidic gold-containing silver material is added to the reaction slag.
  • the heat preservation device is one or two of a pourable smelting reaction slag irrigation and a heat preservation pit;
  • the smelting reaction device through which the slag can flow is a pourable smelting reaction device or a fixed smelting reaction device with a slag port or an iron port at the bottom;
  • the pourable smelting reaction device is one or two of a converter and a smelting reaction slag tank;
  • the fixed smelting reaction device with a slag port or an iron port is a plasma furnace, a direct current electric arc furnace, an alternating current electric arc furnace, a submerged arc furnace, a blast furnace, a blast furnace, an induction furnace, a cupola furnace, a side blowing molten pool melting furnace, and a bottom blowing Molten pool melting furnace, top blowing molten pool melting furnace, reverberatory furnace, Osmet furnace, Aisa furnace, Waten Kraft melting pool melting furnace, side blowing rotary furnace, bottom blowing rotary furnace, top blowing rotary furnace One or several.
  • the copper and iron oxides in the slag should be simultaneously reduced to metallic copper and FeO, and the metallic iron content in the slag is ⁇ 3%.
  • the amount of the reducing agent and/or the solid carbon-containing iron-containing material in the slag is reduced to copper and iron oxide in the slag to metallic copper and
  • the theoretical amount of FeO is 110-140%; the carbon-containing iron-containing materials are steel dust and soot, iron concentrate carbon-containing pre-reduction pellets, iron concentrate carbon-containing metallized pellets, and wet zinc smelting kiln Slag, coke oven dust and soot.
  • the zinc smelting furnace slag is one or two of slag produced by wet zinc smelting and slag produced by pyrometallurgical slag; zinc smelting furnace slag is molten or hot or cold, and the molten smelting method
  • the zinc slag is obtained from a vortex melting furnace, a blast furnace, a smelting furnace, an electric furnace slag outlet, and the hot zinc smelting slag is obtained from a kiln discharge port of the volatilization kiln, a slag outlet of the vertical tank, or the zinc smelting slag is heated to a molten state;
  • the slag produced by the wet zinc smelting is one or more of zinc leaching slag, volatile kiln residue, copper cadmium slag, iron slag residue, pickled iron slag, goethite slag, and hematite slag.
  • the slag produced by the pyrometallurgical smelting is one or more of a vertical tank zinc slag, a vortex smelting slag, a blast furnace slag, a smelting furnace slag, and an electric furnace slag; and the slag produced by the wet zinc smelting It needs to be dried and dehydrated.
  • the vortex smelting furnace slag, the blast furnace slag, the smelting furnace slag and the electric furnace slag are obtained from the smelting furnace slag outlet.
  • the volatile kiln slag is obtained from the volatilization kiln outlet, and the vertical tank smelting slag is discharged from the vertical tank.
  • the calcium-based mineral is one or more of lime, limestone, dolomite, calcium carbide slag, red mud, and high-calcium red mud after sodium removal;
  • the additive is one or more of SiO 2 , MgO, FeO, Fe 2 O 3 , MnO 2 , Al 2 O 3 , TiO 2 , P 2 O 5 , Fe, Na 2 O;
  • the copper oxide mineral comprises one or more of a cuprite, a black copper ore, a malachite, a blue copper ore, a chrysocolla, a cholesterium; the copper sulfide mineral comprises a copper ore, copper blue, One or more of chalcopyrite, porphyrite, arsenic arsenide, and beryllium copper.
  • the copper-containing material is copper slag, copper tailings, crude copper fire refining slag, zinc smelting slag, zinc smelting soot and dust, lead and zinc tailings, lead smelting slag, lead copper, arsenic Bronze, crude lead fire refining slag, lead smelting soot and dust, lead acid battery, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit board, tin smelting slag, nickel smelting slag, tin tail One or several of the mines;
  • the copper slag is one or more of slag produced by smelting and slag, slag generated by "copper smelting", slag depleted by fire, copper slag flotation tail slag, and wet copper slag;
  • the metallurgical flux is a mineral or slag containing CaO or SiO 2 , preferably one or more of quartz sand, gold-silver-silica sand, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite or limestone.
  • quartz sand preferably one or more of quartz sand, gold-silver-silica sand, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite or limestone.
  • the iron-containing material is ordinary iron concentrate, ordinary iron concentrate direct reduced iron, ordinary iron concentrate sintered ore, ordinary iron concentrate pellet, ordinary iron concentrate metallized pellet, ordinary iron concentrate carbon-bearing pre- Reducing pellets, steel slag, zinc smelting slag, coke smelting soot and dust, steel soot and dust, nickel smelting slag, copper slag, lead smelting slag, zinc smelting slag, tin smelting slag, red mud, high calcium after sodium removal One or more of red mud, coal dust ash, and sulfuric acid slag;
  • the nickel smelting slag is one or more of nickel smelting slag produced by the “smelting smelting” process, depleted slag after being blown by the “copper ice nickel blowing” process, and nickel slag slag generated by top blowing smelting;
  • the lead smelting slag is produced by a smelting furnace slag and lead-containing smelting slag, "ISP lead-zinc blast furnace reduction” or “sinter blast furnace reduction” or “solid high-lead slag reduction” or “liquid high-lead slag reduction process” reduction process
  • Lead-containing smelting slag, lead smelting slag is smelted by a fuming furnace to produce lead-containing smelting furnace slag;
  • the steel soot and dust mud include blast furnace gas mud, converter dust mud, electric furnace dust, hot/cold rolling sludge, sintering dust, pellet dust, dust collection in ironworks, blast furnace gas ash, electric furnace dust ash, steel rolling oxidation Iron sheet
  • the fluorine-containing material is one or more of fluorite, CaF 2 and fluorine-containing blast furnace slag;
  • the copper-containing material, the iron-containing material and the fluorine-containing material are pellets or powder materials or granulation;
  • the granular material has a particle size of ⁇ 150 ⁇ m
  • the granular material has a particle size of 5-25 mm
  • the powdery material is sprayed by spraying
  • the granular material is added by spraying or feeding
  • the loading gas is preheated argon gas
  • One or more of nitrogen, a reducing gas, and an oxidizing gas the preheating temperature is 0-1200 ° C.
  • the alkaline material is one or more of lime powder, red mud, high-calcium red mud after desodiumification, calcium carbide slag, dolomite powder or quicklime powder; and the alkaline iron-containing material is CaO/ One or more of SiO 2 >1 alkaline sintered ore, steel slag, iron alloy slag, alkaline iron concentrate, alkaline pre-reduction pellet, alkaline metallized pellet, and alkaline blast furnace slag;
  • the acidic material is one or more of silica, fly ash and coal gangue;
  • the acidic iron-containing material is acid sinter, acid iron concentrate, acid pre-reduction ball with CaO/SiO 2 ⁇ 1
  • step S2 the separation and recovery in step S2 is carried out as follows:
  • Containing the copper-rich phase in a hot or cold state sent to a converter or a smelting furnace for copper smelting, or slow cooling and magnetic separation to separate the metal iron, and then sent to a converter or a smelting furnace for copper smelting, or magnetic separation to separate metal iron Or after the separation of the metal iron without magnetic separation, the direct reduction, the reduction product is separated by magnetic separation, and then sent to the converter or the converter to smelt copper;
  • the zinc-containing component, the lead-containing component, the cerium-containing component and the indium-containing component are volatilized, and are collected into the dust as an oxide;
  • the slag treatment is carried out by any of the following methods A-G:
  • Method C for pouring glass ceramics or as slag wool
  • Method D retaining the iron-containing silicate mineral phase and/or the iron-rich phase iron-containing slag in a smelting reaction device or pouring the slag into a heat preservation device, blowing into the iron-containing slag Preheating oxidizing gas at a temperature of 0 to 1200 ° C, and ensuring that the silicate slag temperature is >1460 ° C; when the slag oxidized ferrous content is ⁇ 1%, obtaining oxidized slag; the oxidized slag Direct air cooling or water quenching, used as slag cement, cement conditioner, additive in cement production or cement clinker;
  • Method E For the production of high value-added cement clinker, the method is as follows:
  • Method F the iron-containing silicate mineral phase and/or the iron-rich phase iron-containing slag as a blast furnace ironmaking raw material or a direct reduction ironmaking raw material: the iron-containing silicate mineral phase and/or After the iron-rich slag of the iron-rich phase is air-cooled, water-quenched or slow-cooled, it is used as a blast furnace ironmaking or direct reduction ironmaking raw material, and after direct reduction, magnetic separation or electric furnace melting is used, and the magnetic separation product is metal iron. With tailings, electric furnace melting, the product is molten iron and slag;
  • the separation is performed by the following method: magnetic separation after slag modification: into the heat preservation device
  • the slag is blown into an oxidizing gas having a preheating temperature of 0 to 1200 ° C, and the slag temperature is ensured to be >1250 ° C to complete the transformation of the magnetite in the slag; the oxidized slag is slowly cooled to room temperature and broken.
  • magnetic separation the product is magnetite concentrate and tailings, tailings as building materials;
  • the iron-containing silicate mineral phase and/or the iron-rich phase iron-containing slag smelting reduction ironmaking includes the following steps:
  • the preheating temperature of the oxidizing gas is 0 to 1200 ° C
  • the temperature of the slag after the completion of the reaction is 1350 to 1670 ° C
  • the alkalinity CaO / SiO 2 ratio of the slag after the completion of the reaction 0.6 to 2.4;
  • Method I pouring the reduced mixed slag into the slag pot, slowly cooling to room temperature to obtain slow cooling slag; metal iron is settled to the bottom of the reaction device to form iron slag; the remaining slow slag contains metal iron layer, Broken to a particle size of 20 to 400 ⁇ m, grinding, magnetic separation to separate the remaining metal iron and tailings;
  • Method II mixed slag after reduction, cooling and sedimentation, separation of slag-gold, obtaining molten iron and reduced slag; reducing slag, according to one or several of A to E, slag treatment; The molten iron is sent to the converter or electric furnace for steel making;
  • the iron-rich phase water quenching or air cooling or pouring into a heat preservation device to slow cooling or by manual sorting and re-election as a blast furnace ironmaking raw material or direct reduction ironmaking raw material or smelting reduction ironmaking raw material or flotation
  • Copper extraction raw materials or magnetic separation of metal iron for use as raw materials for copper smelting or direct reduction of iron during flotation, the flotation products are copper-bearing concentrates and iron concentrates, copper concentrates are returned to copper smelting systems, iron concentrates
  • the reduction product is magnetically separated and separated, the metal iron and tailings are obtained, and the tailings are returned to the copper smelting system;
  • the direct reduction process uses any one of a rotary hearth furnace, a tunnel kiln, a car bottom furnace, a shaft furnace, a rotary kiln, and an induction furnace as a reduction device, using a gas-based or coal-based reduction technology
  • the gas base is natural gas and/or Gas
  • coal-based is one or several of anthracite, bituminous coal, lignite, coking coal, coke powder, coke
  • reduction temperature is 900-1400 ° C
  • alkalinity CaO / SiO 2 ratio 0.8 ⁇ 1.5
  • the secondary combustion of the slag surface provides heat, and the gas flowing out of the furnace can be used as a heat source for the drying furnace material and the heat preservation device;
  • red mud contains potassium, sodium, dust, and steel soot containing lead, zinc, antimony, and indium silver, when these materials are added, some indium, antimony, potassium, and sodium groups are added. Volatile, in the form of oxide Enter the smoke.
  • the cooling mode is natural cooling or rotary cooling or centrifugal cooling
  • the sedimentation mode is natural sedimentation or rotary sedimentation or centrifugal sedimentation
  • the mixing is uniformly mixed by natural mixing or stirring, and the stirring and mixing are one or several of argon stirring, nitrogen stirring, nitrogen-argon mixed gas stirring, reducing gas stirring, oxidizing gas stirring, electromagnetic stirring, mechanical stirring.
  • the stirring and mixing are one or several of argon stirring, nitrogen stirring, nitrogen-argon mixed gas stirring, reducing gas stirring, oxidizing gas stirring, electromagnetic stirring, mechanical stirring.
  • the fuel and the reducing agent are one or more of a solid, liquid or gaseous fuel, which is injected by spraying or feeding, and the blowing and charging gas is a preheated oxidizing gas, One or more of nitrogen or argon, the preheating temperature is 0 to 1200 ° C;
  • the solid fuel and the reducing agent are one or more of coal powder, coke powder, coke, fly ash, bituminous coal or anthracite coal, and the shape is granular or powder, and the granular material has a particle size of 5 to 25 mm, and the granular material particle size ⁇ 150 ⁇ m, the liquid fuel and the reducing agent are heavy oil, and the gaseous fuel and reducing agent are gas and/or natural gas;
  • the oxidizing gas is one of preheated air, oxygen, oxygen-enriched air, argon-air, argon-oxygen, nitrogen-air, nitrogen-oxygen.
  • the method for smelting reduction production of zinc smelting furnace slag of the invention fully utilizes slag physical heat resource and hot metallurgical flux, and realizes slag metallurgy, fire method copper smelting and iron making by treating zinc smelting slag and copper oxide mineral: 1
  • the hot flux in the slag reacts.
  • the iron oxide is fully released to form an iron-rich phase, which realizes growth and sedimentation.
  • the iron-rich phase includes metal iron, FeO phase and fayalite phase.
  • the silver component migrates and is concentrated in the copper-rich phase.
  • the copper-rich phase contains copper, blister copper, matte phase, and iron-containing components, and grows and settles, or some copper components enter the iron-rich phase.
  • the zinc component in the slag is enriched in soot for recovery; 4 the lead component, indium component and strontium component in the slag are enriched in soot for recovery; 5 to achieve recovery of sulfur dioxide; Picking, magnetic separation, re-election or slag The sedimentation method separates and precipitates the copper-rich phase, the iron-rich phase and the iron-containing silicate phase in different parts.
  • the copper content in the iron-rich phase and the iron-containing silicate phase is less than 0.1%;
  • the copper-rich iron phase and the iron-containing silicate phase are obtained by direct reduction or smelting reduction to obtain metallic iron and molten iron; the solid, hot copper-containing slag, copper oxide mineral, and gold-silver-containing mineral can be treated to achieve efficient and comprehensive utilization of resources. purpose.
  • the method for producing zinc smelting slag according to the present invention can treat both hot slag and cold slag, and fully utilizes molten slag physical heat resources and hot metallurgical flux to treat copper oxide minerals, thereby realizing It can treat zinc smelting furnace slag and copper oxide mineral. It is a new copper smelting process to realize the production of copper and iron. It also solves the problems of large accumulation of slag, environmental pollution, and heavy metal pollution.
  • the copper component and the gold and silver components in the slag migrate and enrich in the copper-rich phase, respectively.
  • the copper-rich phase contains copper, white copper, ice-copper phase, and iron-containing components, and grows up. With sedimentation, or part of the copper component enters the iron-rich phase.
  • the zinc-containing component, the lead-containing component, the cerium-containing component and the indium-containing component in the slag are separately transported and enriched in the soot, and recovered; some sodium-containing components and potassium-containing components are volatilized Enter the smoke and recycle it.
  • the slag contains copper ⁇ 0.1wt%, which can treat solid copper-containing materials and achieve efficient resource integration. use.
  • the slag can be tempered and can be used as cement raw material or building material or instead of crushed stone as aggregate and road material, tailing slag The use value is large, and no solid waste is produced in the whole process.
  • Adding an additive to the method of the present invention can reduce the viscosity on the one hand, and lower the melting point on the other hand, and contribute to sedimentation of the copper-rich phase at a certain temperature (1100-1450 ° C), and the iron-rich phase obtained after sedimentation and separation
  • the low copper rich iron phase and the iron-containing silicate phase, wherein the iron-rich phase and the iron-containing silicate phase have a copper content of less than 0.1%, and the iron concentrate and the metallic iron can be obtained by direct reduction or smelting reduction ironmaking. .
  • the method of the invention can be carried out continuously or intermittently, the process flow is short, clean and environmentally friendly, and the metal recovery rate is high.
