WO2019071796A1 - 一种由含镍与铁的混合熔渣回收有价组分的方法 - Google Patents

一种由含镍与铁的混合熔渣回收有价组分的方法 Download PDF

Info

Publication number
WO2019071796A1
WO2019071796A1 PCT/CN2017/115651 CN2017115651W WO2019071796A1 WO 2019071796 A1 WO2019071796 A1 WO 2019071796A1 CN 2017115651 W CN2017115651 W CN 2017115651W WO 2019071796 A1 WO2019071796 A1 WO 2019071796A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
iron
smelting
copper
reaction
Prior art date
Application number
PCT/CN2017/115651
Other languages
English (en)
French (fr)
Inventor
张力
张武
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2019071796A1 publication Critical patent/WO2019071796A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/025Obtaining nickel or cobalt by dry processes with formation of a matte or by matte refining or converting into nickel or cobalt, e.g. by the Oxford process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of slag metallurgy, and in particular relates to a method for recovering valuable components from a mixed slag containing nickel and iron.
  • the nickel smelting slag includes the nickel smelting slag produced by the “smelting smelting” process, the depleted slag after the “copper ice nickel blowing” process, and the top blowing smelting.
  • Nickel settled slag China Jinchuan Company uses “flash smelting” and “top blowing smelting” to carry out nickel concentrate smelting, which produces 1 million tons of nickel smelting slag per year. The accumulated accumulated storage capacity is over 10 million tons.
  • the valuable components such as copper, iron, nickel, cobalt, zinc, lead, gold and silver in the nickel smelting slag are stacked for a long time, which wastes resources and pollutes the environment.
  • the iron content in the nickel smelting slag is as high as 50wt%, far exceeding the current 26wt% recoverable grade, and the slag contains up to 0.2wt% copper, of which the iron component is mainly present in the fayalite phase.
  • the research and utilization of nickel smelting slag mainly focuses on direct reduction of iron or molten iron. During the reduction process, the reduction of copper, nickel and cobalt components into molten iron is not conducive to the subsequent steelmaking process.
  • Lead smelting slag is produced in the process of lead smelting process "sintering-blast furnace reduction-smoke furnace” or "oxidation blowing-high lead slag reduction-smoke furnace".
  • Lead smelting slag includes lead smelting slag and smelting furnace slag.
  • “Sintering blast furnace reduction” or “solid high-lead slag reduction” or “liquid high-lead slag reduction process” reduction process produces lead-containing smelting slag
  • lead-containing smelting slag is produced by smelting furnace to produce smelting furnace slag
  • lead smelting slag (smoke
  • the furnace slag and lead-containing smelting slag contain copper, gold, silver, iron, zinc, lead and other components, which are important secondary resources.
  • the temperature of lead smelting slag (lead smelting slag or smelting furnace slag) is ⁇ 1050 °C. Lead smelting slag is an important physical heat resource, but there is no reasonable process for its effective utilization.
  • Blast furnace slag, steel slag and ferroalloy slag contain high content of metal iron, iron oxide, chromium oxide, phosphorus pentoxide, SiO 2 , CaO, MgO and other valuable components are important secondary resources; from blast furnace, refining
  • the steel furnace and the iron alloy furnace discharge the molten slag temperature ⁇ 1300 ° C. Therefore, the molten blast furnace slag, molten steel slag and molten iron alloy slag are also important physical thermal resources. However, without reasonable process utilization, it can only be piled up in large quantities, resulting in waste of resources and environmental pollution.
  • Nickel smelting slag, lead smelting slag, blast furnace slag, steel slag, iron alloy slag contain a large amount of metallurgical fluxes such as SiO 2 , CaO, MgO, Al 2 O 3 , etc., which have strong chemical reaction activity and are slag systems with excellent physical and chemical properties. Clinker.
  • the molten nickel smelting slag, molten lead smelting slag, molten blast furnace slag, molten steel slag and molten iron alloy slag flowing out of the metallurgical furnace contain abundant thermal energy resources and contain a large amount of hot metallurgical flux.
  • the present invention provides a method for recovering valuable components from a mixed slag containing nickel and iron.
  • the method has the advantages of short reaction time, short process flow, high metal recovery rate, low production cost, large processing capacity, environmental friendliness and high economic benefit, and can effectively solve the problem of efficient recycling of metallurgical resources and thermal energy; the invention is a new melting
  • the slag metallurgy process not only reduces the copper content of the slag (the slag contains copper ⁇ 0.1wt%), but also realizes the efficient recovery of copper, nickel, cobalt, gold, silver, iron, zinc, lead, indium, antimony, sodium and potassium components. Treatment of copper-containing materials to obtain low-copper iron-containing materials (iron concentrate and pig iron).
  • the main technical solutions adopted by the present invention include:
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • S1 slag mixing: adding nickel smelting slag to the smelting reaction device, adding one or more of lead smelting slag, blast furnace slag, steel slag and iron alloy slag to form mixed slag; heating the mixed slag to a molten state as The reaction slag is uniformly mixed, and the reaction slag is monitored in real time, and the mixed reaction slag is simultaneously adjusted to satisfy the condition a and the condition b to obtain the slag after the reaction, or the slag after the reaction is poured into the heat preservation device;
  • condition a is controlling the reaction slag temperature to be 1050 to 1500 ° C;
  • the slag after the reaction in the step S1 is kept for 5 to 50 minutes, and the nickel-rich copper at the bottom, the iron-rich phase in the middle and lower portions, and the iron-containing silicate mineral phase in the middle and upper portions are formed by sedimentation and separation, and the formation is contained.
  • the zinc component and the lead component-containing soot, the gold component and the silver component enter the copper-rich nickel phase, and the nickel-containing component and the cobalt-containing component enter the copper-rich nickel phase and the iron-rich phase, respectively; .
  • the method for regulating the condition a is:
  • the heating function of the reaction device itself is used, or fuel or molten nickel smelting slag, molten lead smelting slag, molten blast furnace slag, molten steel slag or molten iron alloy slag are added to the slag.
  • the fuel is injected, the oxidizing gas is simultaneously injected, so that the temperature of the reaction slag reaches 1050 to 1500 ° C;
  • reaction slag When the temperature of the reaction slag is >1500 ° C, one of nickel smelting slag, copper-containing material, blast furnace slag, steel slag, iron alloy slag, metallurgical flux, iron-containing material or fluorine-containing material is added to the reaction slag. One or several kinds of mixing evenly, so that the temperature of the mixed reaction slag reaches 1050 ⁇ 1500 ° C;
  • the method for regulating the condition b is:
  • the oxide is reduced to metallic copper, metallic nickel, metallic cobalt and FeO, respectively, and the metallic iron content in the slag is ⁇ 3%. It can be regulated by adding one or both of a reducing agent and a carbon-containing iron-containing material, wherein the reducing agent and/or the carbon-containing iron-containing material is used in the amount of copper oxide and nickel oxide in the slag.
  • the theoretical amount of cobalt oxide and iron oxide reduced to metal copper, metallic nickel, metallic cobalt and FeO is 110-140%; the carbon-containing iron-containing material is pre-reduced with steel dust and soot, iron concentrate containing carbon Pellet, iron concentrate carbon-containing metallized pellets, wet zinc smelting kiln slag, coke oven dust and soot.
  • the smelting reaction device is a rotatable smelting reaction device or a smelting reaction device with a slag port or an iron port.
  • the nickel smelting slag is a nickel smelting slag produced by a "smelting smelting" process, a copper ice nickel blowing process, a blowing slag after a process blowing, and a "copper ice nickel blowing" process.
  • the nickel smelting The slag is in a molten state or a cold state, wherein the molten nickel smelting slag is obtained from a slag outlet of the nickel smelting furnace, or the nickel smelting slag is heated to a molten state;
  • the blast furnace slag, steel slag and iron alloy slag are in a molten state or in a cold state, wherein: molten slag (blast slag, steel slag and iron alloy slag) is obtained from a slag outlet, or cold slag (blast slag, steel slag and iron alloy slag) Heating to a molten state; the steel slag is molten iron pre-desulfurization slag (desulfurization slag, desiliconization slag, dephosphorization slag), converter slag, electric furnace slag, VOD/VAD slag, VD slag, tundish slag; said iron alloy slag
  • the slag produced during the production of ferroalloys includes slag produced by smelting carbon ferromanganese, slag produced by smelting ferrochrome, slag produced by smelting ferronickel, The slag produced by smel
  • the copper-containing material is blister copper copper fire refining slag, copper tailings, copper slag, zinc smelting slag, zinc smelting soot and dust, lead smelting slag, lead zinc tailings , lead ice copper, arsenic matte, coarse lead fire refining slag, lead smelting soot and soot, lead acid battery, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit board, tin smelting slag, tin One or more of tailings; wherein the zinc smelting slag is zinc smelting slag produced by wet zinc smelting and pyrometallurgical smelting, including leaching slag, iron slag slag, copper cadmium slag, goethite slag, Hematite slag, volatile kiln slag, vertical tank zinc slag,
  • the fuel and the reducing agent are one or more of a solid, liquid or gaseous fuel, which is sprayed or fed, and loaded with a gas at 0-1200 ° C,
  • the gas is an oxidizing gas
  • the alkaline material is one or more of lime powder, red mud, high calcium red mud, calcium carbide slag, dolomite powder or quicklime powder;
  • the basic iron-containing material is CaO/SiO 2 > One or more of an alkaline sintered ore, an alkaline iron concentrate, an alkaline pre-reduced pellet, an alkali metallized pellet, or a steel slag.
  • the acidic material is one or more of silica, gold-silver-silica-containing, fly ash, and coal gangue; and the acidic iron-containing material is CaO/SiO 2 ⁇ 1.
  • iron-containing material acid sinter, acid iron concentrate, acid pre-reduction pellet, acid metallized pellet, copper slag, lead smelting slag, zinc smelting slag, nickel smelting slag, iron alloy slag, blast furnace slag or Several.