  • the present invention can realize the price of copper component, gold and silver, iron component, zinc component, lead component, indium component, strontium component, sodium component, potassium component, etc. in slag by slag metallurgy.
  • the comprehensive utilization of components can solve the problem of large accumulation of slag, can process copper oxide minerals on a large scale, realize simultaneous production of copper and iron, and solve two major problems of difficult treatment of copper oxide minerals and recovery of iron-containing components.
  • the zinc smelting furnace slag of the present invention may be a liquid zinc smelting furnace slag (vortex smelting furnace slag or blast furnace slag) ( ⁇ 1100 ° C) flowing out from the slag outlet, which has the characteristics of high temperature and high heat, and fully utilizes the physical heat of the slag.
  • liquid molten zinc smelting slag contains a large amount of hot metallurgical flux, is a slag system with excellent physical and chemical properties, and realizes slag metallurgy.
  • the invention adopts slag metallurgy and simultaneously adds calcium minerals to release iron oxides in the fayalite phase, enriched in the iron-rich phase, and realizes aggregation, growth and sedimentation, and the iron-rich phase includes metallic iron and FeO.
  • phase fayalite phase
  • copper component gold and silver components in the slag migrate to the copper-rich phase to achieve aggregation, growth and settlement, rich
  • the copper phase contains copper, blister copper, matte phase, various iron-containing components, or part of the copper component enters the iron-rich phase; lead component, zinc component, strontium component, indium component, sodium component, The potassium component volatilizes into the soot as an oxide and is recovered.
  • the cold material and the liquid zinc smelting furnace slag are added, the slag temperature is too high, and the life of the heat preservation device is avoided; the cold material and the liquid zinc smelting furnace slag are added, thereby improving the raw material processing amount, not only The liquid slag is treated, and a small amount of cold material can be processed, and the raw material is highly adaptable; the cold material is added to realize the efficient utilization of the chemical heat and physical heat of the slag.
  • the addition of the additive, the copper component, the gold and the silver component in the slag are separately migrated and enriched in the copper-rich phase, and the aggregation, growth and sedimentation are realized; the iron group in the slag Sub-migration, enrichment in the iron-rich phase, and achieve aggregation, growth and settlement; the thermal insulation device equipped with slag is placed on the rotating platform to accelerate the accumulation, growth and settlement of the copper-rich phase and the iron-rich phase;
  • the addition of fluorine material accelerates the aggregation, growth and sedimentation of the copper-rich phase and the iron-rich phase.
  • the method of the invention adopts the methods of manual sorting, magnetic separation, re-election or slag-gold separation to respectively carry out the iron-containing silicate mineral phase, the iron-rich phase and the copper-rich phase distributed in the upper part, the middle part and the bottom part. Separation, the high-efficiency recovery of valuable components in the slag is achieved, the slag contains copper ⁇ 0.1wt%; because the copper-rich phase and the iron-rich phase settle in the middle and lower parts, the amount of slag is small, the slag can be tempered, and the mineral can be Increased wear and low separation cost; magnetic separation or re-election, separated medium is water, no environmental pollution; tailings as cement raw materials, building materials, instead of crushed stone as aggregate, road material.
  • the low-copper iron-rich phase and the iron-containing silicate phase can be used as blast furnace ironmaking or direct reduction or smelting reduction of ironmaking raw materials to obtain metallic iron and molten iron.
  • the invention utilizes slag metallurgy to not only realize high-efficiency recovery of valuable components in the slag, but also realize large-scale production of copper oxide minerals, and simultaneously produce copper and iron, which is a new copper smelting process.
  • the method has the advantages of short process flow, high metal recovery rate, low production cost, strong adaptability of raw materials, large processing capacity, environmental friendliness and high economic benefit, and can effectively solve the problem of efficient recycling of metallurgical resources and thermal energy.
  • the invention provides a method for smelting reduction production of zinc smelting furnace slag, which comprises the following steps:
  • Step S1 slag mixing:
  • the zinc smelting slag is added to the smelting reaction device through which the heat preservation device or the slag can flow out, and the calcium-based minerals and additives are added to heat the molten slag to a molten state to form a reaction slag containing copper and iron, and a copper oxide ore is simultaneously added.
  • One or more of copper sulfide minerals and copper-containing materials are uniformly mixed, and the reaction slag is monitored in real time, and the following parameters (a) and (b) are ensured by regulation to obtain the melting after completion of the reaction. Slag, or pour the slag after the reaction is completed into the heat preservation device;
  • the control method is:
  • the temperature of the copper-containing reaction slag ⁇ lower limit of the set temperature range is 1100 ° C
  • the fuel or molten zinc smelting slag vortex smelting slag and/or blast furnace smelting
  • the temperature of the reaction slag is brought to a set temperature range, and when the fuel is added, the preheating oxidizing gas is simultaneously sprayed;
  • the temperature of the copper-containing reaction slag is higher than the upper limit of the set temperature range of 1450 ° C, one or more of the copper-containing material, the zinc smelting slag, the metallurgical flux, the iron-containing material or the fluorine-containing material is added to the copper-containing reaction slag.
  • the temperature of the mixed slag is within a set temperature range;
  • the slag is kept for 5 to 50 minutes, settled, and slag-gold is separated to obtain a molten state in the bottom molten state, a molten iron phase in the middle and lower portions, and a molten iron-containing silicate mineral phase in the upper middle portion, and simultaneously A portion of the zinc-containing component, the lead-containing component, and the indium-containing component enter the soot, wherein the gold and silver components migrate to the copper-rich phase; one of the following methods is employed:
  • the iron-rich phase is obtained by water quenching or air cooling or pouring into a heat preservation device, or by manual sorting and re-election, as a raw material for blast furnace ironmaking or direct reduction of ironmaking raw materials or smelting reduction of ironmaking raw materials or flotation Copper raw material or magnetic separation to separate metal iron as raw material for copper smelting or direct reduction ironmaking; flotation products are copper-containing concentrates and iron concentrates, copper concentrates are returned to copper smelting system, iron concentrates are used as blast furnace ironmaking materials or Directly reducing ironmaking raw materials or smelting reduction ironmaking raw materials; wherein, in the direct reduction process, after reduction and magnetic separation of the reduction products, metal iron and tailings are obtained, and the tailings are returned to the copper smelting system;
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace as a reduction device.
  • the gas-based or coal-based reduction technology is used to reduce the gas base to natural gas and/or gas, and the coal base is reduced to One or more of anthracite, bituminous coal, lignite, coking coal, coke breeze or coke, the reduction temperature is 900-1400 ° C, and the alkalinity CaO/SiO 2 ratio is 0.8-1.5.
  • the iron-containing silicate mineral phase in the step (1) is subjected to slag treatment, and one of the methods A to G is adopted:
  • Iron-containing silicate mineral phase as cement raw material Iron-containing silicate mineral phase as cement raw material
  • the iron-containing silicate mineral phase is directly quenched or air-cooled as a cement raw material or further processed into a high value-added cement raw material;
  • Method B Part or all of the iron-containing silicate mineral phase is returned to the copper-containing reaction slag:
  • Part or all of the iron-containing silicate mineral phase is returned to the copper-containing reaction slag, as a hot metallurgical flux, the copper-containing reaction slag component is adjusted, and the copper-containing reaction slag temperature is controlled;
  • Method C pouring a glass ceramic with a silicate mineral phase or as a slag wool
  • Method D Air-cooling or water quenching after oxidation of iron-containing silicate slag:
  • the iron-containing silicate slag remains in the smelting reaction device or the slag is poured into the heat-preserving device, and the pre-heated oxidizing gas is blown into the slag, and when the slag oxidized ferrous content is ⁇ 1%, Complete oxidation of the slag to obtain oxidized slag, wherein the preheating temperature of the oxidizing gas is 0 to 1200 ° C; and throughout the process, ensure (c) silicate slag temperature > 1460 ° C;
  • the preheated fuel and the preheated oxidizing gas are injected, the heat is burned, the heat is supplemented, or the device is heated by itself, so that the temperature of the silicate slag is >1460 ° C;
  • Method E Treatment of high value-added cement clinker by treatment with iron silicate slag:
  • the iron-containing silicate slag is retained in the smelting reaction device or the slag is poured into the heat preservation device, and molten slag, lime, limestone, iron alloy slag, fly ash, alkaline iron ore are added to the slag.
  • molten slag, lime, limestone, iron alloy slag, fly ash, alkaline iron ore are added to the slag.
  • Method F slag containing iron silicate mineral phase as blast furnace ironmaking raw material or direct reduction ironmaking raw material: slag containing iron silicate mineral phase is used as blast furnace ironmaking after air cooling, water quenching or slow cooling Direct reduction of ironmaking raw materials, after direct reduction, magnetic separation or electric furnace melting, magnetic separation products are metal iron and tailings, electric furnace melting, the product is molten iron and slag;
  • the separation is performed by the following method: magnetic separation after the slag modification: the slag in the heat preservation device is blown into the preheating of 0 to 1200 ° C Hot oxidizing gas, and ensure that its slag temperature is >1250 °C, complete the transformation of magnetite in the slag; slowly cool the slag after oxidation to room temperature, crush and magnetic separation, the product is magnetite concentrate With tailings, tailings as building materials.
  • the slag containing the iron silicate mineral phase is retained in the smelting reaction device or the slag is poured into the heat preservation device, the iron-containing material is added, the reducing agent is added to the slag, the smelting reduction is performed, and the reaction melting is monitored in real time.
  • Slag through regulation When the following two parameters (a1) and (b1) are guaranteed, the slag after completion of the reaction is obtained;
  • the control method is:
  • the method for controlling the temperature of the reaction slag in the set temperature range is:
  • the heating function of the reaction device itself is added, or the fuel and the preheated oxidizing gas are added to the slag to make the temperature of the reaction slag reach the set temperature range;
  • reaction slag When the temperature of the reaction slag is lower than the upper limit of the set temperature range, one or more of a metallurgical flux, an iron-containing material or a fluorine-containing material is added to the reaction slag to bring the temperature of the reaction slag to a set temperature range. ;
  • G-2 smelting and reducing the oxidizing gas after preheating into the slag to form a reduced slag, wherein: the preheating temperature of the oxidizing gas is 0 to 1200 ° C, and during the blowing process, Two parameters (a2) and (b2) are guaranteed by regulation:
  • the temperature range and the alkalinity control method are the same as the method G-1;
  • Method I Perform the following steps:
  • Method II Perform the following steps:
  • the gas produced by the reduction is secondarily burned on the surface of the slag to provide heat, and the gas flowing out of the furnace can be used as a heat source for the drying charge and the heat preservation device.
  • Method 2 When the smelting reaction device through which the slag can flow out, the slag after the completion of the reaction is subjected to the following steps: (1) obtaining the molten iron-rich phase and the iron-containing silicate mineral phase, using the method described in the first method One or several of A to G are subjected to slag treatment;
  • Settlement cooling the slag after the completion of the reaction is slowly cooled to room temperature to obtain slow cooling slag; the copper-rich phase settles to the bottom of the reaction device to form a copper-rich bismuth; the iron-containing silicate mineral phase floats; the copper-rich phase metal
  • the slow cooling slag between the strontium and the iron-containing silicate mineral is an iron-rich phase, and simultaneously forms a zinc-containing component and a lead-containing component; the gold-silver component migrates to the copper-rich phase;
  • the iron-rich phase layer in the middle as a blast furnace The ironmaking raw material or the direct reduction ironmaking raw material or the smelting reduction ironmaking raw material or the flotation copper extraction raw material or the magnetic separation and separation of the metallic iron is used as a raw material for copper smelting or direct reduction; in the flotation process, the flotation product is copper-containing fine Mine and iron concentrate, copper concentrate returned to copper smelting system, iron concentrate as blast furnace ironmaking raw material or direct reduction ironmaking raw material or smelting reduction ironmaking raw material; wherein, in the direct reduction process, after the reduction product is magnetically separated, Obtaining metal iron and tailings, and tailings returning to the copper smelting system;
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace as a reduction device.
  • the zinc smelting furnace slag is one or two of slag produced by wet zinc smelting and slag produced by pyrometallurgical slag, wherein the slag produced by the wet zinc smelting is zinc leaching residue and volatilized One or more of kiln residue, iron slag residue, pickled iron slag, goethite slag, hematite slag, slag produced by pyrometallurgical smelting is vertical tank zinc slag, vortex smelting slag, blast furnace One or more of slag, smelting furnace slag, and electric furnace slag.
  • the zinc smelting furnace slag is in a molten state, a hot state or a cold state, wherein: the wet zinc slag is subjected to drying and dehydration treatment, and the vortex melting furnace slag, the blast furnace slag, the fumigating furnace slag, and the electric furnace slag are obtained from the smelting furnace slag opening.
  • the volatile kiln slag is obtained from the outlet of the volatilization kiln, and the zinc slag of the vertical tank is obtained from the slag outlet of the vertical tank, or the zinc smelting slag is heated to a molten state.
  • the smelting reaction device through which the slag can flow out is a pourable smelting reaction device or a fixed smelting reaction device with a slag port or an iron port at the bottom;
  • the heat preservation device is a pourable smelting reaction slag irrigation and insulation pit.
  • the pourable smelting reaction device is a converter and a smelting reaction slag tank.
  • the fixed smelting reaction device with a slag port or an iron port is a plasma furnace, a direct current electric arc furnace, an alternating current electric arc furnace, a submerged arc furnace, a blast furnace, a blast furnace, an induction furnace, a cupola furnace, a side blowing molten pool melting furnace, and a bottom.
  • the calcium-based mineral is specifically one or more of lime, limestone, dolomite, calcium carbide slag, red mud or high-calcium red mud after de-sodium removal.
  • the additive is one or more of SiO 2 , MgO, FeO, Fe 2 O 3 , MnO 2 , Al 2 O 3 , TiO 2 , P 2 O 5 , Fe or Na 2 O.
  • the copper oxide mineral comprises one or more of cuprite, chert, malachite, azurite, chrysocolla, and cholesterium.
  • Copper sulfide minerals include one or more of chalcopyrite, copper blue, chalcopyrite, porphyrite, arsenic arsenide, and beryllium copper.
  • the two parameters (a) and (b) are ensured at the same time, and the copper and iron oxides in the slag are reduced to metal copper and FeO, and the metal iron content in the slag is ⁇ 3. %.
  • a reducing agent and a solid carbon-containing iron-containing material By adding one or both of a reducing agent and a solid carbon-containing iron-containing material, the amount of the reducing agent and/or the solid carbon-containing iron-containing material in the slag is reduced to copper and iron oxide in the slag to metallic copper and The theoretical amount of FeO is 110-140%; the carbon-containing iron-containing materials are steel dust and soot, iron concentrate carbon-containing pre-reduction pellets, iron concentrate carbon-containing metallized pellets, and wet zinc smelting kiln Slag, coke oven dust and soot.
  • the fuel and the reducing agent are one or more of a solid, a liquid or a gas, which are injected by spraying or feeding, and the loading gas is a preheated oxidizing gas.
  • the loading gas is a preheated oxidizing gas.
  • One or more of nitrogen, argon, preheating temperature is 0-1200 ° C
  • solid fuel and reducing agent is one or more of coal powder, fly ash, coke powder, coke, bituminous coal or anthracite
  • the shape is granular or powdery, the granular material has a particle size of 5 to 25 mm, the powdery material has a particle size of ⁇ 150 ⁇ m, the liquid fuel is heavy oil, and the gaseous fuel is one or both of gas and/or natural gas.
  • the copper-containing material is copper slag, copper tailings, crude copper fire refining slag, zinc smelting slag, zinc smelting soot and dust, lead and zinc tailings, lead smelting slag, lead ice Copper, arsenic matte, crude lead fire refining slag, lead smelting soot and dust, lead acid battery, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit board, tin smelting slag, nickel smelting slag One or several of tin tailings.
  • Zinc smelting slag is zinc smelting slag produced by wet zinc smelting and pyrometallurgical smelting, including leaching slag, iron slag, copper cadmium slag, goethite slag, hematite slag, volatile kiln slag, vertical tank smelting slag , smelting furnace slag, electric furnace zinc slag.
  • the copper slag is one or more of slag produced by "smelting smelting”, slag generated by “copper blasting”, igniting furnace slag, copper slag flotation tailings, and wet copper slag.
  • Lead smelting slag is one or two of smelting furnace slag and lead smelting slag, “ISP lead-zinc blast furnace reduction” or “sinter blast furnace reduction” or “solid high-lead slag reduction” or “liquid high lead slag reduction”
  • ISP lead-zinc blast furnace reduction or “sinter blast furnace reduction” or “solid high-lead slag reduction” or “liquid high lead slag reduction”
  • the process produces lead-containing smelting slag, and the lead-containing smelting slag is smelted by a smelting furnace to produce lead-containing smelting furnace slag.
  • the nickel smelting slag is one or more of the nickel smelting slag produced by the “smelting smelting” process, the depleted slag after the “copper ice nickel blowing” process, and the nickel slag slag produced by the top blowing smelting.
  • the metallurgical flux is a mineral containing CaO or SiO 2 , specifically one or more of quartz sand, gold-silver quartz sand, red mud, high-calcium red mud after desodiumification, calcium carbide slag, dolomite or limestone.
  • the iron-containing material is ordinary iron concentrate, ordinary iron concentrate direct reduced iron, ordinary iron concentrate ore, ordinary iron concentrate pellet, ordinary iron concentrate metallized pellet, ordinary iron concentrate carbon pre-reduction ball Group, steel slag, zinc smelting slag, coke smelting soot and dust, steel soot and dust, nickel smelting slag, copper slag, lead smelting slag, zinc smelting slag, tin smelting slag, red mud, sodium removal after high-calcium red mud One or several of coal powder ash and sulfuric acid slag.
  • the copper-containing material and the iron-containing material are in a hot or cold state, wherein the hot material is directly obtained from the metallurgical furnace discharge port or the slag outlet.
  • the wet zinc slag and dust must be dehydrated and dried.
  • Steel soot and dust include blast furnace gas mud, converter dust mud, electric furnace dust, hot/cold rolling sludge, sintering dust, pellet dust, dust collection from the ironworks, blast furnace gas ash, electric furnace dust ash, steel oxide scale.
  • zinc smelting slag and soot, lead smelting slag and soot contain indium, antimony, lead, silver and zinc; red mud contains sodium and potassium, and steel soot and dust contain indium, antimony, silver and sodium. Potassium, the above materials all have iron; lead smelting slag and zinc smelting slag contain copper, copper soot and dust contain indium and antimony, in the method of the invention, indium, antimony, sodium, potassium, zinc, lead will be oxide The form enters the soot and is recycled.
  • the fluorine-containing material is one or more of fluorite, CaF 2 or fluorine-containing blast furnace slag.
  • the copper-containing material, the iron-containing material and the fluorine-containing material are pellets or powdery materials or granulation; wherein the granular material has a particle size of 5 to 25 mm, and the granular material has a particle size of ⁇ 150 ⁇ m, the granular material is sprayed by injection, and the loading gas is one or more of preheated argon gas, nitrogen gas, reducing gas (gas and/or natural gas), and oxidizing gas, and the preheating temperature is 0 to 1200 ° C, the blowing method is one or several types in which a refractory spray gun is inserted into the slag or placed in the upper portion or the side or bottom of the reaction slag.
  • the copper-containing material and the iron-containing material are in a hot or cold state, wherein the hot material is directly obtained from the metallurgical furnace discharge port or the slag outlet, and the hot material temperature is 200 to 1750 °C.
  • the copper component and the gold and silver components in the slag are enriched in the copper-rich phase, and aggregation, growth and sedimentation are achieved, and the iron component is enriched in iron-rich.
  • the phase, the aggregation, growth and sedimentation, the zinc component, the lead component, the antimony component and the indium component in the slag respectively enter the soot and are recovered as an oxide, wherein the copper-rich phase includes copper and white ice copper.
  • the matte phase, a plurality of iron-containing components, or a part of the copper component enters the iron-rich phase, and the iron-rich phase includes a plurality of metal iron, FeO phase, and fayalite phase, as blast furnace ironmaking or direct reduction or melting Reduce the raw materials of iron making.
  • step S1 the method of controlling the temperature of the mixed slag in the set temperature range is as follows:
  • the temperature of the mixed slag is > the upper limit of the set temperature
  • one or more of zinc smelting slag, copper-containing material, iron-containing material, metallurgical flux or fluorine-containing material are added, in order to avoid excessive temperature and protect the refractory material.
  • Another effect of adding fluorine-containing materials is to lower the viscosity, accelerate the copper-rich phase in the slag, and accumulate, grow and settle the iron-rich phase, which is beneficial to the silicate floating.
  • the alkaline material is one or more of lime powder, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite powder or quicklime powder;
  • the alkaline iron-containing material is CaO/SiO 2 ⁇ 1 iron-containing material;
  • the basic iron-containing material is alkaline sintered ore, steel slag, iron alloy slag, alkaline iron concentrate, alkaline pre-reduction pellet or alkali One or more of a metallized pellet and an alkaline blast furnace slag.
  • the acidic material is one or more of silica, fly ash and coal gangue; the acidic iron-containing material is CaO/SiO 2 ⁇ 1.
  • Iron-containing material; the acidic iron-containing material is acid sinter, acid iron concentrate, acid pre-reduction pellet, acid metallized pellet, copper slag, lead smelting slag, zinc smelting slag, nickel smelting slag, tin smelting One or more of slag, iron alloy slag, and acid blast furnace slag.
  • step S1 the two parameters of (a) and (b) are ensured, and the slag is thoroughly mixed, and the mixing mode is natural mixing or stirring mixing, and the stirring mode is one of the following modes: argon stirring, One or more of nitrogen agitation, nitrogen-argon mixed gas agitation, reducing gas agitation, oxidizing gas, electromagnetic stirring, and mechanical agitation.
  • the copper-rich phase and the iron-rich phase in the slag are aggregated, grown and settled, which is favorable for the silicate to float.
  • the oxidizing gas is one of preheated air, oxygen, oxygen-enriched air, argon-air, argon-oxygen, nitrogen-air, nitrogen-oxygen, and the preheating temperature is 0-1200 ° C
  • the injection method is one or several of the slag inserted into the slag by the refractory spray gun or placed in the upper part or the side or bottom of the reaction slag.
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a car bottom furnace, a shaft furnace, a rotary kiln, an induction furnace as a reduction device, and uses a gas-based or coal-based reduction technology
  • the gas base is natural gas and/or
  • the gas and coal are reduced to one or more of anthracite, bituminous coal, lignite, coking coal, coke powder and coke
  • the reduction temperature is 900-1400 ° C
  • the alkalinity CaO/SiO 2 ratio is 0.8-1.5.
  • the cooling mode is natural cooling or rotary cooling or centrifugal cooling
  • the sedimentation mode is natural sedimentation or rotary sedimentation or centrifugal sedimentation.
  • the specific operation of the rotation and the centrifugal cooling is: the device containing the slag after the reaction is completed is placed on the rotating platform, and is rotated according to a certain speed, and the rotation speed depends on the quality of the slag and the height or depth of the heat preservation device.
  • the rotation time depends on the slag quality and the slag solidification condition; the device containing the slag after the completion of the reaction is placed on the rotating platform for the purpose of accelerating the copper-rich phase, the iron-rich phase gathering, growing up and Settling is beneficial to the silicate (phosphorus-rich phase) floating.
  • step S2 in the slag cooling process after the completion of the reaction, most of the copper-rich phase settles in the middle and lower portions due to the difference in density and the mineral size, and the iron-rich phase settles in the middle and upper portions.
  • the copper component and the gold and silver component in the slag after the reaction is completed to migrate, enrich in the copper-rich phase, and realize growth and sedimentation, or partial copper component is enriched in the iron-rich phase.
  • the iron components in the mixed slag continue to migrate, enrich in the iron-rich phase, and achieve growth and sedimentation.
  • the gravity sorting method is a shaker sorting, a chute sorting or a combination of the two.
  • the finally obtained iron-rich phase and slag containing iron silicate mineral phase contains copper ⁇ 0.1%, the iron recovery rate is ⁇ 95%, and the zinc recovery rate is ⁇ 95%, lead recovery is ⁇ 94%, indium recovery is ⁇ 91%, gold enrichment rate is ⁇ 90%, silver enrichment rate is ⁇ 90%, nickel enrichment rate is ⁇ 92%
  • the cobalt enrichment rate is ⁇ 92%, the ruthenium recovery rate is ⁇ 92%, the sodium recovery rate is ⁇ 93%, and the potassium recovery rate is ⁇ 93%.
  • the copper content of the slag refers to the slag phase after the copper-rich phase separation, specifically the copper content in the iron-rich phase and the iron-containing silicate mineral phase, and the nickel and cobalt enrichment ratio refers to the nickel in the copper-rich phase.
  • the content of cobalt accounts for the percentage of the total amount of nickel and cobalt in the raw material.
  • the enrichment ratio of gold and silver refers to the percentage of gold and silver in the copper-rich phase as a percentage of the total amount of gold and silver in the raw material.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding cold zinc smelting slag (zinc leaching slag and volatile kiln slag) to a DC arc furnace, simultaneously adding lime, and SiO 2 , MgO, Al 2 O 3 to form mixed slag; mixing slag Heating to a molten state, forming a copper-containing reaction slag, adding a copper oxide concentrate, and allowing the reaction slag to be naturally mixed; monitoring the reaction slag in real time, and simultaneously obtaining two parameters (a) and (b) by regulation The slag after the reaction is completed;
  • the temperature of the copper-containing reaction slag is 1660 ° C
  • the refractory spray gun is inserted into the reaction slag, and the nitrogen gas with a preheating temperature of 1100 ° C is used as the loading gas, and the copper slag having a powder particle size of ⁇ 150 ⁇ m at normal temperature is sprayed.
  • the alkalinity CaO/SiO 2 ratio of the copper-containing reaction slag is 1.8, and a mixture of silica, fly ash and coal gangue is added to the reaction slag to reduce the alkalinity ratio of the copper-containing reaction slag to 1.7;
  • the metal iron content in the slag is 0.5%.
  • Step 2 separation and recovery method 1:
  • the slag after the completion of the reaction is naturally settled, and the slag-gold is separated to obtain a molten copper-rich phase, an iron-rich phase and a ferrosilicate-containing mineral phase, and at the same time, a zinc-containing component, a lead-containing component, and a cerium-containing component are formed.
  • the component and the indium-containing component enter the soot recovery, and the following steps are performed:
  • the molten iron-containing silicate mineral phase is treated by the external slag treatment, and the method F is used.
  • the iron-containing silicate slag is air-cooled, it is used as a direct reduction ironmaking raw material, and in the direct reduction process, the rotary kiln is used.
  • the gas-based reducing agent is natural gas and gas
  • the reduction temperature is 900 ° C
  • the alkalinity CaO / SiO 2 ratio is 0.8
  • the electric furnace melting temperature is 1450 ° C after reduction
  • the product is metal molten iron.
  • slag the gas-based reducing agent
  • the molten iron-rich phase is poured into the heat preservation device, and is used as a raw material for blast furnace ironmaking after air cooling;
  • the zinc-containing component, the lead-containing component, the cerium-containing component, the indium-containing component, the sodium-containing component and the potassium-containing component are volatilized, and are collected into the soot.
  • the finally obtained slag contains copper ⁇ 0.1%, zinc recovery rate is 96%, lead recovery rate is 95%, iron recovery rate is 97%, indium recovery rate is 92%, hydrazine recovery rate is 92%, gold rich
  • the set rate was 91%, the silver enrichment rate was 92%, the sodium recovery was 95%, and the potassium recovery was 95%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding cold zinc smelting slag (zinc leaching slag) to the pourable smelting reaction slag, adding limestone, dolomite, red mud and FeO and Fe 2 O 3 to form mixed slag and adding at the same time Copper oxide concentrate and copper sulfide concentrate; using oxygen-enriched air with a preheating temperature of 800 ° C, blowing natural gas, anthracite with a particle size of 20 mm and coke particles, heating the mixed slag to a molten state to form a copper-containing reaction slag; The reaction slag is monitored in real time, and the slag after completion of the reaction is obtained by controlling and simultaneously ensuring two parameters (a) and (b);
  • copper-containing reaction slag temperature is 1520 °C, using refractory spray gun to insert into the reaction slag, using normal temperature argon as carrier gas, spraying normal temperature powder particle size ⁇ 150 ⁇ m copper slag, copper-containing soot, copper, steel Sintering dust, sintered pellet dust, iron plant dust, ordinary iron concentrate direct reduced iron, the temperature is reduced to 1440 ° C;
  • Step 2 separation and recovery method 2:
  • the slag is rotated and settled, and the slag-gold is separated to obtain a molten copper-rich phase, an iron-rich phase and a ferrosilicate-containing mineral phase, and at the same time, a zinc-containing component, a lead-containing component, a bismuth-containing component, and a
  • the indium component, the sodium component, and the potassium component, the phases enter the soot to perform the following steps:
  • the above iron-containing slag is poured into a pourable converter, and an anthracite coal and bituminous coal having a particle size of 20 mm are added to the slag for smelting reduction, and the reaction slag is monitored in real time, and the following (a) reaction melting is ensured by regulation.
  • the temperature of the reaction slag is 1480 ° C, in the temperature range;
  • the zinc-containing component, the lead-containing component, the cerium-containing component, the indium-containing component, the sodium-containing component, and the potassium-containing component are volatilized and recovered as an oxide.
  • the finally obtained slag contains copper ⁇ 0.1%, zinc recovery rate is 97%, lead recovery rate is 97%, iron recovery rate is 98%, indium recovery rate is 94%, hydrazine recovery rate is 95%, gold rich
  • the collection rate was 92%, the silver enrichment rate was 93%, the sodium recovery rate was 93%, and the potassium recovery rate was 94%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 Slag mixing: adding zinc smelting slag (hot volatile kiln slag obtained from the outlet of the volatilization kiln) to a DC arc furnace, adding limestone and decalcified high calcium red mud to form mixed slag, and adding vulcanization at the same time.
  • Copper concentrate with an oxygen preheating temperature of 900 ° C, blowing anthracite, coke and pulverized coal with a particle size of 20 mm, heating the mixed slag to a molten state, forming a copper-containing reaction slag, mechanically stirring and mixing; monitoring the reaction in real time
  • the slag is obtained by controlling and simultaneously ensuring two parameters (a) and (b), and obtaining the slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1685 ° C, adding acid metallized pellets, copper smelting slag and copper-containing blowing slag to the reaction slag, and adding copper-containing soot, lead-containing slag, ordinary iron Concentrate pellets, rolled iron oxide phosphorus and ordinary iron concentrates containing carbon pre-reduction pellets, reducing the temperature to 1420 ° C;
  • the alkalinity CaO/SiO 2 ratio of the copper-containing reaction slag is 2.3, and a mixture of quartz sand, red mud, and wet zinc smelting kiln slag is added to the reaction slag to make the alkali of the copper-containing reaction slag The ratio is reduced to 1.6; the metal iron content in the slag is 1.8%.
  • Step 2 separation and recovery method 2:
  • the slag naturally settles and the slag-gold separates to obtain a molten copper-rich white copper phase, an iron-rich ice copper phase layer and a copper-containing silicate mineral phase, and simultaneously form a zinc-containing component and lead.
  • the component, the cerium-containing component and the indium-containing component are volatilized, and are collected into the soot to be recovered, and the following steps are performed:
  • the molten iron-rich phase and the iron-containing silicate mineral phase act as direct reduction ironmaking raw materials.
  • some zinc components, lead components, indium components and strontium components volatilize and enter the soot; direct reduction
  • the finally obtained slag contains copper ⁇ 0.1%, the recovery of iron is 98%, the recovery of zinc is 97%, the recovery of lead is 96%, the recovery of indium is 93%, and the recovery of hydrazine is 94%.