  • the iron-containing material is ordinary iron concentrate, ordinary iron concentrate direct reduced iron, ordinary iron concentrate sintered ore, ordinary iron concentrate pellet, ordinary iron concentrate metallized ball.
  • ordinary iron concentrate carbon pre-reduction pellets, steel slag, zinc smelting slag, coke smelting soot and dust, steel soot and dust, nickel-containing smelting slag, copper slag, lead smelting slag, copper slag, tin smelting slag
  • the steel dust and dust include blast furnace gas mud, converter dust mud, electric furnace dust, heat (cold Rolling sludge, sintering dust, pellet dust, dust collection in ironworks, blast furnace gas ash, electric furnace dust ash, steel rolling iron oxide
  • the fluorine-containing material is one of fluorite, CaF 2 or fluor
  • the solid fuel and the reducing agent are one or more of coal powder, coke powder, fly ash, bituminous coal or anthracite coal, and the shape is granular or powder, and the granular material has a particle size of 5 to 25 mm, and the powdery material The particle size is ⁇ 150 ⁇ m; the liquid fuel and reducing agent are heavy oil, and the gaseous fuel and reducing agent are gas and/or natural gas.
  • the mixing is uniform or natural mixing or stirring
  • the stirring mode is argon stirring, nitrogen stirring, nitrogen-argon mixed gas stirring, reducing gas stirring, oxidizing gas stirring, electromagnetic One or several of stirring or mechanical agitation.
  • the copper-rich nickel phase, the iron-rich phase and the iron-containing silicate mineral phase may be separately treated, or any two phases may be combined.
  • the gold component and the silver component migrate and enrich and enter the copper-rich nickel phase, and the zinc-containing component and the lead-containing component volatilize, and enter the soot recovery as an oxide.
  • the separation and recovery in the step S2 is performed by any one of the following methods 1 to 5:
  • Method 1 When the slag can be used to flow out of the smelting reaction device, after the slag separation after the reaction is completed, the following steps are performed:
  • Method A directly used as a cement raw material after water quenching or air cooling;
  • Method B Part or all of the molten iron-containing silicate mineral phase is returned to the reaction slag containing copper and iron;
  • Method C the iron-containing silicate mineral phase is used for pouring glass ceramics or as slag wool;
  • Method D air-cooling or water quenching after oxidation of the iron-containing silicate slag, the method comprises: blowing preheating oxidizing property to a temperature of 0-1200 ° C into the iron-containing silicate slag in the smelting reaction device Gas, and ensure that the silicate slag temperature is >1450 ° C; when the slag oxidized ferrous iron content percentage ⁇ 1%, the oxidized slag is obtained; the oxidized slag is directly air-cooled or water-quenched, used as slag Cement, cement conditioner, additive in cement production or cement clinker;
  • the preheated fuel and the preheated oxidizing gas are injected, the heat is burned, the heat is supplemented, or the device itself is heated to make the silicate slag temperature >1450 °C;
  • Method E The iron-containing silicate mineral phase is used to produce high value-added cement clinker, including the following steps:
  • the slag mixture material is blown into the oxidizing gas with a preheating temperature of 0-1200 ° C, and the slag mixture material temperature is >1450 ° C; when the ferrous oxide weight percentage content is ⁇ 1%, the oxidation is obtained.
  • the oxidized slag is subjected to air cooling or water quenching to obtain a high value-added cement clinker;
  • Method F the iron silicate-containing slag is used as a blast furnace ironmaking raw material or a direct reduction ironmaking raw material: after the iron-containing silicate slag is air-cooled, water quenched or slowly cooled, used as a blast furnace ironmaking or direct reduction After the ironmaking raw material is directly reduced, it is separated by magnetic separation or electric furnace, and the magnetic separation product is metal iron and tailings, and the electric furnace is melted, and the product is molten iron and molten slag;
  • Method G The iron-containing silicate is subjected to reduction ironmaking, comprising the following steps:
  • the temperature of the reaction slag is 1350-1640 ° C and The alkalinity CaO/SiO 2 ratio of the reaction slag is 0.6 to 2.4, and the slag after completion of the reaction is obtained;
  • the method of controlling the temperature of the reaction slag is:
  • a metallurgical flux is added to the reaction slag, so that the temperature of the reaction slag reaches 1350-1640 ° C, wherein
  • the metallurgical flux is a mineral containing CaO or SiO 2 , specifically one or more of quartz sand, gold-silver quartz sand, red mud, high-calcium red mud after desoda, calcium carbide slag, dolomite or limestone;
  • the method of controlling the alkalinity of the reaction slag is:
  • G-2 the G-1 in the smelting reduction, it is necessary to spray the oxidizing gas after preheating from 0 to 1200 °C into the slag. Melt reduction to form reduced slag;
  • Method I Pour the mixed slag after reduction into a heat preservation slag tank, and slowly cool to room temperature to obtain slow cooling slag; wherein, the metal iron settles to the bottom of the reaction device to form iron slag, and the remaining slow slag contains metal iron Layer, broken to a particle size of 20 ⁇ 400 ⁇ m, grinding, magnetic separation to separate the remaining metal iron and tailings;
  • Method II the mixed slag after reduction, cooling and sedimentation, separation of slag-gold, obtaining molten iron and reduced slag; and the slag after reduction is melted according to one or several methods of methods A to E Slag treatment; the molten iron is sent to a converter or an electric furnace for steelmaking;
  • part of the gold-containing component and the silver-containing component enter the copper-rich nickel phase, and the nickel and cobalt components respectively enter the copper-rich nickel phase and the iron-rich phase;
  • the iron-rich phase layer is subjected to water quenching or air cooling or poured into a heat preservation device for slow cooling, and is used as a blast furnace ironmaking raw material or a direct reduction ironmaking raw material or a smelting reduction ironmaking raw material or a flotation copper extraction raw material;
  • the flotation products are copper concentrate, nickel concentrate, nickel-containing alloy and iron concentrate, iron concentrate as blast furnace ironmaking raw material or direct reduction ironmaking raw material or smelting reduction ironmaking raw material;
  • the process adopts rotary hearth furnace, tunnel kiln, vehicle bottom road, shaft furnace, rotary kiln or induction furnace as reducing equipment, using gas-based or coal-based reduction technology, gas-based reduction using natural gas and/or gas, coal-based reduction using anthracite, One or more of bituminous coal, lignite, coking coal, coke breeze or coke, the controlled reduction temperature is 900-1400 ° C, the control alkalinity CaO / SiO 2 ratio
  • the red mud contains potassium, sodium, dust, and steel soot containing lead, zinc, antimony, and indium silver, when these materials are added, some indium, antimony, potassium, and sodium groups are added. It is volatilized and enters the soot as an oxide.
  • Method 2 When the smelting reaction device through which the slag can flow out is used, the obtained iron-rich phase and the iron-containing silicate mineral phase treatment method are treated by one or more of the methods A to G described in the first method, Or pour the copper-rich nickel phase after the slow cooling of the heat preservation device, and send it to a converter or a rotary furnace or as a raw material for copper, cobalt and nickel separation.
  • Method 3 using the slag rotatable converter and the reaction slag tank, obtaining the molten iron-containing silicate mineral phase, and the treatment method is treated by one or more of the methods A to G described in the first method; Or containing the iron-rich phase by the step S2-1-05 in the first method; the molten state or the copper-rich nickel phase after being poured into the heat preservation device to be cooled, sent to a converter or a rotary furnace or as copper cobalt nickel Separated raw materials.
  • Method 4 using a molten slag rotatable converter and a reaction slag tank, the obtained molten iron-containing silicate mineral phase and the iron-rich phase are obtained, and the treatment method is one or more of the methods A to G described in the first method.
  • the molten nickel-rich copper phase is poured into a heat preservation device and then cooled, and then sent to a converter or a rotary furnace or used as a raw material for copper, cobalt and nickel separation.
  • Method 5 When using a heat preservation device, or using a smelting reaction device through which slag can flow out, when pouring the slag into the heat preservation device, perform the following steps:
  • the slag is cooled to room temperature to obtain slow cooling slag; the copper-rich nickel phase is settled to the bottom of the reaction device to form copper-rich nickel ruthenium; the iron-containing silicate mineral phase floats; the middle is slow cooling
  • the slag is an iron-rich phase, and simultaneously forms a zinc-containing component and a lead-containing component; wherein the nickel, cobalt, gold, and silver components migrate to the copper-rich nickel phase, wherein the gold and silver components migrate to the copper-rich nickel phase, The nickel and cobalt components migrate to the copper-rich nickel phase and the iron-rich phase, respectively;
  • the oxidizing gas is one of preheated air, oxygen, oxygen-enriched air, nitrogen-air, argon-air, oxygen-nitrogen, oxygen-argon;
  • the reducing agent and the fuel are one or more of a solid, liquid or gaseous fuel, which is sprayed or fed, and the injected gas is a preheated oxidizing gas, nitrogen or argon.
  • the preheating temperature is 0 to 1200 ° C;
  • the solid fuel and the reducing agent are one or more of coal powder, coke powder, fly ash, bituminous coal or anthracite, shape
  • the granular material has a particle size of 5 to 25 mm
  • the powdery material has a particle size of ⁇ 150 ⁇ m
  • the liquid fuel and the reducing agent are heavy oil
  • the gaseous fuel and reducing agent are gas and/or natural gas.
  • the mixing is uniformly mixed by natural mixing and stirring, and the stirring mode is argon stirring, nitrogen stirring, nitrogen-argon gas mixture stirring, reducing gas stirring, oxidation.
  • the stirring mode is argon stirring, nitrogen stirring, nitrogen-argon gas mixture stirring, reducing gas stirring, oxidation.