  • the gold enrichment rate is 92%, and the silver enrichment rate is 93%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding cold zinc smelting slag (iron slag) to a DC arc furnace, simultaneously adding dolomite, MgO, Al 2 O 3 and Fe to form a mixed slag; heating the mixed slag to a molten state, Forming copper-containing reaction slag, adding copper oxide concentrate and copper-containing material (copper slag, lead-containing smelting furnace slag) and electromagnetically stirring the reaction slag to achieve mixing; monitoring reaction slag in real time, ensuring by regulation (a And (b) two parameters to obtain the slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1670 ° C, and red mud, coal dust ash, sulfuric acid slag, fluorite, lead ice copper, lead-containing soot, zinc-containing soot, arsenic matte copper are added to the reaction slag. And wet zinc slag, the temperature is lowered to 1440 ° C;
  • the ratio of alkalinity CaO/SiO 2 of the copper-containing reaction slag is 2.0, and the copper-containing blowing slag is added to the reaction slag to reduce the alkalinity ratio of the copper-containing reaction slag to 1.7; and the preheating temperature is 1100 ° C
  • the air, coke particles with a particle size of 20 mm, sprayed natural gas, and the metal iron content in the slag was 1.3%.
  • Step 2 separation and recovery method 2:
  • the slag naturally settles and the slag-gold separates to obtain a molten copper-rich phase, an iron-rich phase and an iron-containing silicate mineral phase, and at the same time, a zinc-containing component, a lead-containing component, a cerium-containing component and a
  • the indium component enters the soot recovery in the form of an oxide, and the following steps are performed:
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is 97%, the zinc recovery rate is 98%, the lead recovery rate is 95%, the indium recovery rate is 94%, and the ruthenium recovery rate is 93%.
  • the gold enrichment rate is 91%, and the silver enrichment rate is 90%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding zinc smelting slag (hot state vertical tank zinc slag, molten vortex smelting slag obtained by slag outlet, molten blast furnace slag and molten electric furnace slag) to the thermal insulation slag tank, adding limestone and Fe to form a mixture Slag, at the same time add sulphide ore concentrate and copper-containing materials (copper fire refining slag, copper-containing soot, copper and copper-containing garbage); with 800 ° C of oxygen-enriched air, spray particle size ⁇ 150 ⁇ m bituminous coal, will be mixed and melted
  • the slag is heated to a molten state to form a copper-containing reaction slag, and the reaction slag is mixed; the reaction slag is monitored in real time, and two parameters (a) and (b) are simultaneously controlled to obtain the completed slag;
  • the temperature of the copper-containing reaction slag is 1430 ° C;
  • Settlement cooling the slag after the completion of the reaction is naturally cooled to room temperature to obtain slow cooling slag; the copper-rich phase settles to the bottom of the reaction device to form a copper-rich bismuth; the iron-containing silicate mineral phase floats; the copper-rich bismuth and The intermediate chilled slag containing iron silicate mineral is an iron-rich phase, and at the same time, a zinc-containing component, an indium-containing component, a cerium-containing component and a lead-containing component are formed;
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is 98%, the zinc recovery rate is 96%, the lead recovery rate is 96%, the indium recovery rate is 92%, and the ruthenium recovery rate is 93%.
  • the gold enrichment rate is 93%, and the silver enrichment rate is 93%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding cold zinc smelting slag (salted iron slag, goethite slag, hematite slag) to an AC arc furnace, while adding lime, MgO, Al 2 O 3 , Fe 2 O 3 Forming mixed slag, adding copper oxide concentrate and copper-containing material (lead smelting slag, arsenic pentoxide, lead blister copper and lead fire refining slag); heating the mixed slag to a molten state to form a copper-containing reaction
  • the slag is sprayed into argon gas with a preheating temperature of 1100 ° C, and the reaction slag is mixed; the reaction slag is monitored in real time, and two parameters (a) and (b) are simultaneously controlled to obtain the melting after the reaction is completed.
  • Slag cold zinc smelting slag
  • the temperature of the copper-containing reaction slag is 1080 ° C, and the electric arc furnace is heated to raise the temperature to 1330 ° C;
  • the alkalinity CaO/SiO 2 ratio of the copper-containing reaction slag is 0.1, and the basic iron concentrate, the converter sludge, the alkaline pre-reduction pellet, and the high-calcium red mud after sodium removal are added to the reaction slag.
  • the alkalinity ratio of the copper-containing reaction slag is raised to 0.3; the metal iron content in the slag is 1.5%.
  • Step 2 separation and recovery method 1:
  • the slag is naturally settled and the slag-gold is separated to obtain a molten copper-rich phase, an iron-rich phase and an iron-containing silicate mineral phase, and at the same time, a zinc-containing component, an indium-containing component, a cerium-containing component and a
  • the lead component is volatilized and volatilized into the soot to be recovered, and the following steps are performed:
  • the zinc-containing component, the indium-containing component, the cerium-containing component, the lead-containing component, the sodium-containing component and the potassium-containing component are volatilized, and are collected into the soot.
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is 97%, the zinc recovery rate is 96%, the lead recovery rate is 98%, the indium recovery rate is 92%, and the ruthenium recovery rate is 94%.
  • the gold enrichment rate is 92%, the silver enrichment rate is 92%, the sodium recovery rate is 95%, and the potassium recovery rate is 96%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding zinc smelting slag (hot vertical tank zinc slag obtained from the slag outlet) to the submerged arc furnace, adding limestone, SiO 2 , FeO and MgO to form mixed slag, and adding copper oxide fine Mine and copper-containing materials (nickel smelting slag "sulphur smelting” nickel smelting slag, "copper ice nickel blowing” nickel blowing slag, nickel blowing slag depleted slag obtained by fire depletion, nickel top blowing pool).
  • the molten slag and the smelting slag of the molten pool are obtained by the sedimentation electric furnace; the mixed slag is heated to a molten state to form a copper-containing reaction slag, and an argon-nitrogen mixed gas having a preheating temperature of 800 ° C is sprayed, and The reaction slag is mixed; the reaction slag is monitored in real time, and the slag after the
  • the temperature of the copper-containing reaction slag is 1320 ° C;
  • the ratio of alkalinity CaO/SiO 2 of the copper-containing reaction slag is 0.8, which is within the required range; the pulverized coal with a particle size of ⁇ 150 ⁇ m and natural gas are added, and the content of metallic iron in the slag is 0.8%.
  • Step 2 separation and recovery method 4:
  • phase layer and the iron-containing silicate mineral phase simultaneously form a zinc-containing component, a lead-containing component, a cerium-containing component and an indium-containing component, and enter the soot to be recovered and recovered, and the following steps are performed:
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 96%, zinc recovery rate is 95%, lead recovery rate is 96%, indium recovery rate is 94%, and strontium recovery rate is 92%.
  • the gold enrichment rate is 93%, and the silver enrichment rate is 91%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding zinc smelting slag (melting vortex melting furnace slag obtained at the discharge port) to the blast furnace, adding dolomite, red mud, MgO, and adding copper sulfide concentrate and copper oxide concentrate at the same time, using preheating temperature For 200 ° C oxygen, spray gas and particle size ⁇ 150 ⁇ m coke powder, the mixed slag is heated to a molten state, forming a copper-containing reaction slag, and the reaction slag is mixed; real-time monitoring of the reaction slag, through regulation and control Guarantee the two parameters (a) and (b) to obtain the slag after the completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1330 ° C;
  • the slag After 5 minutes of heat preservation, the slag is naturally settled, and the slag-gold is separated to obtain a copper-rich phase, a ferrosilicate-containing mineral phase and an iron-rich phase in the middle and upper portions, and a zinc-containing component, a lead-containing component, and a cerium-containing component.
  • the indium-containing component enter the soot to be recovered, and perform the following steps:
  • the iron-rich phase is subjected to water quenching or air cooling or pouring into a heat preservation device for slow cooling, it is used as a blast furnace ironmaking raw material or directly reduces ironmaking.
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is 97%, the zinc recovery rate is 96%, the lead recovery rate is 97%, the indium recovery rate is 93%, and the ruthenium recovery rate is 92%.
  • the gold enrichment rate is 91%, and the silver enrichment rate is 90%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding zinc smelting slag (melting blast furnace slag obtained at the discharge port) to the side blowing furnace, adding limestone at the same time to form mixed slag, and adding copper oxide concentrate and copper-containing material (copper slag, copper fire) Method for refining slag and copper-containing circuit board); spraying ⁇ 150 ⁇ m coke powder with air having a preheating temperature of 900 ° C, heating the mixed slag to a molten state, forming a copper-containing reaction slag, and mixing the reaction slag; The reaction slag is monitored in real time, and the slag after completion of the reaction is obtained by controlling and simultaneously ensuring two parameters (a) and (b);
  • the temperature of the copper-containing reaction slag is 1340 ° C;
  • Step 2 separation and recovery method 2:
  • the iron-containing slag of the iron-rich phase simultaneously forming a zinc-containing component, a lead-containing component, a bismuth-containing component and an indium-containing component, and entering the soot recovery, performing the following steps:
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 95%, zinc recovery rate is 97%, lead recovery rate is 94%, indium recovery rate is 93%, and ruthenium recovery rate is 92%.
  • the gold enrichment rate is 92%, and the silver enrichment rate is 93%.
  • a method for smelting reduction production of zinc smelting furnace slag comprises the following steps:
  • Step 1 slag mixing: adding zinc smelting slag (melted electric furnace slag obtained at the discharge port) to the thermal insulation pit, adding limestone and Fe at the same time, forming mixed slag, adding copper oxide concentrate at the same time; using preheating temperature of 600 ° C
  • the oxygen-enriched air is sprayed with bituminous coal with a particle size of ⁇ 150 ⁇ m, and the mixed slag is heated to a molten state to form a copper-containing reaction slag, and the reaction slag is mixed; the reaction slag is monitored in real time, and the (a) and (b) two parameters to obtain the slag after completion of the reaction;
  • the temperature of the copper-containing reaction slag is 1430 ° C;
  • the finally obtained slag contains copper ⁇ 0.1%, iron recovery rate is 98%, zinc recovery rate is 96%, lead recovery rate is 95%, indium recovery rate is 93%, and ruthenium recovery rate is 92%.
  • the gold enrichment rate is 92%, and the silver enrichment rate is 91%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种锌冶炼炉渣熔融还原生产的方法。其包括以下步骤:S1、将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中,并加入钙系矿物与添加剂,加热至熔融态,同时加入氧化铜矿物、硫化铜矿物、含铜物料中的一种或多种,实时监测反应熔渣,通过调控反应熔渣的温度及碱度CaO/SiO2比值,获得熔渣;S2、得到的熔渣,沉降分离获得含铁硅酸盐矿物相、富铜相与富铁相及含锌、含铅、含铋与含铟的烟尘,金银组分迁移、富集进入富铜相,对各相进行分离处理。本方法不仅能够降低渣含铜(渣含铜<0.1wt%),而且能够实现铜、铁、金、银、铅、锌、铟、铋、钠、钾等组分的高效回收,获得低铜含铁物料,金属回收率高,生产成本低,环境友好,经济收益高。

Description

锌冶炼炉渣熔融还原生产的方法 技术领域
本发明属于资源综合利用与熔渣冶金技术领域,具体涉及一种锌冶炼炉渣熔融还原生产的方法。
背景技术
锌冶炼工艺包括湿法炼锌与竖罐炼锌两种工艺,两种工艺产生大量锌冶炼炉渣,其中湿法炼锌产生锌浸出渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣等,竖罐炼锌产生竖罐炼锌炉渣。锌冶炼炉渣含有铜、铁、锌、铅、铟、金、银等二次资源,其中铁含量高达50%,远超铁矿石的可采品位(可采品位,铁含量>26wt%),铜含量高达2%,远超铜矿可采品位(可采品位,铜含量>0.2wt%),锌含量高达25%。目前,锌冶炼渣采用挥发窑、烟化炉、鼓风炉、旋涡熔炼等工艺进行处理回收,仅回收部分铅、锌、银等组分,没有考虑铜、铁、金等有价组分的回收,而且能耗高,污染大。
目前,大量锌冶炼炉渣堆积,锌冶炼炉渣含有大量重金属离子,不仅带来严重的环境污染,而且造成资源浪费。因此,如何清洁、高效利用锌冶炼炉渣回收有价组分是一个亟待解决的问题。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种锌冶炼炉渣熔融还原生产的方法,该方法能够充分利用熔融渣物理热资源和热态冶金熔剂,通过处理锌冶炼渣与氧化铜矿物,实现熔渣冶金、火法炼铜与炼铁,能够降低渣含铜(渣含铜<0.1wt%),同时实现铜、铁、铅、锌、金、银、铟、铋、钠、钾等组分的高效回收,金属回收率高,生产成本低,环境友好,经济收益高。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案如下:
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
S1、炉渣混合:将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中,并加入钙系矿物与添加剂,将熔渣加热至熔融状态,形成含铜与铁的反应熔渣,同时加入氧化铜矿物、硫化铜矿物、含铜物料中的一种或多种,混合均匀,并实时监测反应熔渣,通过调控使反应熔渣同时满足a和b两个条件,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
其中,a:调控反应熔渣的温度为1100~1450℃;
b:调控反应熔渣的碱度CaO/SiO2比值=0.2~2.0;
S2、分离回收:步骤S1得到的熔渣,保温5~50min,沉降分离获得中上部含铁硅酸盐矿物相、底部富铜相与中下部富铁相,同时生产含锌组分、含铅组分、含铋组分与含铟组分的烟尘,金银组分迁移、富集进入富铜相;对各相进行回收处理。
根据本发明,在步骤S1中,条件a的调控方法为:
当反应熔渣的温度<1100℃时,通过反应装置自身的加热功能,或向熔渣中加入燃料或熔融锌冶炼渣,使反应熔渣的温度达到1100~1450℃范围内;
当反应熔渣的温度>1450℃时,向反应熔渣中加入含铜物料、锌冶炼渣、冶金熔剂、含铁物料、氧化铜矿物、含氟物料中的一种或几种,使反应熔渣的温度达到1100~1450℃范围内;
在步骤S1中,条件b的调控方法为:
当反应熔渣的碱度CaO/SiO2比值<0.2时,向反应熔渣中加入碱性物料、碱性氧化铜矿物、硫化铜矿物、含铜物料、碱性含铁物料中的一种或几种;
当反应熔渣的碱度CaO/SiO2比值>2.0时,向反应熔渣中加入酸性物料、酸性氧化铜矿物、酸性硫化铜矿物、酸性含铁物料、酸性含金银物料中的一种或几种。
根据本发明,所述保温装置为可倾倒的熔炼反应渣灌、保温地坑中的一种或两种;
所述熔渣可流出的熔炼反应装置为可倾倒的熔炼反应装置或底部带有渣口或铁口的固定式熔炼反应装置;
所述可倾倒的熔炼反应装置为转炉、熔炼反应渣罐中的一种或两种;
所述带有渣口或铁口的固定式熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉中的一种或几种。
根据本发明,在所述步骤S1中,满足所述条件a和b的同时,应同时满足所述熔渣中铜和铁氧化物还原为金属铜和FeO,熔渣中金属铁含量<3%。通过加入还原剂、含固体碳的含铁物料中的一种或两种,熔渣中还原剂和/或含固体碳的含铁物料用量为熔渣中铜和铁氧化物还原为金属铜和FeO的理论量110~140%;所述含碳的含铁物料为钢铁尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣、焦炭炉尘泥与烟灰。
根据本发明,所述锌冶炼炉渣是湿法炼锌产生的炉渣、火法炼锌产生的炉渣中的一种或两种;锌冶炼炉渣为熔融态或热态或冷态,熔融火法炼锌渣渣由旋涡熔炼炉、鼓风炉、烟化炉、电炉出渣口获得,热态锌冶炼渣由挥发窑出料口、竖罐出渣口获得,或将锌冶炼渣加热至熔融状态;
其中,所述湿法炼锌产生的炉渣是锌浸出渣、挥发窑渣、铜镉渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣中的一种或多种,所述火法炼锌产生的炉渣是竖罐炼锌炉渣、旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣中的一种或多种;所述湿法炼锌产生的炉渣均需经过烘干、脱水处理,旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣由熔炼炉出渣口获得,挥发窑渣由挥发窑出料口获得,竖罐炼锌炉渣由竖罐出料口获得;
所述钙系矿物为石灰、石灰石、白云石、电石渣、赤泥、脱钠后高钙赤泥中的一种或几种;
所述添加剂为SiO2、MgO、FeO、Fe2O3、MnO2、Al2O3、TiO2、P2O5、Fe、Na2O中的一种或几种;
所述氧化铜矿物包括赤铜矿、黑铜矿、孔雀石、蓝铜矿、硅孔雀石、胆矾中的一种或多种;所述硫化铜矿物包括辉铜矿、铜蓝、黄铜矿、斑铜矿、硫砷铜矿、黝铜矿中的一种或多种。
根据本发明,所述含铜物料是铜渣、选铜尾矿、粗铜火法精炼渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾渣、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、镍冶炼渣、锡尾矿中的一种或几种;
所述铜渣是造锍熔炼”产生的炉渣、“铜鋶吹炼”产生的炉渣、火法贫化炉渣、铜渣浮选尾渣、湿法炼铜渣中的一种或几种;
所述冶金熔剂为含CaO或SiO2的矿物与炉渣,优选为石英砂、含金银石英砂、 赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种;
所述含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、镍冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;
所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣中一种或多种;
所述铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;
所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热/冷轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;
所述含氟物料是萤石、CaF2、含氟高炉渣中的一种或几种;
所述含铜物料、含铁物料和含氟物料均为球团或粉状物料或制粒;
其中,粉状物料的粒度≤150μm,粒状物料粒度为5-25mm,粉状物料以喷吹的方式喷入,粒状物料以喷吹或投料的方式加入,载入气体为预热的氩气、氮气、还原性气体、氧化性气体中的一种或多种,预热温度为0-1200℃。
根据本发明,所述的碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中一种或几种;所述碱性含铁物料为CaO/SiO2>1碱性烧结矿、钢渣、铁合金渣、碱性铁精矿、碱性预还原球团、碱性金属化球团、碱性高炉渣中的一种或几种;
所述的酸性物料为硅石、粉煤灰、煤矸石中的一种或多种;所述的酸性含铁物料为CaO/SiO2≤1的酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、酸性高炉渣中的一种或几种。
根据本发明,在步骤S2中的分离回收进行如下处理:
含有热态或冷态所述富铜相,送往转炉或吹炼炉炼铜,或缓冷破碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
所述含锌组分、含铅组分、含铋组分与含铟组分挥发,以氧化物形式进入烟尘回收;
含有所述含铁硅酸盐矿物相和/或所述富铁相,采用以下方法A-G中的任一种进行熔渣处理:
方法A:水淬或空冷后,直接用于水泥原料:
方法B:返回到反应混合熔渣中作为热态冶金熔剂:
方法C:用于浇筑微晶玻璃或作为矿渣棉;
方法D:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中,吹入温度为0~1200℃的预热氧化性气体,并保证硅酸盐熔渣温度>1460℃;当熔渣氧化亚铁含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法E:用于生产高附加值的水泥熟料,方法如下:
E-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或 将熔渣倒入保温装置,向熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后高钙赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
E-2、向所述熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1460℃;当氧化亚铁含量<1%,获得氧化后的熔渣;
E-3、对所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣作为高炉炼铁原料或直接还原炼铁原料:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
或,将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入预热温度为0~1200℃的氧化性气体,并保证熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
方法G:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣熔融还原炼铁,包括如下步骤:
G-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足以下条件:反应熔渣的温度为1350~1670℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
G-2、向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时满足以下条件:反应完成后的熔渣的温度为1350~1670℃和反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4;
G-3、采用以下两种方法中的一种进行分离回收:
方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,缓慢冷却至室温,获得缓冷渣;金属铁沉降到反应装置的底部,形成铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
方法Ⅱ:还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;还原后的熔渣,按照A~E中的一种或几种,进行熔渣处理;铁水送往转炉或电炉炼钢;
或,含有所述富铁相水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原炼铁的原料;浮选过程中,浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
所述直接还原过程采用转底炉、隧道窑、车底炉、竖炉、回转窑、感应炉中的任一种作为还原设备,利用气基或煤基还原技术,气基为天然气和/或煤气,煤基为无烟煤、烟煤、褐煤、焦煤、焦粉、焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5;还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源;
此外,因赤泥中含有钾、钠,尘泥与钢铁烟灰中含有铅、锌、铋、铟银,所以添加这些原料时,部分铟组分、铋组分、含钾组分、含钠组分挥发,以氧化物形式 进入烟尘。
根据本发明,所述的步骤S2中,冷却方式为自然冷却或旋转冷却或离心冷却,沉降方式为自然沉降或旋转沉降或离心沉降;
所述混合均匀为自然混合或搅拌混合,搅拌混合为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌、机械搅拌中的一种或几种。
根据本发明,所述燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,所述喷吹载入气体为预热的氧化性气体、氮气或氩气中的一种或多种,所述预热的温度为0~1200℃;
所述固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm,所述液体燃料与还原剂为重油,所述气体燃料与还原剂为煤气和/或天然气;
所述氧化性气体为预热的空气、氧气、富氧空气、氩气-空气、氩气-氧气、氮气-空气、氮气-氧气中的一种。
本发明锌冶炼炉渣熔融还原生产的方法,充分利用熔融渣物理热资源和热态冶金熔剂,通过处理锌冶炼渣与氧化铜矿物,实现了熔渣冶金、火法炼铜与炼铁:①熔渣中热态熔剂发生反应,通过成熟渣系的熔渣冶金反应,铁氧化物充分释放出来,形成富铁相,实现长大与沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼铁或直接还原或熔融还原炼铁的原料;②通过熔渣冶金反应,铜的氧化物矿相充分释放,控制熔渣氧位,熔渣中的铜组分、金银组分分别迁移、富集于富铜相,富铜相包含铜、白冰铜、冰铜相、含铁成分中的多种,并实现长大与沉降,或部分铜组分进入富铁相;③熔渣中的锌组分富集于烟尘加以回收;④熔渣中的铅组分、铟组分、铋组分富集于烟尘加以回收;⑤实现二氧化硫的回收;⑥采用人工分拣、磁选、重选或渣金沉降的方法,分离沉降在不同部位的富铜相、富铁相与含铁硅酸盐相,富铜相分离后,富铁相与含铁硅酸盐相中铜含量<0.1%;⑦低铜富铁相与含铁硅酸盐相通过直接还原或熔融还原,获得金属铁与铁水;可以处理固态、热态含铜炉渣、氧化铜矿物、含金银矿物,达到资源高效综合利用的目的。
与现有技术相比,本发明的特点是:
(1)本发明的由锌冶炼炉渣生产的方法,既可以处理热态熔渣,又可以处理冷态炉渣,充分利用熔融渣物理热资源和热态冶金熔剂,处理氧化铜矿物,实现了既可以处理锌冶炼炉渣,又可以处理氧化铜矿物,是一种新的铜冶炼工艺,实现铜与铁的生产;并解决目前炉渣大量堆积,环境污染问题,及重金属元素污染问题。