  • gas agitation electromagnetic agitation or mechanical agitation
  • the sedimentation is natural sedimentation or spin sedimentation or centrifugal sedimentation
  • the cooling mode when cooling sedimentation is natural cooling or spin cooling.
  • the gravity sorting method is a shaker sorting, a chute sorting or a combination of the two.
  • the method for producing mixed slag containing nickel and iron according to the present invention can treat hot slag and make full use of molten nickel smelting slag and molten metallurgical slag (melted lead smelting slag, molten blast furnace slag, molten steel slag, One or more of molten iron alloy slag) physical thermal resources and hot metallurgical flux, which can also process cold slag, and realize slag metallurgical modification by slag mixing or cold mixing;
  • the copper component, nickel-cobalt component, gold and silver components in the mixed slag are respectively enriched in the copper-rich nickel phase, and the growth and sedimentation are realized; wherein the copper-rich nickel phase includes copper and white ice a copper, copper ice nickel, copper-rich nickel-cobalt phase, a plurality of iron-containing components, or a portion of copper, nickel, cobalt components into the iron-rich phase;
  • the zinc component and the lead component in the mixed slag are respectively concentrated in the soot and recovered; part of the indium-containing component, the antimony component, the potassium-containing component, and the sodium-containing component are volatilized into the soot for recovery;
  • the slag is tempered, and the upper tail slag is used as a limiting factor for cement. It can be used as cement raw material or building material or instead of crushed stone as aggregate and road material or as blast furnace ironmaking and direct reduction ironmaking and smelting reduction ironmaking.
  • the process adopts mixed slag, and the whole process does not need heating or a small amount of compensation for heat; the process uses mixed slag, and the whole process can process cold materials without metallurgical flux or a small amount of metallurgical flux.
  • the method can be carried out continuously or intermittently to meet the needs of industrial production.
  • the present invention realizes a copper component, an iron component, a zinc component, a lead component, a nickel component, a cobalt component, a gold, a silver, a bismuth component, a sodium component in a nonferrous metallurgical slag and a steel metallurgical slag,
  • the comprehensive utilization of the valuable components of the potassium component solves the problem of a large accumulation of slag and environmental pollution.
  • the invention can treat nickel smelting slag, iron alloy slag, steel slag, blast furnace slag, lead smelting slag and copper-containing slag on a large scale, can solve the problem of heavy metal element pollution, and realize the recovery of heavy metal components.
  • the present invention can treat cold copper-containing and iron-containing materials.
  • the raw material of the present invention may be liquid molten nickel smelting slag and molten metallurgical slag (one or more of molten lead smelting slag, molten blast furnace slag, molten steel slag, molten iron alloy slag) flowing out from the tapping port, and having high
  • molten lead smelting slag one or more of molten lead smelting slag, molten blast furnace slag, molten steel slag, molten iron alloy slag
  • the characteristics of temperature and high heat make full use of the slag physical heat resources
  • the mixed slag contains a large amount of hot metallurgical flux, which is a slag system with excellent physical and chemical properties, achieving efficient utilization of metallurgical resources and thermal resources
  • the slag metallurgy is realized by making full use of the characteristics of the high reaction chemical activity of the mixed slag.
  • the present invention concentrates the copper group, the nickel component, the cobalt component, the blister copper, the matte phase, the gold component and the silver component in the slag to the copper-rich nickel phase by controlling the oxygen potential to achieve aggregation. , grow up and settle, the iron component is enriched in the iron-rich phase, achieving aggregation, growth and sedimentation, and the indium, antimony, sodium, potassium, lead and zinc components are enriched.
  • the soot is recovered into the soot, wherein the copper-rich nickel phase comprises copper, white copper, copper ice nickel, copper nickel cobalt phase, a plurality of iron components, or part of the copper component enters the iron-rich phase, rich
  • the iron phase includes a plurality of metal iron, FeO phase, and fayalite phases, and is used as a raw material for blast furnace ironmaking or direct reduction or smelting reduction ironmaking.
  • the cold material and the molten copper slag are added to avoid the slag temperature being too high, and the life of the heat preservation device is increased; adding the cold material and the molten copper slag improves the processing amount of the raw material, and can not only treat the liquid slag Moreover, a small amount of cold material can be processed, and the raw material is highly adaptable; the cold material is added to realize the efficient use of the chemical heat released by the slag metallurgical reaction and the physical heat of the slag.
  • the copper component, the nickel component, the cobalt component, the gold and silver component in the slag are respectively concentrated in the copper-rich nickel phase, and the aggregation, growth and sedimentation are realized, and the slag is obtained.
  • the iron component is enriched in the iron-rich phase, and the aggregation, growth and sedimentation are realized, and the silicate mineral phase is floated.
  • the heat preservation device equipped with the slag is placed on the rotating platform to accelerate the copper-rich nickel phase and the iron-rich phase. Aggregation, growth and sedimentation; the addition of fluorine-containing materials accelerates the growth and sedimentation of the copper-rich nickel phase and the iron-rich phase.
  • the method of the invention adopts the methods of manual sorting, magnetic separation, re-election or slag-gold separation to respectively distribute the low-iron silicate mineral phase, the iron-rich phase and the copper-rich nickel phase distributed in the upper part, the middle part and the bottom part. Separation is carried out to achieve efficient recovery of copper component, nickel component, cobalt component, gold and silver component, indium component, antimony component and iron component in the slag, and the obtained iron-containing silicate phase and iron-rich phase are obtained.
  • the slag of the component contains ⁇ 0.1wt% copper.
  • the amount of slag to be sorted is small, the mineral grindability is increased, and the cost of grinding, magnetic separation and re-election is increased. Low; the subsequent separation process uses magnetic separation or re-election, the separated medium is water, and there is no environmental pollution during the separation process; tailings are used as cement raw materials, building materials, instead of crushed stone as aggregate and road material.
  • the present invention precipitates by the copper-rich nickel phase, and the iron-containing silicate phase and the iron-rich component have a copper content of less than 0.1%, and are used as a raw material for blast furnace ironmaking or direct reduction or smelting reduction to obtain metallic iron and molten iron.
  • the invention fully utilizes the slag physical heat resource and the hot metallurgical flux, and can also treat the cold slag, realizes the slag metallurgy, the copper component, the nickel component, the cobalt component, the gold and silver group in the slag It is enriched in the copper-rich nickel phase, and achieves aggregation, growth and sedimentation.
  • the iron component is enriched in the iron-rich phase, achieving aggregation, growth and sedimentation, and separation of copper-rich nickel phase and iron-rich phase in different parts.
  • the method to achieve efficient recovery of valuable components in the slag; can process solid copper-containing materials, the method has short process flow, high metal recovery rate, low production cost, strong adaptability of raw materials, and Large quantity, friendly environment, high economic returns, can solve the problem of efficient recycling of metallurgical resources and thermal energy.
  • a method for recovering valuable components from a mixed slag containing nickel and iron according to the present invention comprises the following steps:
  • Step 1 slag mixing:
  • the nickel smelting slag is added to the smelting reaction device through which the heat transfer or slag can flow out, and one of lead smelting slag (smoke furnace slag and/or lead smelting slag), blast furnace slag, steel slag and iron alloy slag is added. Or a plurality of, forming a mixed slag;
  • the mixed slag is heated to a molten state to form a reaction slag containing nickel and iron; the mixture is uniformly mixed, and the reaction slag is monitored in real time, and the following parameters (a) and (b) are simultaneously controlled to obtain the melting after completion of the reaction. Slag, or pour the slag after the reaction is completed into the heat preservation device;
  • reaction slag containing nickel and iron has a temperature of 1050 to 1500 ° C;
  • the control method is:
  • the method of controlling the temperature of the reaction slag containing nickel and iron in the set temperature range is:
  • the heating function of the reaction device itself is added, or fuel or molten nickel smelting slag, molten lead smelting slag, molten blast furnace slag are added to the slag.
  • One or more of molten steel slag or molten iron alloy slag when injected into the fuel, simultaneously injecting an oxidizing gas, so that the temperature of the reaction slag reaches a set temperature of 1050 to 1500 ° C, and when the fuel is injected, simultaneously spraying Blowing an oxidizing gas;
  • nickel-containing smelting slag, copper-containing material, blast furnace slag, steel slag, iron alloy slag, metallurgy are added to the reaction slag containing nickel and iron.
  • the slag is kept for 5 to 50 minutes, settled, and slag-gold is separated to obtain a copper-rich nickel in a bottom molten state, an iron-rich phase in a molten state in the middle and lower portions, and a ferrosilicate mineral phase in a molten state in the middle and upper portions.
  • Each phase is recovered using one of the following methods:
  • the iron-rich phase is obtained by water quenching or air cooling or pouring into a heat preservation device, or by manual sorting and re-election, as a raw material for blast furnace ironmaking or direct reduction of nickel-iron raw materials or smelting reduction of nickel-iron raw materials or float Selecting copper and nickel raw materials; flotation products are copper concentrate, nickel concentrate, nickel-containing alloy and iron concentrate, iron concentrate as blast furnace ironmaking raw material or direct reduction ironmaking raw material or smelting reduction ironmaking raw material;
  • the reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln or an induction furnace as a reduction device, and the gas-based or coal-based reduction technology is used to reduce the gas base to natural gas and/or gas, and the coal base is reduced to anthracite.