(2)熔渣中的熔渣冶金反应,加入钙系矿物,使铁氧化物充分释放出来,形成游离态的铁氧化物,实现富铁相的长大与沉降,熔渣中的含铁组分聚集、长大与沉降;同时钙系矿物使粘度降低,有助于含铜组分与含铁组分沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种。
(3)熔渣中的铜组分、金银组分分别迁移、富集于富铜相,富铜相包含铜、白冰铜、冰铜相、含铁成分的多种,并实现长大与沉降,或部分铜组分进入富铁相。
(4)熔渣中的含锌组分、含铅组分、含铋组分与含铟组分分别迁移、富集于烟尘中,并实现回收;部分含钠组分、含钾组分挥发进入烟尘,并加以回收。
(5)分离沉降在不同部位的富铜相铁氧化物,实现熔渣中铜组分、铁组分的高效回收,渣含铜<0.1wt%,可以处理固态含铜物料,达到资源高效综合利用。
(6)熔渣实现调质,可作为水泥原料或建筑材料或代替碎石作骨料和路材,尾渣 利用价值大,整个过程无固体废弃物产生。
(7)本发明的方法中加入添加剂,一方面可降低粘度,另一方面可降低熔点,在一定温度(1100-1450℃)下有助于富铜相沉降,沉降分离后获得的富铁相为低铜富铁相与含铁硅酸盐相,其中富铁相与含铁硅酸盐相的含铜量小于0.1%,可以通过直接还原或熔融还原炼铁,获得铁精矿与金属铁。
(8)本发明方法可连续或间断的进行,工艺流程短,清洁环保,金属回收率高。
(三)有益效果
发明的有益效果:
(1)本发明通过熔渣冶金可以实现炉渣中铜组分、金银、铁组分、锌组分、铅组分、铟组分、铋组分、钠组分、钾组分等有价组分的综合利用,解决炉渣大量堆积问题,可以大规模处理氧化铜矿物,实现同时生产铜与铁,解决了氧化铜矿物难处理与含铁组分回收两大世界性难题。
(2)本发明的锌冶炼炉渣可以是出渣口中流出的液态锌冶炼炉渣(旋涡熔炼炉渣或鼓风炉渣)(≥1100℃),具有高温度、高热量的特点,充分利用了熔渣物理热资源;液态熔融锌冶炼渣含有大量的热态冶金熔剂,是物理化学性质优良的熔渣体系,实现了熔渣冶金。
(3)本发明通过熔渣冶金,同时加入钙系矿物,使铁橄榄石相中铁氧化物释放出来,富集于富铁相,实现聚集、长大与沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼铁或直接还原或熔融还原炼铁的原料;熔渣中铜组分、金银组分迁移到富铜相,实现聚集、长大与沉降,富铜相包含铜、白冰铜、冰铜相、含铁成分的多种,或部分铜组分进入富铁相;铅组分、锌组分、铋组分、铟组分、钠组分、钾组分挥发以氧化物形式进入烟尘,加以回收。
(4)本发明方法中,加入冷态物料与液态锌冶炼炉渣,避免了熔渣温度过高,提高保温装置的寿命;加入冷态物料与液态锌冶炼炉渣,提高了原料处理量,不仅可以处理液态熔渣,而且可以处理少量冷态物料,原料适应性强;加入冷态物料实现了熔渣的化学热与物理热的高效利用。
(5)本发明方法自然冷却过程中,添加剂的加入,熔渣中铜组分、金、银组分分别迁移、富集于富铜相,并实现聚集、长大与沉降;熔渣中铁组分迁移、富集于富铁相,并实现聚集、长大与沉降;装有熔渣的保温装置置于旋转平台上旋转,加速富铜相、富铁相的聚集、长大与沉降;含氟物料的加入,加速富铜相、富铁相的聚集、长大与沉降。
(6)本发明方法采用人工分拣、磁选、重选或渣-金分离的方法,分别对分布在上部、中部与底部的含铁硅酸盐矿物相、富铁相、富铜相进行分离,实现熔渣中有价组分的高效回收,渣含铜<0.1wt%;由于富铜相、富铁相沉降在中、下部,分选炉渣量小,熔渣实现调质,矿物可磨性增加,分离成本低;采用磁选或重选,分离的介质为水,不会产生环境污染;尾矿作为水泥原料、建筑材料、代替碎石作骨料、路材使用。
(8)低铜富铁相与含铁硅酸盐相可以作为高炉炼铁或直接还原或熔融还原炼铁原料,获得金属铁与铁水。
(9)本发明利用熔渣冶金,不仅实现熔渣中有价组分高效回收,而且实现氧化铜矿物的大规模生产,同时生产铜与铁,是一种新的铜冶炼工艺。该方法工艺流程短、金属回收率高、生产成本低、原料适应性强、处理量大、环境友好、经济收益高、可有效解决冶金资源与热能高效回收利用问题。
具体实施方式
本发明提出一种锌冶炼炉渣熔融还原生产的方法,其包括以下步骤:
步骤S1,炉渣混合:
将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中,并加入钙系矿物与添加剂,将熔渣加热至熔融状态,形成含铜与铁的反应熔渣,同时加入氧化铜矿物、硫化铜矿物、含铜物料中的一种或多种,混合均匀,并实时监测反应熔渣,通过调控同时保证如下(a)和(b)两个参数,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
(a)反应熔渣的温度为1100~1450℃;
(b)反应熔渣的碱度CaO/SiO2比值=0.2~2.0;
调控方法为:
对应(a):控制反应熔渣的温度在设定温度范围的方法为:
当含铜反应熔渣的温度<设定温度范围下限1100℃时,通过反应装置自身的加热功能,或向含铜反应熔渣中加入燃料或熔融锌冶炼渣(旋涡熔炼渣和/或鼓风炉熔炼渣),使反应熔渣的温度达到设定温度范围内,加入燃料时,同时喷吹预热氧化性气体;
当含铜反应熔渣的温度>设定温度范围上限1450℃时,向含铜反应熔渣中加入含铜物料、锌冶炼渣、冶金熔剂、含铁物料或含氟物料中的一种或几种,使混合熔渣的温度达到设定温度范围内;
对应(b):
当含铜与铁的反应熔渣中碱度CaO/SiO2比值<0.2时,向反应熔渣中加入碱性物料、碱性氧化铜矿物、硫化铜矿物、含铜物料、碱性含铁物料中的一种或几种;
当含铜与铁的反应熔渣中碱度CaO/SiO2比值>2.0时,向反应熔渣中加入酸性物料、酸性氧化铜矿物、酸性硫化铜矿物、酸性含铁物料、酸性含金银物料中的一种或几种。
步骤S2,分离回收:
反应完成后的熔渣,保温5~50min,沉降,渣-金分离,获得底部熔融态富铜相、中下部熔融态富铁相与中上部的熔融态含铁硅酸盐矿物相,同时生成部分含锌组分、含铅组分与含铟组分进入烟尘,其中,金、银组分迁移到所述富铜相;采用以下方法中的一种:
方法一:采用熔渣可流出熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行熔渣处理;
(2)熔融态富铜相,送往转炉或吹炼炉炼铜或作为铜钴镍分离的原料或碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(3)含锌组分、含铅组分、含铟组分、含铋组分、含钠组分、含钾组分挥发挥发,以氧化物形式进入烟尘回收;
(4)富铁相进行水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原炼铁的原料;浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5。
其中,步骤(1)中的含铁硅酸盐矿物相,进行熔渣处理,采用方法A~G中的一种:
方法A:含铁硅酸盐矿物相作为水泥原料:
含铁硅酸盐矿物相水淬或空冷直接作为水泥原料或进一步处理成高附加值的水泥原料;
方法B:部分或全部含铁硅酸盐矿物相返回到含铜反应熔渣:
部分或全部含铁硅酸盐矿物相返回到含铜反应熔渣,作为热态冶金熔剂,调整含铜反应熔渣成分,控制含铜反应熔渣温度;
方法C:含铁硅酸盐矿物相浇筑微晶玻璃或作为矿渣棉;
方法D:含铁硅酸盐熔渣氧化后空冷或水淬:
(1)含铁硅酸盐熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向熔渣中,吹入预热的氧化性气体,当熔渣氧化亚铁含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(c)硅酸盐熔渣温度>1460℃;
对应(c)采用的控制方法:
当含铁硅酸盐熔渣温度<1460℃,喷入预热燃料与预热的氧化性气体,燃烧放热、补充热量,或装置自身加热,使硅酸盐熔渣温度>1460℃;
(2)氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法E:含铁硅酸盐熔渣处理生产高附加值的水泥熟料:
(1)含铁硅酸盐熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后高钙赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
(2)向熔渣混合物料中吹入预热的氧化性气体,当氧化亚铁含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(d)熔渣混合物料温度>1460℃;温度控制方法同方法D步骤(1)中的硅酸盐熔渣温度控制方法;
(3)氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:含铁硅酸盐矿物相的熔渣作为高炉炼铁原料或直接还原炼铁原料:含铁硅酸盐矿物相的熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
或,将含铁硅酸盐矿物相的熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入0~1200℃的预热的氧化性气体,并保证其熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将上述氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料。
方法G:含铁硅酸盐矿物相的熔渣熔融还原炼铁:
G-1、将含铁硅酸盐矿物相的熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,加入含铁物料,熔渣中加入还原剂,进行熔融还原,实时监测反应熔渣,通过调控同 时保证如下(a1)和(b1)两个参数,获得反应完成后的熔渣;
(a1)反应熔渣的温度为1350~1670℃;
(b1)反应熔渣的碱度CaO/SiO2比值=0.6~2.4;
调控方法为:
对应(a1):
控制反应熔渣的温度在设定温度范围的方法为:
当反应熔渣的温度<设定温度范围下限时,通过反应装置自身的加热功能,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到设定温度范围内;
当反应熔渣的温度>设定温度范围上限时,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到设定温度范围内;
对应(b1):
当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含铁物料;
当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料;
G-2、向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时保证(a2)和(b2)两个参数:
(a2)反应完成后的熔渣的温度为1350~1670℃;
(b2)反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4;
其中,设定温度范围和碱度调控方法同方法G-1步骤;
G-3、分离回收:
采用以下方法中的一种:
方法Ⅰ:进行如下步骤:
(a)冷却:将还原后的混合熔渣倒入保温渣罐,缓慢冷却至室温,获得缓冷渣;
(b)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;(c)尾矿的回收利用,作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥使用;
方法Ⅱ:进行如下步骤:
(a)还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;
(b)还原后的熔渣,进行炉外熔渣处理,具体方式为:采用步骤S2的分离回收方法一中的方法A~E中的一种或几种,进行炉外熔渣处理;
(c)铁水,送往转炉或电炉炼钢;
(d)部分含锌组分、含铅组分与含铟组分挥发,以ZnO、PbO与Ln2O3进入烟尘回收;
(e)部分铟组分、铋组分、钠组分、钾组分挥发进入烟尘加以回收;
(f)还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源。
方法二:采用熔渣可流出的熔炼反应装置时,反应完成后的熔渣进行如下步骤:(1)获得的熔融态富铁相与含铁硅酸盐矿物相,采用方法一中所述方法A~G中的一种或几种进行熔渣处理;
(2)熔融态富铜相,送往转炉炼铜或吹炼炉炼铜或作为铜钴镍分离的原料,或碎 磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(3)部分含锌组分、含铅组分与含铟组分挥发,以氧化物进入烟尘回收;
(4)部分钠组分、钾组分挥发进入烟尘。
方法三:采用熔渣可转动的转炉与反应渣罐时,反应完成后的熔渣进行如下步骤:
(1)获得的熔融态含铁硅酸盐矿物相,采用方法一中所述方法A~G中的一种或几种进行熔渣处理;
(2)富铁相进行水淬或空冷或倒入保温装置缓冷后,作为高炉炼铁原料或直接还原炼铁;
(3)熔融态富铜相或倒入保温装置缓冷后,送往转炉或吹炼炉炼铜,或碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(4)部分含锌组分、含铅组分、含铟组分与含铋组分挥发,以氧化物进入烟尘回收;
(5)部分钠组分、钾组分挥发进入烟尘。
方法四:采用熔渣可转动的转炉与反应渣罐时,反应完成后的熔渣进行如下步骤:
(1)获得的熔融态含铁硅酸盐矿物相与富铁相,采用方法一中所述方法A~G中的一种或几种进行熔渣处理;
(2)熔融态富铜相,送往转炉或吹炼炉炼铜,或缓冷后碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
(3)部分含锌组分、含铅组分、含铟组分与含铋组分挥发,以氧化物进入烟尘回收;
(4)部分钠组分、钾组分挥发进入烟尘。
方法五:采用保温装置或采用熔渣可流出的熔炼反应装置,将熔渣倒入保温装置时,反应完成后的熔渣进行如下步骤:
(1)沉降冷却:反应完成后的熔渣缓慢冷却至室温,获得缓冷渣;富铜相沉降到反应装置的底部,形成富铜坨;含铁硅酸盐矿物相上浮;富铜相金属坨和含铁硅酸盐矿物中间的缓冷渣为富铁相,同时生成含锌组分与含铅组分;金银组分迁移到富铜相;
(2)分离:人工取出沉降在底部的富铜坨,磁选分离金属铁后再送往转炉或吹炼炉炼铜,或碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;中部的富铁相层作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原的原料;在浮选过程中,浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,还原温度为900~1400℃,碱 度CaO/SiO2比值=0.8~1.5;
(3)人工取出上部的含铁硅酸盐矿物相,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料:作为水泥原料、建筑材料、代替碎石作骨料、路材使用;
(4)部分含锌组分、含铅组分、含铟组分与含铋挥发,以氧化物进入烟尘回收;
(5)部分钠组分、钾组分挥发进入烟尘。
所述的步骤S1与S2中,锌冶炼炉渣是湿法炼锌产生的炉渣与火法炼锌产生的炉渣中的一种或两种,其中湿法炼锌产生的炉渣是锌浸出渣、挥发窑渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣中的一种或多种,火法炼锌产生的炉渣是竖罐炼锌炉渣、旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣中的一种或多种。
锌冶炼炉渣为熔融态、热态或冷态,其中:湿法炼锌渣需经烘干、脱水处理,旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣由熔炼炉出渣口获得,挥发窑渣由挥发窑出料口获得,竖罐炼锌炉渣由竖罐出渣口获得,或将锌冶炼渣加热至熔融状态。
所述的步骤S1与S2中,熔渣可流出的熔炼反应装置为可倾倒的熔炼反应装置或底部带有渣口或铁口的固定式熔炼反应装置;其中:
所述的保温装置为可倾倒的熔炼反应渣灌、保温地坑。
所述的可倾倒的熔炼反应装置为转炉、熔炼反应渣罐。
所述的带有渣口或铁口的固定式熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉。
所述的步骤S1中,钙系矿物具体为石灰、石灰石、白云石、电石渣、赤泥或脱钠后高钙赤泥中的一种或几种。
添加剂为SiO2、MgO、FeO、Fe2O3、MnO2、Al2O3、TiO2、P2O5、Fe或Na2O中的一种或几种。
所述的步骤S1中,氧化铜矿物包括赤铜矿、黑铜矿、孔雀石、蓝铜矿、硅孔雀石、胆矾中的一种或多种。
硫化铜矿物包括辉铜矿、铜蓝、黄铜矿、斑铜矿、硫砷铜矿、黝铜矿的一种或多种。
所述的步骤S1中,通过调控同时保证如下(a)和(b)两个参数,同时满足所述熔渣中铜和铁氧化物还原为金属铜和FeO,熔渣中金属铁含量<3%。通过加入还原剂、含固体碳的含铁物料中的一种或两种,熔渣中还原剂和/或含固体碳的含铁物料用量为熔渣中铜和铁氧化物还原为金属铜和FeO的理论量110~140%;所述含碳的含铁物料为钢铁尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣、焦炭炉尘泥与烟灰。
所述的步骤S1与S2中,所述的燃料与还原剂为固体、液体或气体中的一种或多种,以喷吹或投料的方式喷入,载入气体为预热的氧化性气体、氮气、氩气中的一种或几种,预热温度为0~1200℃,固体燃料与还原剂为煤粉、粉煤灰、焦粉、焦炭、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料的粒度为5~25mm,粉状物料的粒度为≤150μm,液体燃料为重油,气体燃料为煤气和/或天然气中的一种或两种。
所述的步骤S1与S2中,含铜物料是铜渣、选铜尾矿、粗铜火法精炼渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾渣、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、镍冶炼渣、锡尾矿中的一种或几种。
锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、烟化炉炉渣、电炉炼锌渣。
铜渣是“造锍熔炼”产生的炉渣、“铜鋶吹炼”产生的炉渣、火法贫化炉渣、铜渣浮选尾渣、湿法炼铜渣中的一种或几种。
铅冶炼渣为烟化炉炉渣、含铅熔炼渣中的一种或两种,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣。
镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣中一种或多种。
冶金熔剂为含CaO或SiO2的矿物,具体为石英砂、含金银石英砂、赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种。
含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、镍冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种。
含铜物料与含铁物料为热态或冷态,其中热态物料由冶金炉出料口或出渣口直接获得。
湿法炼锌渣与尘泥需经脱水、干燥。
钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热/冷轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮。
在上述的原料中,锌冶炼渣与烟灰、铅冶炼渣与烟灰含有铟、铋、铅、银与锌;赤泥中含有钠与钾,钢铁烟尘与尘泥含有铟、铋、银、钠与钾,以上物料都有铁;铅冶炼渣与锌冶炼渣都含有铜,铜烟灰与尘泥含有铟与铋,在发明的方法中,铟、铋、钠、钾、锌、铅会以氧化物的形式进入烟尘,从而进行回收。
含氟物料是萤石、CaF2或含氟高炉渣中的一种或几种。
所述的步骤S1与S2中,含铜物料、含铁物料和含氟物料均为球团或粉状物料或制粒;其中,粒状物料的粒度为5~25mm,粉状物料的粒度为≤150μm,粒状物料以喷吹的方式喷入,载入气体为预热的氩气、氮气、还原性气体(煤气和/或天然气)、氧化性气体中的一种或多种,预热温度为0~1200℃,所述的喷吹方式为采用耐火喷枪插入熔渣或置于反应熔渣上部或侧面或底部吹入中的一种或几种。
含铜物料与含铁物料为热态或冷态,其中热态物料由冶金炉出料口或出渣口直接获得,热态物料温度为200~1750℃。
所述的步骤S1与S2中,熔渣反应过程中,熔渣中铜组分、金银组分富集于富铜相,并实现聚集、长大与沉降,铁组分富集于富铁相,实现聚集、长大与沉降,熔渣中锌组分、铅组分、铋组分与铟组分分别进入烟尘,以氧化物形式回收,其中,富铜相包括有铜、白冰铜、冰铜相、含铁组分中的多种,或部分铜组分进入富铁相,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼铁或直接还原或熔融还原炼铁的原料。
所述的步骤S1中,控制混合熔渣的温度在设定温度范围的方法中:
当混合熔渣的温度>设定温度上限时,加入锌冶炼渣、含铜物料、含铁物料、冶金熔剂或含氟物料中的一种或几种,目的是避免温度过高,保护耐火材料;加入含氟物料的另一个作用是降低粘度,加速熔渣中富铜相、富铁相聚集、长大与沉降,有利于硅酸盐上浮。
所述步骤S1与S2中,调整碱度时,所述的碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中一种或几种;所述的碱性含铁物料为CaO/SiO2≥1含铁物料;所述碱性含铁物料为碱性烧结矿、钢渣、铁合金渣、碱性铁精矿、碱性预还原球团或碱性金属化球团、碱性高炉渣中一种或几种。
所述步骤S1与S2中,调整碱度时,所述的酸性物料为硅石、粉煤灰、煤矸石中的一种或多种;所述的酸性含铁物料为CaO/SiO2≤1的含铁物料;所述的酸性含铁物料为酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、酸性高炉渣的一种或几种。
所述的步骤S1中,保证(a)和(b)两个参数的同时,使熔渣充分混合,混合方式为自然混合或搅拌混合,搅拌方式为以下方式中的一种:氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体、电磁搅拌、机械搅拌中的一种或多种。
所述的步骤S1与S2中,熔渣中富铜相、富铁相聚集、长大与沉降,有利于硅酸盐上浮。
所述的步骤S1与S2中,氧化性气体为预热的空气、氧气、富氧空气、氩气-空气、氩气-氧气、氮气-空气、氮气-氧气中的一种,预热温度为0-1200℃,喷吹方式为采用耐火喷枪插入熔渣或置于反应熔渣上部或侧面或底部吹入中的一种或几种。
所述的步骤S2中,直接还原过程采用转底炉、隧道窑、车底炉、竖炉、回转窑、感应炉作为还原设备,利用气基或煤基还原技术,气基为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉、焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5。
所述的步骤S2中,冷却方式为自然冷却或旋转冷却或离心冷却,沉降方式为自然沉降或旋转沉降或离心沉降。
所述的步骤S2中,旋转与离心冷却的具体操作为:装有反应完成后的熔渣的装置置于旋转平台上,按照一定速度进行旋转,旋转速度依熔渣质量与保温装置高度或深度而定,旋转时间依熔渣质量与熔渣凝固情况而定;将装有反应完成后的熔渣的装置置于旋转平台上旋转,目的是加速富铜相、富铁相聚集、长大与沉降,有利于硅酸盐(富磷相)上浮。
所述的步骤S2中,反应完成后的熔渣冷却过程中,由于密度不同与矿物大小不同,大部分富铜相沉降于中下部,富铁相沉降于中上部。
所述的步骤S2中,反应完成后的熔渣中铜组分、金银组分继续迁移、富集于富铜相,并实现长大与沉降,或部分铜组分富集于富铁相;混合熔渣中铁组分分别继续迁移、富集于富铁相,并实现长大与沉降。
所述的步骤S2中,重力分选法是摇床分选、溜槽分选或者二者相结合。
综上,所述的步骤S2中,最后获得的富铁相及含铁硅酸盐矿物相的渣中,渣含铜≤0.1%,铁的回收率为≥95%,锌的回收率为≥95%,铅的回收率为≥94%,铟的回收率为≥91%,金的富集率为≥90%,银的富集率为≥90%,镍的富集率为≥92%,钴的富集率为≥92%,铋的回收率为≥92%,钠的回收率为≥93%,钾的回收率为≥93%。
其中,渣含铜是指富铜相分离后的渣相,具体为富铁相与含铁硅酸盐矿物相中的含铜量,镍、钴的富集率是指在富铜相中镍、钴的含量占原料中对应镍、钴总量的百分比,金、银的富集率是指富铜相中金、银的含量占原料中金、银总量的百分比。
为了更好的解释本发明,以便于理解,通过以下实施例,对本发明作详细描 述。其中,以下实施例中所用处理方法与原料未明确指出的,均可采用本领域常规技术,除非另有说明,本发明中所用的百分数均为重量百分数。
实施例1
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将冷态锌冶炼渣(锌浸出渣与挥发窑渣)加入直流电弧炉,同时加入石灰,以及SiO2、MgO、Al2O3,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜反应熔渣,同时加入氧化铜精矿,并使反应熔渣实现自然混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1660℃,采用耐火喷枪插入反应熔渣中,以预热温度为1100℃的氮气为载入气,喷入常温粉状粒度≤150μm的铜渣、含铜烟灰、杂铜和含铜垃圾和含铜电路板,同时加入高炉瓦斯泥、电炉尘泥、转炉尘泥、普通铁精矿、普通铁精矿直接还原铁和高炉瓦斯灰,使温度降至1450℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值=1.8,向反应熔渣中加入硅石、粉煤灰和煤矸石混合物,使含铜反应熔渣碱度比值降至1.7;熔渣中金属铁含量为0.5%。
步骤2,分离回收采用方法一:
保温45min,反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行炉外熔渣处理,采用方法F,含铁硅酸盐熔渣空冷后,用作直接还原炼铁原料,直接还原过程中,采用回转窑作为还原设备,利用气基还原技术,气基还原剂为天然气和煤气,还原温度为900℃,碱度CaO/SiO2比值为0.8,还原后采用电炉熔分温度为1450℃,产物为金属铁水与熔渣;
(2)熔融态富铜相,送往转炉炼铜;
(3)熔融态富铁相倒入保温装置,空冷后作为高炉炼铁原料;
(4)含锌组分、含铅组分、含铋组分、含铟组分、含钠组分与含钾组分挥发,进入烟尘回收。
最后获得的渣含铜<0.1%,锌回收率为96%,铅回收率为95%,铁回收率为97%,铟的回收率为92%,铋的回收率为92%,金的富集率为91%,银的富集率为92%,钠的回收率为95%,钾的回收率为95%。
实施例2
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将冷态锌冶炼渣(锌浸出渣)加入可倾倒的熔炼反应渣灌,同时加入石灰石、白云石、赤泥以及FeO和Fe2O3,形成混合熔渣,同时加入氧化铜精矿与硫化铜精矿;用预热温度为800℃的富氧空气,喷吹天然气、粒度为20mm无烟煤与焦粒,将混合熔渣加热至熔融状态,形成含铜反应熔渣;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a)含铜反应熔渣温度为1520℃,采用耐火喷枪插入反应熔渣中,以常温氩气为载气,喷入常温粉状粒度≤150μm铜渣、含铜烟灰、杂铜、钢铁烧结粉尘、烧结球团粉尘、出铁厂粉尘、普通铁精矿直接还原铁,使温度降至1440℃;
(b)含铜反应熔渣碱度CaO/SiO2比值为2.4,向反应熔渣中加入酸性铁精矿、酸性预还原球团、含铅熔炼渣、含铅烟化炉渣的混合物,使含铜反应熔渣碱度比值降至1.6;熔渣中金属铁含量为2.9%。
步骤2,分离回收采用方法二:
保温50min,熔渣旋转沉降,渣-金分离,获得熔融态富铜相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分、含铟组分、含钠组分以及含钾组分,各相进入烟尘进行如下步骤:
(1)熔融态含铁硅酸盐矿物相与富铁相,采用方法G进行炉外熔渣处理,含铁熔渣熔融还原炼铁,具体步骤如下:
(1-1)上述含铁熔渣倒入可倾倒的转炉中,向熔渣中加入粒度为20mm无烟煤与烟煤,进行熔融还原,实时监测反应熔渣,通过调控同时保证如下(a)反应熔渣的温度为1350~1670℃,和(b)反应熔渣的碱度CaO/SiO2比值=0.6~2.4两个参数,获得反应完成后的熔渣;
对应(a):反应熔渣的温度为1480℃,在温度范围内;
对应(b):反应熔渣中碱度CaO/SiO2比值为0.8时,在碱度范围内;
(1-2)向熔渣中喷吹预热200℃的氧化性气体(富氧空气)进行熔融还原,形成还原后的混合熔渣,并在喷吹过程中,通过调控同时保证(a)反应熔渣的温度为1350~1670℃,和(b)反应熔渣的碱度CaO/SiO2比值=0.6~2.4两个参数,
(1-3)分离回收:
(a)还原后的混合熔渣,自然沉降,渣-金分离,获得铁水与还原后的熔渣;
(b)还原后的熔渣,采用步骤S2方法一中方法A处理做成高附加值水泥原料;
(c)铁水,送往转炉或电炉炼钢;
(d)含铋组分、含钠组分以及含钾组分进入烟尘回收;
(2)熔融态富铜相送往转炉炼铜;
(3)含锌组分、含铅组分、含铋组分、含铟组分、含钠组分以及含钾组分挥发,以氧化物形式回收。
最后获得的渣含铜<0.1%,锌回收率为97%,铅回收率为97%,铁回收率为98%,铟的回收率为94%,铋的回收率为95%,金的富集率为92%,银的富集率为93%,钠的回收率为93%,钾的回收率为94%。
实施例3
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(由挥发窑出料口获得的热态挥发窑渣)加入直流电弧炉,同时加入石灰石与脱钠后高钙赤泥,形成混合熔渣,同时加入硫化铜精矿;用预热温度为900℃的氧气,喷吹粒度为20mm无烟煤、焦粒与煤粉,将混合熔渣加热至熔融状态,形成含铜反应熔渣,机械搅拌混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1685℃,向反应熔渣中加入酸性金属化球团、铜冶炼渣和含铜吹炼渣,同时加入含铜烟灰、含铅炉渣、普通铁精矿球团矿、轧钢氧化铁磷和普通铁精矿含碳预还原球团,使温度降至1420℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值=2.3,向反应熔渣中加入石英砂、赤泥、湿法炼锌大窑渣的混合物,使含铜反应熔渣的碱度比值降至1.6;熔渣中金属铁含量为1.8%。
步骤2,分离回收采用方法二:
保温30min,熔渣自然沉降,渣-金分离,获得熔融态富铜-白冰铜相、富铁-富冰铜相层与含铜硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分挥发,进入烟尘加以回收,进行如下步骤:
(1)熔融态富铜相,送往转炉炼铜;
(2)熔融态富铁相与含铁硅酸盐矿物相作为直接还原炼铁原料,还原过程中,部分锌 组分、铅组分、铟组分与铋组分挥发,进入烟尘;直接还原过程中,采用转底炉,还原温度为1200℃,碱度CaO/SiO2比值=1.0,还原剂为粒度为≤150μm的无烟煤与粉煤;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为98%,锌的回收率为97%,铅的回收率为96%,铟的回收率为93%,铋的回收率为94%,金的富集率为92%,银的富集率为93%。
实施例4
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将冷态锌冶炼渣(铁矾渣)加入直流电弧炉,同时加入白云石、MgO、Al2O3以及Fe,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜反应熔渣,同时加入氧化铜精矿与含铜物料(铜渣、含铅烟化炉渣)并使反应熔渣电磁搅拌,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a)含铜反应熔渣的温度为1670℃,向反应熔渣中加入赤泥、煤粉灰、硫酸烧渣、萤石、铅冰铜、含铅烟灰、含锌烟灰、砷冰铜和湿法炼锌渣,使温度降至1440℃;
(b)含铜反应熔渣的碱度CaO/SiO2比值为2.0,向反应熔渣中加入含铜吹炼渣,使含铜反应熔渣碱度比值降至1.7;用预热温度1100℃的空气,粒度为20mm的焦粒,喷吹天然气,熔渣中金属铁含量为1.3%。
步骤2,分离回收采用方法二:
保温28min,熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,以氧化物形式进入烟尘回收,进行如下步骤:
(1)熔融态富铜相,送往转炉炼铜;
(2)熔融态富铁相与含铁硅酸盐矿物相步骤S2分离回收方法一中方法F,氧化改性磁选分离:①将熔渣倒入保温渣罐,向熔渣中喷入预热温度为900℃的富氧空气,实现磁铁矿的转化;②缓冷至室温,磁选分离,获得铁精矿与尾矿;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为97%,锌的回收率为98%,铅的回收率为95%,铟的回收率为94%,铋的回收率为93%,金的富集率为91%,银的富集率为90%。
实施例5
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(热态竖罐炼锌炉渣、出渣口获得的熔融旋涡熔炼炉渣、熔融鼓风炉炉渣与熔融电炉渣)加入保温渣罐,同时加入石灰石以及Fe,形成混合熔渣,同时加入硫化矿精矿与含铜物料(铜火法精炼渣、含铜烟灰、杂铜与含铜垃圾);用800℃的富氧空气,喷吹粒度≤150μm烟煤,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得完成后的熔渣;
对应(a):含铜反应熔渣的温度为1430℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值为1.5,均在要求范围内;熔渣中金属铁含量为1.7%。
步骤2,分离回收采用方法五:
将反应完成后的熔渣倒入保温渣罐中,进行熔渣处理,进行如下步骤:
(1)沉降冷却:反应完成后的熔渣自然冷却至室温,获得缓冷渣;富铜相沉降到反应装置的底部,形成富铜坨;含铁硅酸盐矿物相上浮;富铜坨和含铁硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌组分、含铟组分、含铋组分及含铅组分;
(2)分离:人工取出沉降在底部的富铜坨,直接还原,磁选分离铁后,产物送往转炉;
(3)人工取出上部的硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;
(4)含锌组分、含铟组分、含铋组分及含铅组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为98%,锌的回收率为96%,铅的回收率为96%,铟的回收率为92%,铋的回收率为93%,金的富集率为93%,银的富集率为93%。
实施例6
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将冷态锌冶炼渣(酸洗后铁矾渣、针铁矿渣、赤铁矿渣)加入交流电弧炉,同时加入石灰、MgO、Al2O3、Fe2O3,形成混合熔渣,同时加入氧化铜精矿与含铜物料(含铅熔炼渣、砷冰铜、铅冰铜与铅火法精炼渣);将混合熔渣加热至熔融状态,形成含铜反应熔渣,喷入预热温度为1100℃的氩气,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1080℃,电弧炉加热,使温度升至1330℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值为0.1,向反应熔渣中加入碱性铁精矿、转炉污泥、碱性预还原球团、脱钠后高钙赤泥,使含铜反应熔渣的碱度比值升至0.3;熔渣中金属铁含量1.5%。
步骤2,分离回收采用方法一:
保温13min,熔渣自然沉降,渣-金分离,获得熔融态富铜相、富铁相和含铁硅酸盐矿物相,同时生成含锌组分、含铟组分、含铋组分及含铅组分挥发挥发进入烟尘加以回收,进行如下步骤:
(1)含铁硅酸盐矿物相采用步骤S2分离回收方法一中方法A,水淬直接作为水泥原料;
(2)熔融态富铜相,送往转炉炼铜;
(3)熔融态富铁相倒入保温装置冷却后直接还原炼铁;
(4)含锌组分、含铟组分、含铋组分、含铅组分、含钠组分与含钾组分挥发,进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为97%,锌的回收率为96%,铅的回收率为98%,铟的回收率为92%,铋的回收率为94%,金的富集率为92%,银的富集率为92%,钠的回收率为95%,钾的回收率为96%。
实施例7
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(出渣口获得的热态竖罐炼锌炉渣)加入矿热炉,同时加入石灰石、SiO2、FeO以及MgO,形成混合熔渣,同时加入氧化铜精矿与含铜物料(镍冶炼渣“造硫熔炼”镍冶炼渣、“铜冰镍吹炼”镍吹炼渣、镍吹炼渣经火法贫化获得的贫化渣、镍顶吹熔池熔炼渣与熔池熔炼渣经沉降电炉获得的沉降渣);将混合熔渣加热至熔融状态,形成含铜反应熔渣,喷吹预热温度为800℃的氩气-氮气混合气,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1320℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值为0.8,均在要求范围内;加入粒度≤150μm煤粉与天然气,熔渣中金属铁含量为0.8%。
步骤2,分离回收采用方法四:
保温18min,熔渣自然沉降,渣-金分离,获得熔融态富铜-白冰铜相、富铁-富冰铜 相层与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘加以回收回收,进行如下步骤:
(1)熔融态富铜相,送往转炉炼铜;
(2)熔融态富铁相与含铁硅酸盐矿物具体采用步骤S2的分离回收方法一中的方法F,水淬后,作为直接还原炼铁的原料;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为96%,锌的回收率为95%,铅的回收率为96%,铟的回收率为94%,铋的回收率为92%,金的富集率为93%,银的富集率为91%。
实施例8
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(出料口获得的熔融旋涡熔炼炉渣)加入鼓风炉,同时加入白云石、赤泥、MgO,同时加入硫化铜精矿与氧化铜精矿,采用预热温度为200℃的氧气,喷入煤气与粒度≤150μm的焦粉,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1330℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值为1.0,均在要求范围内;熔渣中金属铁含量为2.3%。
步骤2,分离回收采用方法三:
保温5min,熔渣自然沉降,渣-金分离,获得富铜相、与中上部的含铁硅酸盐矿物相和富铁相,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘加以回收,进行如下步骤:
(1)熔融态含铁硅酸盐矿物相渣,倒入熔炼装置,进行炉外熔渣处理,具体采用步骤S2的分离回收方法一中的方法B,将中上部的熔渣全部返回到含铜反应熔渣,作为热态冶金熔剂,调整含铜反应熔渣成分,控制含铜反应熔渣温度;
(2)熔融态富铜相,送往转炉或吹炼炉炼铜;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收;
(4)富铁相进行水淬或空冷或倒入保温装置缓冷后,作为高炉炼铁原料或直接还原炼铁。
最后获得的渣含铜<0.1%,铁的回收率为97%,锌的回收率为96%,铅的回收率为97%,铟的回收率为93%,铋的回收率为92%,金的富集率为91%,银的富集率为90%。
实施例9
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(出料口获得的熔融鼓风炉炉渣)加入侧吹炉,同时加入石灰石,形成混合熔渣,同时加入氧化铜精矿与含铜物料(铜渣、铜火法精炼渣、含铜电路板);采用预热温度为900℃的空气喷入≤150μm焦粉,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1340℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值为1.2,均在要求范围内;熔渣中金属铁含量为1.8%。
步骤2,分离回收采用方法二:
保温38min,熔渣自然沉降,渣-金分离,获得富铜相与中上部的含铁硅酸盐矿物相 和富铁相的含铁熔渣,同时生成含锌组分、含铅组分、含铋组分与含铟组分,进入烟尘回收,进行如下步骤:
(1)中上部的含铁熔渣倒入熔炼装置,采用步骤S2的分离回收方法一中的方法C,将中上部熔渣浇筑微晶玻璃;
(2)下部的熔融态富铜相,送往转炉炼铜;
(3)含锌组分、含铅组分、含铋组分与含铟组分挥发进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为95%,锌的回收率为97%,铅的回收率为94%,铟的回收率为93%,铋的回收率为92%,金的富集率为92%,银的富集率为93%。
实施例10
一种锌冶炼炉渣熔融还原生产的方法,包括以下步骤:
步骤1,炉渣混合:将锌冶炼渣(出料口获得的熔融电炉渣)加入保温地坑,同时加入石灰石以及Fe,形成混合熔渣,同时加入氧化铜精矿;用预热温度为600℃的富氧空气,喷吹粒度≤150μm烟煤,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1430℃;
(b):含铜反应熔渣的碱度CaO/SiO2比值为1.5,均在要求范围内;熔渣中金属铁含量为1.4%。
步骤2,分离回收采用方法五:
将反应完成后的熔渣进行如下步骤:
(1)沉降冷却:保温36min,熔渣冷却至室温,获得缓冷渣;富铜相沉降到反应装置的底部,形成富富铜坨;含铁硅酸盐矿物相上浮;富铜相金属坨和硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌组分与含铅组分;
(2)分离:人工取出沉降在底部的富铜坨;中部的富铁相层直接还原后,磁选分离金属铁,尾矿返回铜系统;
(3)人工取出上部的含铁硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;
(4)含锌组分、含铅组分、含铋组分与含铟组分进入烟尘回收。
最后获得的渣含铜<0.1%,铁的回收率为98%,锌的回收率为96%,铅的回收率为95%,铟的回收率为93%,铋的回收率为92%,金的富集率为92%,银的富集率为91%。

Claims (10)

  1. 一种锌冶炼炉渣熔融还原生产的方法,其特征在于,包括以下步骤:
    S1、炉渣混合:将锌冶炼渣,加入保温装置或熔渣可流出的熔炼反应装置中,并加入钙系矿物与添加剂,将熔渣加热至熔融状态,形成含铜与铁的反应熔渣,同时加入氧化铜矿物、硫化铜矿物、含铜物料中的一种或多种,混合均匀,并实时监测反应熔渣,通过调控使反应熔渣同时满足a和b两个条件,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
    其中,a:调控反应熔渣的温度为1100~1450℃;
    b:调控反应熔渣的碱度CaO/SiO2比值=0.2~2.0;
    S2、分离回收:步骤S1得到的熔渣,保温5~50min,沉降分离获得中上部含铁硅酸盐矿物相、底部富铜相与中下部富铁相,同时生产含锌组分、含铅组分、含铋组分与含铟组分的烟尘,金银组分迁移、富集进入富铜相;对各相进行回收处理。