  • One or more of bituminous coal, lignite, coking coal, coke breeze or coke, the reduction temperature is 900-1400 ° C,
  • the iron-containing silicate mineral phase in the step (1) is subjected to slag treatment, and one of the methods A to G is adopted:
  • Iron-containing silicate mineral phase as cement raw material Iron-containing silicate mineral phase as cement raw material
  • the iron-containing silicate mineral phase is directly quenched or air-cooled as a cement raw material or further processed into a high value-added cement raw material;
  • Method B Part or all of the iron-containing silicate mineral phase is returned to the copper-containing reaction slag:
  • the iron-containing silicate mineral phase is returned to the copper-containing and iron-containing reaction slag, and as a hot metallurgical flux, the copper-containing reaction slag component is adjusted to control the temperature of the reaction slag containing copper and iron;
  • Method C pouring a glass ceramic with a silicate mineral phase or as a slag wool
  • Method D air-cooling or water quenching after oxidation of iron-containing silicate slag, the method includes:
  • the preheated fuel and the preheated oxidizing gas are injected, the heat is burned, the heat is supplemented, or the device is heated by itself, so that the silicate slag temperature is >1450 ° C;
  • Method E Treatment of high value-added cement clinker by treatment with iron silicate slag:
  • Method F Iron-containing silicate slag as raw material for blast furnace ironmaking or direct reduction of ironmaking raw materials:
  • the iron-containing silicate slag After the iron-containing silicate slag is air-cooled, water-quenched or slow-cooled, it is used as a blast furnace ironmaking or direct reduction ironmaking raw material. After direct reduction, magnetic separation or electric furnace melting is used, and the magnetic separation product is metal iron and tailings. , electric furnace melting, the product is molten iron and slag;
  • the zinc-containing component and the lead-containing component are volatilized, and enter the soot in the form of ZnO and PbO;
  • the separation is performed by the following method: magnetic separation after slag modification: slag flowing into the heat preservation device, blowing 0-1200 ° C Preheating the oxidizing gas, and ensuring that the slag temperature is >1250 ° C, completing the transformation of magnetite in the slag; slowly cooling the oxidized slag to room temperature, crushing, magnetic separation, and the product is magnetite Mine and tailings, tailings as building materials;
  • the control method is:
  • the method for controlling the temperature of the reaction slag in the set temperature range is:
  • the temperature of the reaction slag ⁇ lower limit of the set temperature range is 1350 ° C
  • the temperature of the reaction slag reaches the set temperature range by the heating function of the reaction device itself or by adding the fuel and the preheated oxidizing gas to the slag.
  • the temperature range and the alkalinity control method are the same as the method G step (1);
  • Method I Perform the following steps:
  • Method II Perform the following steps:
  • the specific method is: using one or more of the methods A to E in the separation and recovery method 1 of the step 2, the slag treatment;
  • the gas produced by the reduction is secondarily burned on the surface of the slag to provide heat, and the gas flowing out of the furnace can be used as a heat source for the drying furnace material and the heat preservation device;
  • the molten iron-containing silicate mineral phase is subjected to slag treatment, and the specific treatment method is as follows: One or more of the methods A to G in the separation and recovery method 1 are subjected to slag treatment; or the step of containing the iron-rich phase is carried out by the step (4) in the first method;
  • the molten iron-containing silicate mineral phase and the iron-rich phase are subjected to slag treatment in a specific manner: one or more of the methods A to G in the separation and recovery method 1 of the step 2 are used;
  • Method 5 When using a heat preservation device, or using a smelting reaction device through which slag can flow out, when the slag is poured into the heat preservation device, the slag after the reaction is completed is as follows:
  • the nickel smelting slag is a nickel smelting slag produced by a "smelting smelting" process, and a copper icing smelting process is blown slag after the process blowing, " A kind of slag generated by depletion of the blown slag after the process of copper ice nickel blowing, depleted slag produced by depletion, nickel smelting slag produced by top blowing smelting, and nickel smelting slag produced by top blowing smelting by electric furnace Or a plurality of; the nickel smelting slag is in a molten state or a cold state, wherein: the molten nickel smelting slag is obtained from a slag opening of a nickel smelting furnace, or the nickel smelting slag is heated to a molten state;
  • the blast furnace slag, steel slag and iron alloy slag are in a molten state or in a cold state, wherein: molten slag (blast slag, steel slag and iron alloy slag) is obtained from a slag outlet, or cold slag (blast slag, steel slag and iron alloy slag) Heating to a molten state; the steel slag is molten iron pre-desulfurization slag (desulfurization slag, desiliconization slag, dephosphorization slag), converter slag, electric furnace slag, VOD/VAD slag, VD slag, tundish slag; said iron alloy slag
  • the slag produced during the production of ferroalloys includes slag from smelting carbon ferromanganese, slag from smelting ferrochrome, slag from smelting ferronickel, slag from smelting ferrovana
  • the copper-containing material is blister copper copper fire refining slag, copper tailings, copper slag, zinc smelting slag, zinc smelting soot and dust, lead and zinc tailings, lead smelting slag, lead copper, arsenic copper, Crude lead fire refining slag, lead smelting lead smoke One or more of ash and dust, lead acid battery, copper smelting soot and dust, copper, copper-containing garbage, copper-containing circuit board, tin smelting slag, tin tailings; Zinc smelting slag produced by zinc smelting and pyrometallurgical smelting, including leaching slag, iron slag, copper cadmium slag, goethite slag, hematite slag, volatile kiln slag, vertical tank zinc slag, blast furnace slag, smoke Chemical slag, vortex slag, electric furnace zinc slag; lead
  • the smelting reaction device is slag permeable, specifically a smelting smelting reaction device or a smelting reaction device with a slag or an iron port; wherein:
  • the heat preservation device is a pourable smelting reaction slag irrigation and heat preservation pit
  • the rotatable smelting reaction device is a converter and a smelting reaction slag tank;
  • the smelting reaction device with the slag port or the iron slag flowing out is a plasma furnace, a direct current arc furnace, an alternating current arc furnace, a submerged arc furnace, a blast furnace, a blast furnace, an induction furnace, a cupola, and a side blowing molten pool melting furnace.
  • the two parameters (a) and (b) are ensured at the same time, and the copper oxide, nickel oxide, cobalt oxide and iron oxide in the reaction slag are respectively reduced to metal copper.
  • Metal nickel, metallic cobalt and FeO, the metal iron content in the slag is ⁇ 3%. It can be regulated by adding one or both of a reducing agent and a carbon-containing iron-containing material, wherein the reducing agent and/or the carbon-containing iron-containing material is used in the amount of copper oxide and nickel oxide in the slag.
  • the theoretical amount of cobalt oxide and iron oxide reduced to metal copper, metallic nickel, metallic cobalt and FeO is 110-140%; the carbon-containing iron-containing material is pre-reduced with steel dust and soot, iron concentrate containing carbon Pellet, iron concentrate carbon-containing metallized pellets, wet zinc smelting kiln slag, coke oven dust and soot.
  • the fuel and the reducing agent are one or more of a solid, a liquid or a gas, which is sprayed in a spray manner, and the loaded gas is a preheated oxidizing gas.
  • the hot temperature is 0-1200 ° C;
  • the solid fuel and the reducing agent are one or more of pulverized coal, fly ash, coke powder, coke, bituminous coal or anthracite, and the shape is granular or powdery or massive, granular material
  • the particle size is 5 to 25 ⁇ m, the particle size of the powdery material is ⁇ 150 ⁇ m, the liquid fuel and the reducing agent are heavy oil, the gaseous fuel and the reducing agent are one or both of gas and/or natural gas; and
  • the metallurgical flux is CaO-containing Or a mineral of SiO 2 , specifically one or more of quartz sand, gold-silver-silica sand, red mud, high-calcium red mud after desoda, calcium carbide
  • the iron-containing material is ordinary iron concentrate, ordinary iron concentrate direct reduced iron, ordinary iron concentrate sintered ore, ordinary iron concentrate pellet, ordinary iron concentrate metallized pellet, ordinary iron concentrate carbonaceous Pre-reduction pellets, steel slag, zinc smelting slag, coke smelting soot and dust, steel soot and dust, nickel-containing smelting slag, lead smelting slag, copper slag, lead smelting slag, zinc smelting slag, tin smelting slag, red mud
  • the steel dust and dust include blast furnace gas mud, converter dust mud, electric furnace dust, hot (cold) smelting Mud, sintered dust, pellet dust, dust collection in ironworks, blast furnace gas ash, electric furnace dust ash, steel oxide scale; wet zinc slag and dust need to be dehydrated and dried;
  • zinc smelting slag and soot, lead smelting slag and soot contain indium and antimony
  • red mud contains sodium and potassium
  • steel soot and dust contain indium, antimony, silver, sodium and potassium, all of which have Iron
  • lead smelting slag and zinc smelting slag have copper
  • copper soot and dust contain indium and antimony
  • indium, antimony, sodium, Potassium, zinc, and lead enter the soot in the form of oxides for recycling.
  • the method of controlling the temperature of the mixed slag in the set temperature range is as follows:
  • the copper-containing material, the iron-containing material and the fluorine-containing material are all pellets or powdery materials or granulation; wherein the granular material has a particle size of 5 to 25 ⁇ m, the powdery material has a particle size of ⁇ 150 ⁇ m, and the powdery material is sprayed.
  • the loading gas is one or more of preheated argon gas, nitrogen gas, reducing gas (gas and/or natural gas), and oxidizing gas
  • the preheating temperature is 0 to 1200 ° C.
  • the blowing method described is that the refractory spray gun is inserted into the slag or placed on the upper part or the side of the reaction slag containing copper and iron;
  • the copper-containing material and the iron-containing material are in a hot or cold state, and the hot material is a hot material directly produced from a metallurgical furnace, and the temperature of the hot material is 200 to 1550 °C.
  • the method of controlling the temperature of the mixed slag in the set temperature range is as follows:
  • one or more of nickel metallurgical slag, copper-containing material, iron-containing material, blast furnace slag, steel slag, iron alloy slag, metallurgical flux or fluorine-containing material are added, Avoid excessive temperature and protect refractory materials; another function of adding fluorine-containing materials is to reduce the viscosity, accelerate the accumulation of copper-rich nickel phase and iron-rich phase in the slag, grow and settle, and facilitate the silicate to float;
  • the copper component, the nickel component, the cobalt component, the gold and silver component in the slag are enriched in the copper-rich nickel phase, and the aggregation, growth and sedimentation are achieved, and iron
  • the components are released from the olivine and enriched in the iron-rich phase to achieve aggregation, growth and sedimentation.
  • the zinc and lead components in the slag enter the soot respectively, and the soot is recovered in the form of zinc oxide and lead oxide.
  • the copper-nickel phase is copper, white copper, copper ice nickel, copper nickel cobalt phase, a plurality of iron-containing components, or part of the copper component enters the iron-rich phase, and the iron-rich phase includes metallic iron, FeO phase, iron olive a variety of stone phases;
  • the alkaline material is one or more of lime powder, red mud, high-calcium red mud after desodiumification, calcium carbide slag, dolomite powder or quicklime powder;
  • the basic iron-containing material is CaO/SiO 2 >11 iron-containing material, alkaline sintered ore, steel slag, iron alloy slag, alkaline iron concentrate, alkaline pre-reduction pellet, alkaline metallized pellet, steel slag or One or several of blast furnace slag;
  • the acidic material is one of silica, gold-silver-silica, fly ash, coal gangue or a variety of;
  • the acidic iron-containing material is CaO / SiO 2 ⁇ 1 iron-containing material, acid sinter, acid iron concentrate, acid pre-reduction pellets, acid metallized pellets, copper slag, lead smelting slag, One or more of zinc smelting slag, nickel smelting slag, tin smelting slag, and blast furnace slag;
  • the copper-rich nickel phase and the iron-rich phase in the slag are aggregated, grown and settled, which is favorable for the silicate to float;
  • the mixed slag is sufficiently mixed while ensuring the two parameters (a) and (b), and the mixing mode is natural mixing or stirring mixing, and the stirring mode is one of the following modes: argon stirring.
  • argon stirring One or more of nitrogen agitation, argon-nitrogen gas mixture, reducing gas (gas and/or natural gas), oxidizing gas, electromagnetic stirring, mechanical agitation;
  • the direct reduction process uses a rotary hearth furnace, a tunnel kiln, a vehicle bottom road, a shaft furnace, a rotary kiln, an induction furnace as a reduction device, and a gas-based or coal-based reduction technology
  • the gas base is natural gas and/or Gas
  • coal-based reduction to one or more of anthracite, bituminous coal, lignite, coking coal, coke breeze, coke reduction temperature of 900 ⁇ 1400 ° C
  • alkalinity CaO / SiO 2 ratio 0.7 ⁇ 1.9
  • the oxidizing gas is one of preheated air, oxygen, oxygen-enriched air, nitrogen-air, argon-air, oxygen-nitrogen, oxygen-argon, and the preheating temperature is 0 ⁇ 1200°C
  • the blowing method is to insert slag into the slag by using a refractory spray gun or to be placed on the upper or side or bottom of the reaction slag containing copper and iron;
  • the cooling method used in the separation is natural cooling or rotary cooling or centrifugal cooling.
  • the sedimentation method is natural sedimentation or rotary sedimentation or centrifugal cooling;
  • the specific operation of the rotation and the centrifugal cooling is: the device containing the slag after the reaction is completed is placed on the rotating platform, and is rotated according to a certain speed, and the rotation speed is determined according to the quality of the slag and the height or depth of the heat preservation device, and the rotation is performed.
  • the time depends on the quality of the slag and the solidification of the slag; the device containing the slag after the completion of the reaction is placed on a rotating platform for the purpose of accelerating the accumulation of copper-rich nickel phase, iron-rich phase, growth and sedimentation, Conducive to silicate (phosphorus-rich phase) floating, shortening settling time, improving sedimentation effect and improving production efficiency;
  • step 2 in the slag cooling process after the completion of the reaction, most of the copper-rich nickel phase and the iron-rich phase settle in the middle and lower portions due to the difference in density and mineral size;
  • the copper component, the nickel component, the cobalt component, the gold and silver component in the slag after the reaction is completed to migrate and enrich in the copper-rich nickel phase, and the iron component in the mixed slag continues to migrate respectively.
  • the finally obtained slag contains copper ⁇ 0.1%, the iron recovery rate is ⁇ 91%, the zinc recovery rate is ⁇ 92%, the lead recovery rate is ⁇ 93%, and the nickel enrichment rate is ⁇ 92%, the enrichment rate of cobalt is ⁇ 92%, the enrichment rate of gold is ⁇ 90%, and the enrichment rate of silver is ⁇ 90%.
  • reaction slag basicity CaO / SiO 2 ratio of copper and iron 0.15 ⁇ 1.5;
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing: the molten nickel smelting slag obtained from the slag smelting process of the smelting process is added to the DC arc furnace by the slag venting port of the "copper ice nickel blowing" process, and the cold state is added at the same time.
  • Slag, VOD/VAD slag and iron alloy slag produced by smelting carbon ferromanganese, lead smelting slag in liquid high lead slag reduction furnace, forming mixed slag; heating slag to molten state to form reaction containing copper and iron
  • the slag is pulverized, and the reaction slag is electromagnetically stirred to realize natural mixing; the reaction slag is monitored in real time, and the slag after completion of the reaction is obtained by controlling two parameters (a) and (b); corresponding (a):
  • the reaction temperature of copper and iron is 1660 ° C. It is inserted into the reaction slag by using a refractory spray gun.
  • the nitrogen gas is used as the loading gas, and the copper slag, copper-containing soot, copper-containing and copper-containing powder with normal particle size ⁇ 150 ⁇ m are sprayed.
  • Garbage and copper-containing circuit boards adding blast furnace gas mud, electric furnace dust, converter dust, ordinary iron concentrate direct reduced iron and blast furnace gas ash to reduce the temperature to 1480 ° C;
  • reaction with copper and iron The alkalinity CaO/SiO 2 ratio of the slag is 2.8, Adding a mixture of silica, fly ash and coal gangue to the reaction slag to reduce the reaction slag basicity ratio of copper and iron to 1.4; the metal iron content in the slag is 0.5%;
  • Step 2 separation and recovery method 1:
  • the slag is naturally settled, and the slag-gold is separated to obtain a molten copper-rich nickel phase, an iron-rich phase and an iron-containing silicate mineral phase, and at the same time, a zinc component and a lead component are formed, and the following steps are performed: (1) The molten iron-containing silicate mineral phase is treated by external slag treatment, and the method F is used. After the silicate slag is air-cooled, it is used as a direct reduction ironmaking raw material, and the rotary kiln is used for direct reduction, and the gas-based reduction technology is utilized.
  • the gas-based reducing agent is natural gas and gas, the reduction temperature is 900 ° C, the alkalinity CaO / SiO 2 ratio is 0.8, and after reduction, the metal iron and slag are obtained by magnetic furnace melting, the melting temperature is 1550 ° C; the product is metal molten iron (2) molten copper-rich nickel phase, sent to the converter; (3) iron-rich phase is poured into the heat preservation device, used as a blast furnace ironmaking raw material after air cooling; (4) zinc component indium component, lead component The strontium component, the potassium component and the sodium component volatilize and enter the soot recovery in the form of oxide.
  • the slag contains copper ⁇ 0.1%, the zinc recovery rate is 93%, the indium recovery rate is 93%, and the strontium recovery rate is 94%.
  • the sodium recovery rate is 95%, the potassium recovery rate is 96%, the lead recovery rate is 94%, and the iron recovery rate is 95%.
  • Enrichment of 93%, 95% cobalt enrichment, the enrichment of gold was 91%, silver 92% enrichment.
  • the copper content of the slag refers to the slag phase after the phase separation of the copper-rich nickel phase, specifically the copper content in the iron-rich phase and the silicate mineral phase, and the enrichment ratio of nickel and cobalt. It refers to the content in the copper-rich nickel phase as a percentage of the total amount of nickel and cobalt in the raw material.
  • the enrichment ratio of gold and silver means that the content of gold and silver in the copper-rich nickel phase and soot accounts for the total amount of gold and silver in the raw material. The percentage of the amount.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 Slag mixing: molten nickel smelting slag obtained from the slag smelting slag exiting process of the smelting process and molten smelting slag obtained by the "copper ice nickel blowing" process slag slag passing through the slag outlet of the lean furnace Adding pourable smelting reaction slag irrigation, adding iron alloy slag produced by molten smelting ferrochrome obtained from the slag outlet to form mixed slag; using oxygen-enriched air, blowing natural gas, particle size of 20mm anthracite and coke, will The mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction slag is electromagnetically stirred to achieve mixing; the reaction slag is monitored in real time, and two parameters (a) and (b) are ensured by regulation.
  • the slag is obtained; corresponding to (a) the reaction temperature of the slag containing copper and iron is 1,660 ° C, and the refractory spray gun is inserted into the reaction slag, and the argon gas is used as the carrier gas, and the powder granules having a normal particle size of ⁇ 150 ⁇ m are sprayed into the slag.
  • Step 2 separation and recovery method 2: heat preservation for 50 min, slag spin sedimentation after completion of the reaction, slag-gold separation, obtain molten copper-rich nickel phase, iron-rich phase and iron-containing silicate mineral phase, and simultaneously form zinc group
  • the fraction, the lead component and the indium component are subjected to the following steps: (1) the molten silicate mineral phase and the iron-rich phase layer, the method G is used for the slag treatment, and the slag is smelted to reduce the ferronickel.
  • the molten copper-rich nickel phase is sent to the converter; (3) the zinc component, the lead component, the bismuth component and the indium component are volatilized, and the oxide form enters the soot recovery.
  • the final slag contains copper ⁇ 0.1%, zinc recovery rate is 95%, lead recovery rate is 93%, indium recovery rate is 96%, hydrazine recovery rate is 96%, sodium recovery rate is 97%, and potassium recovery rate is 98%.