  2. 根据权利要求1所述的锌冶炼炉渣熔融还原生产的方法,其特征在于:在步骤S1中,条件a的调控方法为:
    当反应熔渣的温度<1100℃时,通过反应装置自身的加热功能,或向熔渣中加入燃料或熔融锌冶炼渣,使反应熔渣的温度达到1100~1450℃范围内;
    当反应熔渣的温度>1450℃时,向反应熔渣中加入含铜物料、锌冶炼渣、冶金熔剂、含铁物料、氧化铜矿物、含氟物料中的一种或几种,使反应熔渣的温度达到1100~1450℃范围内;
    在步骤S1中,条件b的调控方法为:
    当反应熔渣的碱度CaO/SiO2比值<0.2时,向反应熔渣中加入碱性物料、碱性氧化铜矿物、硫化铜矿物、含铜物料、碱性含铁物料中的一种或几种;
    当反应熔渣的碱度CaO/SiO2比值>2.0时,向反应熔渣中加入酸性物料、酸性氧化铜矿物、酸性硫化铜矿物、酸性含铁物料、酸性含金银物料中的一种或几种。
  3. 根据权利要求1所述的由锌冶炼熔渣回收有价组分的方法,其特征在于:所述保温装置为可倾倒的熔炼反应渣灌、保温地坑中的一种或两种;
    所述熔渣可流出的熔炼反应装置为可倾倒的熔炼反应装置或底部带有渣口或铁口的固定式熔炼反应装置;
    所述可倾倒的熔炼反应装置为转炉、熔炼反应渣罐中的一种或两种;
    所述带有渣口或铁口的固定式熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉中的一种或几种。
  4. 根据权利要求1所述的锌冶炼炉渣熔融还原生产的方法,其特征在于:在所述步骤S1中,满足所述条件a和b的同时,应同时满足所述熔渣中铜和铁氧化物还原为金属铜和FeO,熔渣中金属铁含量<3%。
  5. 根据权利要求1所述的锌冶炼炉渣熔融还原生产的方法,其特征在于:所述锌冶炼炉渣是湿法炼锌产生的炉渣、火法炼锌产生的炉渣中的一种或两种;锌冶炼炉渣为熔融态或热态或冷态,熔融火法炼锌渣由旋涡熔炼炉、鼓风炉、烟化炉、电炉出渣口获得,热态锌冶炼渣由挥发窑出料口、竖罐出渣口获得,或将锌冶炼渣加热至熔融状态;
    其中,所述湿法炼锌产生的炉渣是锌浸出渣、挥发窑渣、铜镉渣、铁矾渣、酸洗后铁矾渣、针铁矿渣、赤铁矿渣中的一种或多种,所述火法炼锌产生的炉渣是竖罐炼锌炉渣、旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣中的一种或多种; 所述湿法炼锌产生的炉渣均需经过烘干、脱水处理,旋涡熔炼炉渣、鼓风炉炉渣、烟化炉炉渣、电炉渣由熔炼炉出渣口获得,挥发窑渣由挥发窑出料口获得,竖罐炼锌炉渣由竖罐出料口获得;
    所述钙系矿物为石灰、石灰石、白云石、电石渣、赤泥、脱钠后高钙赤泥中的一种或几种;
    所述添加剂为SiO2、MgO、FeO、Fe2O3、MnO2、Al2O3、TiO2、P2O5、Fe、Na2O中的一种或几种;
    所述氧化铜矿物包括赤铜矿、黑铜矿、孔雀石、蓝铜矿、硅孔雀石、胆矾中的一种或多种;
    所述硫化铜矿物包括辉铜矿、铜蓝、黄铜矿、斑铜矿、硫砷铜矿、黝铜矿中的一种或多种。
  6. 根据权利要求2所述的由锌冶炼熔渣回收有价组分的方法,其特征在于:所述含铜物料是铜渣、选铜尾矿、粗铜火法精炼渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾渣、铅冶炼渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、镍冶炼渣、锡尾矿中的一种或几种;
    所述铜渣是造锍熔炼”产生的炉渣、“铜鋶吹炼”产生的炉渣、火法贫化炉渣、铜渣浮选尾渣、湿法炼铜渣中的一种或几种;
    所述冶金熔剂为含CaO或SiO2的矿物与炉渣,优选为石英砂、含金银石英砂、赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种;
    所述含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、镍冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;
    所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣中一种或多种;
    所述铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;
    所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热/冷轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;
    所述含氟物料是萤石、CaF2、含氟高炉渣中的一种或几种;
    所述含铜物料、含铁物料和含氟物料均为球团或粉状物料或制粒;
    其中,粉状物料的粒度≤150μm,粒状物料粒度为5-25mm,粉状物料以喷吹的方式喷入,粒状物料以喷吹或投料的方式加入,载入气体为预热的氩气、氮气、还原性气体、氧化性气体中的一种或多种,预热温度为0-1200℃。
  7. 根据权利要求2所述的锌冶炼炉渣熔融还原生产的方法,其特征在于:所述的碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中一种或几种;所述碱性含铁物料为CaO/SiO2>1的碱性烧结矿、钢渣、铁合金渣、碱性铁精矿、碱性预还原球团、碱性金属化球团、碱性高炉渣中的一种或几种;
    所述的酸性物料为硅石、粉煤灰、煤矸石中的一种或多种;所述的酸性含铁物料为CaO/SiO2≤1的酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、酸性高炉渣中的一 种或几种。
  8. 根据权利要求1-7任一所述的锌冶炼炉渣熔融还原生产的方法,其特征在于:
    在步骤S2中的分离回收进行如下处理:
    含有热态或冷态所述富铜相,送往转炉或吹炼炉炼铜,或缓冷破碎磁选分离金属铁后再送往转炉或吹炼炉炼铜,或经磁选分离金属铁或不经磁选分离金属铁后,直接还原,还原产物经磁选分离金属铁后,再送往转炉或吹炼炉炼铜;
    所述含锌组分、含铅组分、含铋组分与含铟组分挥发,以氧化物形式进入烟尘回收;
    含有所述含铁硅酸盐矿物相和/或所述富铁相,采用以下方法A-G中的任一种进行熔渣处理:
    方法A:水淬或空冷后,直接用于水泥原料:
    方法B:返回到反应混合熔渣中作为热态冶金熔剂:
    方法C:用于浇筑微晶玻璃或作为矿渣棉;
    方法D:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中,吹入温度为0~1200℃的预热氧化性气体,并保证硅酸盐熔渣温度>1460℃;当熔渣氧化亚铁含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
    方法E:用于生产高附加值的水泥熟料,方法如下:
    E-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后高钙赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
    E-2、向所述熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1460℃;当氧化亚铁含量<1%,获得氧化后的熔渣;
    E-3、对所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
    方法F:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣作为高炉炼铁原料或直接还原炼铁原料:将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
    或,将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入预热温度为0~1200℃的氧化性气体,并保证熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
    方法G:所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣熔融还原炼铁,包括如下步骤:
    G-1、将所述含铁硅酸盐矿物相和/或所述富铁相的含铁熔渣保留在熔炼反应装置内或将熔渣倒入保温装置,向含铁熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足以下条件:反应熔渣的温度为1350~1670℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
    G-2、向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时满足以下条件:反 应完成后的熔渣的温度为1350~1670℃和反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4;
    G-3、采用以下两种方法中的一种进行分离回收:
    方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,缓慢冷却至室温,获得缓冷渣;金属铁沉降到反应装置的底部,形成铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
    方法Ⅱ:还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;还原后的熔渣,按照A~E中的一种或几种,进行熔渣处理;铁水送往转炉或电炉炼钢;
    或,含有所述富铁相水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料或磁选分离金属铁后作为炼铜或直接还原炼铁的原料;浮选过程中,浮选产物为含铜精矿与铁精矿,铜精矿返回炼铜系统,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;其中,在直接还原过程中,还原产物磁选分离后,获得金属铁与尾矿,尾矿返回炼铜系统;
    所述直接还原过程采用转底炉、隧道窑、车底炉、竖炉、回转窑、感应炉中的任一种作为还原设备,利用气基或煤基还原技术,气基为天然气和/或煤气,煤基为无烟煤、烟煤、褐煤、焦煤、焦粉、焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5。
  9. 根据权利要求8所述的锌冶炼炉渣熔融还原生产的方法,其特征在于:所述的步骤S2中,冷却方式为自然冷却或旋转冷却或离心冷却,沉降方式为自然沉降或旋转沉降或离心沉降;
    所述混合均匀为自然混合或搅拌混合,搅拌混合为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌、机械搅拌中的一种或几种。
  10. 根据权利要求8所述的锌冶炼炉渣熔融还原生产的方法,其特征在于:所述燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,所述喷吹载入气体为预热的氧化性气体、氮气或氩气中的一种或多种,所述预热的温度为0~1200℃;
    所述固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm,所述液体燃料与还原剂为重油,所述气体燃料与还原剂为煤气和/或天然气;
    所述氧化性气体为预热的空气、氧气、富氧空气、氩气-空气、氩气-氧气、氮气-空气、氮气-氧气中的一种。
PCT/CN2017/115646 2017-10-10 2017-12-12 锌冶炼炉渣熔融还原生产的方法 WO2019071791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710935535.1A CN107699699A (zh) 2017-10-10 2017-10-10 锌冶炼炉渣熔融还原生产的方法
CN201710935535.1 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019071791A1 true WO2019071791A1 (zh) 2019-04-18

Family

ID=61184776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115646 WO2019071791A1 (zh) 2017-10-10 2017-12-12 锌冶炼炉渣熔融还原生产的方法

Country Status (2)

Country Link
CN (1) CN107699699A (zh)
WO (1) WO2019071791A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004476A1 (en) * 2021-07-29 2023-02-02 Glencore Technology Pty Limited Treatment of zinc leach residue

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676942A (zh) * 2018-05-18 2018-10-19 廖辉明 一种含铁和或锌铅铜锡等物料与熔融钢渣协同处理回收方法
CN109487085B (zh) * 2018-12-22 2020-11-10 励福(江门)环保科技股份有限公司 一种旋转火法回收钯铂的工艺
CN110106433B (zh) * 2019-05-11 2021-02-19 东北大学 一种熔融贫化铜渣和锌渣的综合利用方法
CN110479500B (zh) * 2019-07-19 2022-02-08 江西铜业集团有限公司 氧化洗净残渣高分散体系降硫富铋的浮重联合工艺方法
CN110983061B (zh) * 2019-11-29 2021-04-27 中南大学 一种铅锌冶炼渣与铁矾渣协同资源化处理的方法
CN111118299A (zh) * 2019-12-05 2020-05-08 董杰 一种工业除尘灰的处理工艺
CN111957182A (zh) * 2020-06-23 2020-11-20 湖南博一环保科技有限公司 一种利用电石渣对锌尘泥火法烟化副产烟气进行脱硫的工艺
CN112143913B (zh) * 2020-09-21 2022-05-24 西安建筑科技大学 一种低镍锍转炉吹炼添加剂及低镍锍转炉吹炼方法
CN113201655B (zh) * 2021-03-13 2023-06-09 江西铜业铅锌金属有限公司 一种提升PbS还原效率的铅冶炼工艺
CN114196828B (zh) * 2021-10-29 2023-04-28 昆明理工大学 一种基于高FeO含量的FeO-SiO2-CaO三元系渣的含锡物料硫化挥发方法
CN114164345B (zh) * 2021-11-01 2023-07-21 昆明理工大学 一种铅锌冶炼渣与含铜物料协同处理的方法
CN114672643B (zh) * 2022-05-26 2022-08-16 山西建龙实业有限公司 一种高铁赤泥和熔融钢渣协同利用方法
CN115852162B (zh) * 2023-01-29 2023-06-02 中南大学 高锌熔体熔池还原炉渣、锌的冶炼方法及其应用
CN115807167B (zh) * 2023-01-29 2023-06-02 中南大学 从高锌物料中回收金属锌的方法及装置
CN116103501A (zh) * 2023-02-24 2023-05-12 中国恩菲工程技术有限公司 钢烟灰和赤泥的协同冶炼方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865872A (en) * 1995-06-26 1999-02-02 Fenicem Minerals Inc. Method of recovering metals and producing a secondary slag from base metal smelter slag
CN101126133A (zh) * 2007-09-24 2008-02-20 昆明理工大学 一种从锌窑渣中回收有价元素的方法
CN102851513A (zh) * 2012-09-14 2013-01-02 金川集团股份有限公司 一种镍铜熔融渣中选择还原回收有价金属的方法
CN104561564A (zh) * 2014-12-27 2015-04-29 长安大学 一种从湿法炼锌回转窑渣中回收铜、银和铁的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312103A (zh) * 2011-09-16 2012-01-11 北京矿冶研究总院 一种熔融液态含铅渣直接还原熔炼的方法
CN106191344B (zh) * 2016-07-18 2018-05-04 东北大学 一种混合熔渣熔融还原生产与调质处理的方法
CN106119447B (zh) * 2016-07-18 2018-05-04 东北大学 一种含稀土与铌混合熔渣熔融还原生产和调质处理的方法
CN106755657A (zh) * 2016-12-10 2017-05-31 东北大学 一种含钛混合熔渣冶金熔融还原回收的方法
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865872A (en) * 1995-06-26 1999-02-02 Fenicem Minerals Inc. Method of recovering metals and producing a secondary slag from base metal smelter slag
CN101126133A (zh) * 2007-09-24 2008-02-20 昆明理工大学 一种从锌窑渣中回收有价元素的方法
CN102851513A (zh) * 2012-09-14 2013-01-02 金川集团股份有限公司 一种镍铜熔融渣中选择还原回收有价金属的方法
CN104561564A (zh) * 2014-12-27 2015-04-29 长安大学 一种从湿法炼锌回转窑渣中回收铜、银和铁的方法
CN106755651A (zh) * 2016-12-10 2017-05-31 东北大学 一种含稀土和/或铌熔渣冶金一步法回收的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004476A1 (en) * 2021-07-29 2023-02-02 Glencore Technology Pty Limited Treatment of zinc leach residue

Also Published As

Publication number Publication date
CN107699699A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107653381B (zh) 含锌与铁的熔渣熔融还原生产的方法
WO2019071791A1 (zh) 锌冶炼炉渣熔融还原生产的方法
WO2019071793A1 (zh) 一种由含铜熔渣回收有价组分的方法
WO2019071788A1 (zh) 一种由含铜与铁的混合熔渣生产的方法
WO2019071798A1 (zh) 一种由镍冶炼熔渣生产的方法
WO2019071796A1 (zh) 一种由含镍与铁的混合熔渣回收有价组分的方法
WO2019071789A1 (zh) 由锌冶炼熔渣回收有价组分的方法
WO2019071794A1 (zh) 一种由含铜与铁的混合熔渣回收有价组分的方法
WO2019071790A1 (zh) 由含锌与铁的混合熔渣回收有价组分的方法
WO2019071795A1 (zh) 一种由含铜熔渣生产的方法
WO2019071797A1 (zh) 一种由含镍与铁的混合熔渣生产的方法
WO2019071787A1 (zh) 一种由含镍冶炼熔渣回收有价组分的方法
CN106755654A (zh) 一种熔渣冶金熔融还原生产的方法
CN106755651A (zh) 一种含稀土和/或铌熔渣冶金一步法回收的方法
US8133295B2 (en) Method and apparatus for lead smelting
CN113201652A (zh) 一种熔融铜渣贫化-还原一体化方法
CN106755653A (zh) 一种含稀土或铌熔渣冶金熔融还原生产的方法
CN113817924B (zh) 一种铜浮渣熔炼生产粗铜的方法及其熔炼装置
CN110453079B (zh) 一种熔化-烟化法高效回收铅银渣中银的方法
CN112143908B (zh) 一种处理复杂金矿的冶炼工艺
CA1112456A (en) Method of manufacturing crude iron from sulphidic iron-containing material
CN110205432B (zh) 一种生产铁硫合金的方法
AU2006299743C1 (en) Method and apparatus for lead smelting
CN116574907A (zh) 一种含砷危废协同处理的方法及应用
CN116287761A (zh) 火法炼铅锌的方法、装置及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928739

Country of ref document: EP

Kind code of ref document: A1