  • the slag contains copper ⁇ 0.1%, the iron recovery rate is 97%; the nickel enrichment rate is 92%, the cobalt enrichment rate is 96%, the gold enrichment rate is 92%, and the silver enrichment rate is 92%.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing: the molten nickel smelting slag obtained from the slag smelting slag smelting port of the smelting process and the molten nickel smelting slag obtained by smelting the smelting slag from the top blowing molten pool to the slag outlet of the settling electric furnace are added to the DC arc furnace At the same time, the steel slag obtained from the slag outlet of the converter steelmaking is added to form a mixed slag; the anthracite, coke granules and pulverized coal having a particle size of 20 mm are sprayed with oxygen having a preheating temperature of 600 ° C, and the mixed slag is heated to a molten state.
  • Step 2 separation and recovery method 2: heat preservation for 35 min, the slag after the completion of the reaction is naturally settled, and the slag-gold separation, obtaining a molten copper-rich nickel phase, an iron-rich phase layer and an iron-containing silicate mineral phase, and simultaneously forming The zinc component, the lead-containing component, the sodium-containing component, and the potassium-containing component enter the soot and are recovered as an oxide.
  • the following steps are performed:
  • the slag contains copper ⁇ 0.1%, the iron recovery rate is 97%, the sodium recovery rate is 93%, the potassium recovery rate is 95%, the zinc recovery rate is 97%, the lead recovery rate is 93%, and the indium recovery rate is 93%.
  • the recovery rate was 94% for 94%, 96% for nickel, 97% for cobalt, 91% for gold, and 93% for silver.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing: the molten nickel smelting slag obtained by melting the smelting slag in the cold state by the top blowing molten pool and passing through the slag outlet of the sedimentation electric furnace is added to the plasma furnace, and the converter steel slag, electric furnace steel slag obtained by the slag outlet, and the smelting are added.
  • the iron alloy slag obtained by the ferronickel forms a mixed slag; the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction slag is sprayed with argon gas having a preheating temperature of 400 ° C to achieve mixing;
  • the reaction slag is monitored in real time, and the slag after completion of the reaction is obtained by controlling both parameters (a) and (b); corresponding to (a) the temperature of the reaction slag containing copper and iron is 1670 ° C, and the reaction is melted.
  • Red mud, sulfuric acid slag, fluorite, lead ice copper, leaded soot, zinc-containing soot, arsenic matte and wet zinc slag are added to the slag to lower the temperature to 1430 ° C;
  • copper and iron Reaction slag basicity CaO / SiO 2 ratio of 2.9 adding copper-containing blowing slag to the reaction slag, so that the copper-iron reaction slag alkalinity ratio is reduced to 1.1; blowing natural gas, and using preheating temperature of 800 The air of °C is sprayed with coke particles with a particle size of 20 mm, and the content of metallic iron in the slag is 1.7. %;
  • Step 2 separation and recovery method 4: heat preservation for 19 min, after the reaction is completed, the slag is naturally settled, and the slag-gold separation, obtaining a molten copper-rich nickel phase, an iron-rich phase layer and a ferrosilicate-containing mineral phase, and zinc-containing
  • the lead-containing component is subjected to the following steps: (1) molten copper-rich nickel phase and sent to the converter; (2) molten iron-rich phase layer and iron-containing silicate mineral phase step 2 separation and recovery method 1 method I, Oxidation-modified magnetic separation: 1 Pour the slag into the slag pot, spray oxygen-enriched air with a preheating temperature of 900 °C into the slag to achieve the transformation of magnetite; 2 slowly cool to room temperature, magnetic separation , obtaining iron concentrate and tailings; (3) partially containing zinc component, antimony component, indium component and lead component volatilized, entering soot recovery, and finally obtaining slag containing copper ⁇ 0.1%, iron recovery rate 94%
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing: molten nickel smelting slag obtained from the slag smelting process of the smelting process, and molten smelting slag obtained from the slag outlet of the "copper ice nickel blowing" process blowing furnace are added to the slag slag tank At the same time, the cold molten iron pre-desulfurization slag and the molten steel slag obtained from the slag outlet are added to form a mixed slag; the air having a preheating temperature of 800 ° C is sprayed with a particle size of 20 mm of bituminous coal and coal powder, and the mixed slag is heated.
  • reaction slag temperature containing copper and iron is 1450 ° C
  • reaction between copper and iron slag basicity CaO / SiO 2 ratio of 0.5 are within the required range; metal in slag The iron content is 1.4%;
  • Step 2 separation and recovery method 5: The slag after the completion of the reaction is carried out as follows: (1) sedimentation cooling: heat preservation for 38 min, the slag after the reaction is naturally cooled to room temperature to obtain slow cooling slag; copper-rich nickel phase sedimentation To the bottom of the reaction device, a copper-rich nickel ruthenium is formed; the iron-containing silicate mineral phase is floated; the copper-rich nickel phase metal lanthanum and the silicate mineral intermediate slow-cooling slag are iron-rich phases, and zinc-containing and lead-containing components are simultaneously formed.
  • Salt mineral phase obtained as silicate tailings, used as cement raw material; (4) Part of zinc component, lead component, antimony component and indium component volatilize, enter into soot recovery as oxide, slag contains copper ⁇ 0.1 %, iron recovery rate is 91%, zinc recovery rate is 94%, lead recovery rate is 95%; nickel enrichment rate is 95%, cobalt enrichment rate is 93%, gold enrichment rate 91%, the silver enrichment rate is 92%.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing: the cold nickel smelting slag obtained by the "osmosis process” process, the cold nickel smelting slag obtained by the "copper ice nickel blowing process” blowing slag through the depleting furnace is added to the alternating current arc furnace, The iron alloy slag produced by cold smelting ferrovanadium and the iron alloy slag produced by smelting ferrosilicon are added to form mixed slag; the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction slag is sprayed.
  • Step 2 separation and recovery method 1: heat preservation for 19 min, the slag after the completion of the reaction is naturally settled, slag-gold separation, obtaining molten copper-rich nickel, iron-rich phase layer and iron-containing silicate mineral phase, and zinc-containing With the lead-containing component, the following steps are carried out: (1) the molten iron-containing silicate mineral phase is separated and recovered by the step 2, and the water quenching is directly used as the cement raw material; (2) the molten copper-rich nickel phase is sent to the converter.
  • the iron-rich phase layer is poured into the heat preservation device, it is used as a raw material for direct reduction ironmaking; (4) part of the zinc-containing component, the lead-containing component, the indium-containing component and the cerium-containing component are volatilized, and enter the soot Recycling.
  • the slag contains copper ⁇ 0.1%, the iron recovery rate is 92%, the zinc recovery rate is 94%, the lead recovery rate is 95%, the indium recovery rate is 93%, the hydrazine recovery rate is 94%, and the sodium recovery rate is 95%.
  • the potassium recovery rate is 96%; the nickel enrichment rate is 94%, the cobalt enrichment rate is 92%, the gold enrichment rate is 92%, and the silver enrichment rate is 94%.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing: molten nickel smelting slag obtained from the slag smelting process of the smelting process, and molten smelting slag obtained from the slag outlet of the "copper ice nickel blowing" process blowing furnace are added to the submerged arc furnace At the same time, the slag produced by the smelting of the slag iron and the slag produced by the smelting of the ferromolybdenum are added to form a mixed slag; the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and the reaction is melted.
  • the slag is blown with nitrogen to achieve mixing; the reaction slag is monitored in real time, and the slag after completion of the reaction is obtained by controlling both parameters (a) and (b); corresponding to (a): reaction slag containing copper and iron The temperature is 1320 ° C; (b): the reaction slag containing copper and iron has a CaO/SiO 2 ratio of 0.8, which is within the required range; natural gas is sprayed, and the metal iron content in the slag is 2.1%.
  • Step 2 separation and recovery method 3: heat preservation for 9 min, the slag is naturally settled after the reaction is completed, and the slag-gold separation results in a molten copper-rich nickel phase, an iron-rich phase, an iron-containing silicate mineral phase, and a zinc component and lead.
  • the components are subjected to the following steps: (1) molten copper-rich nickel phase, and sent to the converter; (2) molten iron-rich phase and silicate mineral, specifically adopting the method F in the separation and recovery method of the second step, after water quenching As a raw material for direct reduction of ironmaking; (3) part of the zinc component, lead component, antimony component and indium component volatilize, enter the soot recovery in the form of oxide, the slag contains copper ⁇ 0.1%, the recovery rate of iron 92%, zinc recovery rate is 93%, lead recovery rate is 93%, nickel enrichment rate is 94%, cobalt enrichment rate is 96%, gold enrichment rate is 91%, silver enrichment The rate is 93%.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing: molten nickel smelting slag obtained from the slag smelting slag exiting process of the smelting process, and molten smelting slag obtained by the "copper ice nickel blowing" process slag slag passing through the slag outlet of the lean furnace Adding to the blast furnace, adding the blast furnace slag and the electric furnace steel slag obtained from the slag outlet to form the mixed slag; spraying the granular coal with a particle size of 20 mm with the preheating temperature of 600 ° C, and heating the mixed slag to a molten state Forming a reaction slag containing copper and iron, and mixing the reaction slag; monitoring the reaction slag in real time, and simultaneously controlling the two parameters (a) and (b) to obtain the slag after completion of the reaction; a): the temperature of the reaction slag containing copper and iron is 1330 ° C; (b): the ratio of alkalin
  • Step 2 separation and recovery method 3: heat preservation for 13 min, after the completion of the reaction, the slag is naturally settled, and the slag-gold is separated to obtain a copper-rich nickel phase and a medium-upper iron-containing silicate mineral phase, and at the same time, a zinc-containing and lead-containing group is formed.
  • molten iron-containing silicate mineral phase poured into a smelting device, and treated outside the furnace slag, specifically using step 2 separation and recovery method B, and returning the middle and upper slag all to the copper-containing slag Reactive slag with iron, as a hot metallurgical flux, adjust the composition of slag containing copper and iron to control its temperature;
  • molten copper-rich nickel phase, iron-rich phase sent to converter or converter; (3) Part of the zinc component and lead component volatilize and enter the soot recovery as oxide.
  • the slag contains copper ⁇ 0.1%, the iron recovery rate is 93%, the zinc recovery rate is 92%, and the lead recovery rate is 94%.
  • the sodium recovery rate was 94%, the potassium recovery rate was 95%, the nickel enrichment rate was 93%, the cobalt enrichment rate was 96%, the gold enrichment rate was 93%, and the silver enrichment rate was 95%.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 Mixing slag: molten nickel obtained by melting the smelting slag from the top-blown molten pool to obtain the molten nickel slag obtained by the slag discharge port of the sedimentation furnace and the molten nickel obtained by the "copper ice nickel blowing" process blowing slag through the slag outlet of the depleted furnace
  • the smelting slag is added to the side-blown rotary kiln, and the molten blast furnace slag and the VD slag obtained from the slag outlet are simultaneously added to form a mixed slag; the mixed slag is heated to a molten state to form a reaction slag containing copper and iron, and is sprayed.
  • the preheating temperature is 400 ° C argon gas, so that the slag can be mixed; the reaction slag is monitored in real time, and the slag after the completion of the reaction is obtained by controlling two parameters (a) and (b); corresponding (a): The reaction slag temperature of copper and iron is 1340 ° C; (b): the reaction slag basicity CaO / SiO 2 ratio of copper and iron is 1.2, which meets the requirements; the coke particles with a particle size of 20 mm are sprayed with air, and melted.
  • the metal iron content in the slag is 2.7%;
  • Step 2 separation and recovery method 2: heat preservation for 35 min, after the reaction is completed, the slag is subjected to the following steps: (1) The molten iron-containing silicate mineral phase is poured into the smelting device, and the step C is used to separate and recover the method C, the middle and upper slag is poured into the glass ceramics; (2) the lower molten copper-rich nickel phase is sent to the converter or blown (3) part of the zinc component, lead component, in the form of oxides into the dust recovery, slag containing copper ⁇ 0.1%, iron recovery rate of 94%, zinc recovery rate of 95%, lead recovery The rate was 93%; the nickel enrichment rate was 97%, the cobalt enrichment rate was 93%, the gold enrichment rate was 92%, and the silver enrichment rate was 93%.
  • a method for recovering valuable components from a mixed slag containing nickel and iron comprising the steps of:
  • Step 1 slag mixing:
  • the molten pool smelting produces smelting slag.
  • the molten nickel smelting slag obtained by the slag outlet of the settling electric furnace is added to the heat preservation pit, and the cold steel slag is added to form the mixed slag; the oxygen-enriched air with a preheating temperature of 1000 ° C is used, and the spray size is ⁇ 150 ⁇ m bituminous coal, the mixed slag is heated to a molten state to form a copper-containing reaction slag, and the reaction slag is mixed; the reaction slag is monitored in real time, and two parameters (a) and (b) are simultaneously controlled to obtain a reaction. Finished slag;
  • the temperature of the copper-containing reaction slag is 1430 ° C;
  • the alkalinity CaO / SiO 2 ratio of the copper-containing reaction slag is 1.3, both within the required range; the metal iron content in the slag is 1.5 %;
  • the slag contains copper ⁇ 0.1%, the iron recovery rate is 92%, the zinc recovery rate is 94%, and the lead recovery rate is 93. %; nickel enrichment rate is 95%, cobalt enrichment rate is 96%, gold enrichment rate is 93%, and silver enrichment rate is 94%.

Abstract

一种由含镍与铁的混合熔渣回收有价组分的方法,其包括S1、炉渣混合:将镍冶炼渣加入熔炼反应装置中,加入铅冶炼渣、高炉渣、钢渣和铁合金渣中的一种或多种,形成混合熔渣;将熔渣加热至熔融状态作为反应熔渣,混合均匀,实时监测反应熔渣,同时通过调控使混合后的含镍与铁的熔渣同时满足条件a和条件b,获得反应后的熔渣;S2、分离回收。

Description

一种由含镍与铁的混合熔渣回收有价组分的方法 技术领域
本发明属于熔渣冶金技术领域,具体涉及一种由含镍与铁的混合熔渣回收有价组分的方法。
背景技术
镍的火法冶炼过程中,产生大量镍冶炼渣,镍冶炼渣包括“造锍熔炼”工艺产生的镍熔炼渣、“铜冰镍吹炼”工艺吹炼后的贫化炉渣、顶吹熔炼产生的镍沉降炉渣。我国金川公司采用“闪速熔炼”与“顶吹熔炼”进行镍精矿冶炼,每年产生100万吨镍冶炼渣,目前累计堆积储存量超过1000万吨。镍冶炼渣中铜、铁、镍、钴、锌、铅、金、银等有价组分,长期堆放,既浪费资源,又污染环境。
镍冶炼渣中铁含量高达50wt%,远超目前26wt%可采品位,渣含铜高达0.2wt%以上,其中铁组分主要以铁橄榄石相存在。目前,镍冶炼渣的研究利用主要集中直接还原提铁或熔融炼铁。在还原过程中,铜、镍、钴组分还原进入铁水,不利于后续的炼钢过程。
铅的火法冶炼过程“烧结-鼓风炉还原-烟化炉”或“氧化吹炼-高铅渣还原-烟化炉”等工艺中,产生铅冶炼渣。铅冶炼渣包括含铅熔炼渣与烟化炉渣。“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生烟化炉渣,铅冶炼渣(烟化炉炉渣与含铅熔炼渣)含有铜、金、银、铁、锌、铅等组分,是重要的二次资源。铅冶炼渣(含铅熔炼渣或烟化炉炉渣)温度在≥1050℃,铅冶炼渣是重要的物理热资源,但是还没有一种合理的工艺可对其能进行有效利用。
高炉渣、钢渣与铁合金炉渣含有较高含量的金属铁、铁氧化物、铬氧化物、五氧化二磷、SiO2、CaO、MgO等有价组分是重要的二次资源;由高炉、炼钢炉与铁合金炉排放出熔融炉渣温度≥1300℃,因此,熔融高炉渣、熔融钢渣与熔融铁合金炉渣也是重要的物理热资源。但是没有合理工艺进行利用,只能大量堆放,造成资源的浪费及环境的污染。
镍冶炼渣、铅冶炼渣、高炉渣、钢渣、铁合金炉渣中含有大量SiO2、CaO、MgO、Al2O3等冶金熔剂,化学反应活性强,是物理化学性质优良的熔渣体系,是冶金熟料。由冶金炉流出的熔融镍冶炼渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣与熔融铁合金炉渣,蕴含丰富热能资源,含大量热态冶金熔剂。如何大规模同时处理熔融铅冶炼渣、熔融高炉渣、熔融钢渣与熔融铁合金炉渣,及镍冶炼渣解决环境污染问题及实现铜、铁的同步分离生产,目前还没有一种工艺能同时达到。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供含镍与铁的混合熔渣回收有价组分的方法。该方法反应时间短、工艺流程短、金属回收率高、生产成本低、处理量大、环境友好、经济收益高、可有效解决冶金资源与热能高效回收利用问题;本发明是一种新的熔渣冶金工艺,不仅降低渣含铜(渣含铜<0.1wt%),而且实现铜、镍、钴、金、银、铁、锌、铅、铟、铋、钠、钾组分的高效回收与含铜物料的处理,获得低铜含铁物料(铁精矿与生铁)。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种由含镍与铁的混合熔渣回收有价组分的方法,其包括如下步骤:
S1、炉渣混合:将镍冶炼渣加入熔炼反应装置中,同时加入铅冶炼渣、高炉渣、钢渣和铁合金渣中的一种或多种,形成混合熔渣;将混合熔渣加热至熔融状态作为反应熔渣,混合均匀,实时监测反应熔渣,通过调控使混合后的反应熔渣同时满足条件a和条件b,获得反应后的熔渣,或将反应后的熔渣倒入保温装置;
其中,所述条件a为控制反应熔渣温度为1050~1500℃;
所述条件b为控制反应熔渣的碱度CaO/SiO2比值=0.15~1.5;
S2、分离回收:所述步骤S1反应后的熔渣,保温5~50min,沉降分离获得底部的富镍铜、中下部的富铁相与中上部的含铁硅酸盐矿物相,同时生成含锌组分与含铅组分的烟灰,金组分、银组分进入富铜镍相,含镍组分、含钴组分分别进入富铜镍相与富铁相;对各相进行回收处理。
如上所述的方法,优选地,在所述步骤S1中,对于所述条件a调控的方法为:
当所述反应熔渣的温度<1050℃时,利用反应装置自身的加热功能,或向熔渣中加入燃料或熔融镍冶炼渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣或熔融铁合金渣的一种或多种,喷入燃料时,同时喷入氧化性气体,使反应熔渣的温度达到1050~1500℃;
当所述反应熔渣的温度>1500℃时,向所述反应熔渣中加入镍冶炼渣、含铜物料、高炉渣、钢渣、铁合金渣、冶金熔剂、含铁物料或含氟物料中的一种或几种混合均匀,使混合的反应熔渣的温度达到1050~1500℃;
对于所述条件b调控的方法为:
当所述反应熔渣中碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料和/或碱性含铁物料;
当所述反应熔渣中碱度CaO/SiO2比值>1.5时,向反应熔渣中加入酸性物料和/或酸性含铁物料。
如上所述的方法,优选地,在所述步骤S1中,满足所述条件a和b的同时,应同时满足,控制所述反应熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物分别还原为金属铜、金属镍、金属钴和FeO,熔渣中金属铁含量<3%。可通过加入还原剂、含碳的含铁物料中的一种或两种进行调控,其中,所述还原剂和/或含碳的含铁物料的用量为熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物还原为金属铜、金属镍、金属钴和FeO的理论量110~140%;所述含碳的含铁物料为钢铁尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣、焦炭炉尘泥与烟灰。
如上所述的方法,优选地,所述熔炼反应装置为可转动的熔炼反应装置或带有渣口或铁口的熔炼反应装置。
如上所述的方法,优选地,所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、铜冰镍吹炼”工艺吹炼后的吹炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣经贫化产生的贫化炉渣、顶吹熔炼产生的镍熔炼渣、顶吹熔炼产生的镍熔炼渣经沉降产生的沉降渣中一种或多种;所述镍冶炼渣为熔融态或冷态,其中,熔融镍冶炼渣由镍冶炼炉出渣口获得,或将镍冶炼渣加热至熔融状态;
所述高炉渣、钢渣与铁合金渣为熔融态,或冷态,其中:熔融态炉渣(高炉渣、钢渣与铁合金渣)由出渣口获得,或将冷态炉渣(高炉渣、钢渣与铁合金渣)加热至熔融状态;所述钢渣为铁水预脱硫渣(脱硫渣、脱硅渣、脱磷渣)、转炉渣、电炉渣、VOD/VAD渣、VD渣、中间包弃渣;所述铁合金炉渣为铁合金生产过程中产生的炉渣,包括冶炼碳素锰铁产生的炉渣、冶炼铬铁产生的炉渣、冶炼镍铁产生的炉渣、 冶炼钒铁产生的炉渣、冶炼硅铁产生的炉渣、冶炼铌铁产生的炉渣、冶炼钼铁产生的炉渣。
如上所述的方法,优选地,所述含铜物料为粗铜铜火法精炼渣、选铜尾矿、铜渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅冶炼炉渣、铅锌尾矿、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼烟尘与烟灰、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、锡尾矿中的一种或几种;其中,所述锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、鼓风炉渣、旋涡炉渣、烟化炉渣、电炉炼锌渣;铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;所述铜渣是含铜熔炼渣、含铜吹炼渣、贫化弃渣、浮选尾渣、湿法炼铜渣中的一种或多种,含铜熔炼渣产生于铜的火法冶炼工艺的“造锍熔炼”过程;所述含铜吹炼渣产生于铜的火法冶炼工艺的“铜锍吹炼”过程;贫化弃渣为含铜熔炼渣与含铜吹炼渣贫化后弃渣,浮选尾渣为含铜熔炼渣与含铜吹炼渣选矿后尾渣。其中,含铜物料与含铁物料为热态或冷态,其中热态物料由冶金炉出料口或出渣口直接获得。
如上所述的方法,优选地,所述燃料与还原剂为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,用0-1200℃的气体载入,所述气体是氧化性气体;
所述碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中的一种或几种;所述的碱性含铁物料为CaO/SiO2>1的碱性烧结矿、碱性铁精矿、碱性预还原球团、碱性金属化球团或钢渣中的一种或几种。
如上所述的方法,优选地,所述酸性物料为硅石、含金银硅石、粉煤灰、煤矸石中的一种或多种;所述的酸性含铁物料为CaO/SiO2≤1的含铁物料、酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、铁合金渣、高炉渣中的一种或几种。
如上所述的方法,优选地,所述含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、含镍冶炼渣、铜渣、铅冶炼渣、铜渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热(冷)轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;所述的含氟物料是萤石、CaF2或含氟高炉渣中的一种或几种;湿法炼锌渣与尘泥需脱水、干燥。
进一步地,所述固体燃料与还原剂为煤粉、焦粉、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm;所述液体燃料与还原剂为重油,所述气体燃料与还原剂为煤气和/或天然气。
优选地,在所述步骤S1中,所述混合均匀为自然混合或搅拌混合,搅拌方式为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌或机械搅拌中的一种或几种。
如上所述的方法,优选地,在所述步骤S2中分离回收中,对所述富铜镍相、富铁相与含铁硅酸盐矿物相可分别进行处理,或将任两相结合处理,金组分与银组分迁移、富集进入富铜镍相,含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收。
具体地,所述步骤S2中的分离回收,采用如下方法一到方法五中任一方法处理:
方法一、采用熔渣可流出熔炼反应装置时,反应完成后的熔渣分离后进行如下步骤:
S2-1-01、所述含铁硅酸盐矿物相,进行如下方法A-G中的任一种处理;
方法A:水淬或空冷后直接用作水泥原料;
方法B:部分或全部所述熔融态含铁硅酸盐矿物相返回到含铜与铁的反应熔渣中;
方法C:所述含铁硅酸盐矿物相用于浇筑微晶玻璃或作为矿渣棉;
方法D:所述含铁硅酸盐熔渣氧化后空冷或水淬,方法包括:向熔炼反应装置内的含铁硅酸盐熔渣中,吹入温度为0~1200℃的预热氧化性气体,并保证硅酸盐熔渣温度>1450℃;当熔渣氧化亚铁重量百分比含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
进一步地,当含铁硅酸盐熔渣温度<1450℃,喷入预热燃料与预热的氧化性气体,燃烧放热、补充热量,或装置自身加热,使硅酸盐熔渣温度>1450℃;
方法E:所述含铁硅酸盐矿物相用于生产高附加值的水泥熟料,包括如下步骤:
E-1、向含铁硅酸盐矿物相的熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
E-2、向上熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1450℃;当氧化亚铁重量百分比含量<1%,获得氧化后的熔渣;
E-3、所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:所述含铁硅酸盐的熔渣作为高炉炼铁原料或直接还原炼铁原料:将含铁硅酸盐熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
方法G:所述含铁硅酸盐进行还原炼铁,包括如下步骤:
G-1、向熔融态含铁硅酸盐熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足条件:反应熔渣的温度为1350~1640℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
其中,控制反应熔渣的温度的方法为:
当反应熔渣的温度<1350℃,通过反应装置自身的加热,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到1350~1640℃;
当反应熔渣的温度>1640℃,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到1350~1640℃,其中,所述的冶金熔剂为含CaO或SiO2的矿物,具体为石英砂、含金银石英砂、赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种;
控制反应熔渣的碱度的方法为:
当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含铁物料;
当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料;
G-2、所述G-1中熔融还原时还需向熔渣中喷吹0~1200℃预热后的氧化性气体进 行熔融还原,形成还原后的熔渣;
G-3、分离回收:采用以下方法中的一种:
方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,缓慢冷却至室温,获得缓冷渣;其中,金属铁沉降到反应装置的底部,形成铁坨,将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
方法Ⅱ:还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;所述还原后的熔渣,按照方法A~E中的一种或几种方法进行熔渣处理;所述铁水,送往转炉或电炉炼钢;
S2-1-02、所述富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
S2-1-03、部分所述含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收;
S2-1-04、部分含金组分与含银组分进入富铜镍相,镍、钴组分分别进入富铜镍相与富铁相;
S2-1-05、所述富铁相层进行水淬或空冷或倒入保温装置缓冷后,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或浮选提铜原料;浮选过程中,浮选产物为铜精矿、镍精矿、含镍合金与铁精矿,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;所述直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原采用天然气和/或煤气,煤基还原采用无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,控制还原温度为900~1400℃,控制碱度CaO/SiO2比值=0.8~1.5;还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源;
此外,因赤泥中含有钾、钠,尘泥与钢铁烟灰中含有铅、锌、铋、铟银,所以添加这些原料时,部分铟组分、铋组分、含钾组分、含钠组分挥发,以氧化物形式进入烟尘。
方法二、采用熔渣可流出的熔炼反应装置时,获得的所述富铁相和含铁硅酸盐矿物相处理方法用方法一中所述方法A~G中一种或几种进行处理,或倒入保温装置缓冷后的富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料。
方法三、采用熔渣可转动的转炉与反应渣罐时,获得熔融态所述含铁硅酸盐矿物相,处理方法用方法一中所述方法A~G中一种或几种进行处理;或含有所述富铁相采用方法一中步骤S2-1-05进行处理;所述熔融态或倒入保温装置缓冷后的富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料。
方法四、采用熔渣可转动的转炉与反应渣罐时,获得的熔融态含铁硅酸盐矿物相与富铁相,处理方法用方法一中所述方法A~G中一种或几种进行处理;所述熔融态富镍铜相或倒入保温装置缓冷后,送往转炉或吹炼炉或作为铜钴镍分离的原料。
方法五:采用保温装置时,或采用熔渣可流出的熔炼反应装置,将熔渣倒入保温装置时,进行如下步骤:
S201、沉降冷却:熔渣冷却至室温,获得缓冷渣;所述富铜镍相沉降到反应装置的底部,形成富铜镍坨;所述含铁硅酸盐矿物相上浮;中间为缓冷渣为富铁相,同时生成含锌组分与含铅组分;其中,镍、钴、金、银组分迁移到富铜镍相,其中,金、银组分迁移到富铜镍相,镍、钴组分分别迁移到富铜镍相与富铁相;
S202、分离:人工取出沉降在底部的富铜镍坨,送往转炉或吹炼炉或作为铜钴镍分离的原料;所述富铁相采用方法一的S2-1-05进行处理;
S203、人工取出上部的含铁硅酸盐矿物相,获得硅酸盐相作为高炉炼铁原料或 直接还原炼铁原料或熔融还原炼铁原料或水泥原料;
S204、部分锌组分与铅组分挥发,以氧化物形式进入烟尘回收;
S205、添加有赤泥中或尘泥与钢铁烟灰这些原料时,部分铟组分、铋组分、含钾组分、含钠组分挥发,进入烟尘回收。如上所述方法,优选地,所述氧化性气体为预热的空气、氧气、富氧空气、氮气-空气、氩气-空气、氧气-氮气、氧气-氩气中的一种;
所述还原剂与燃料为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,所述喷吹载入气体为预热的氧化性气体、氮气或氩气中的一种或多种,所述预热的温度为0~1200℃;所述固体燃料与还原剂为煤粉、焦粉、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm,所述液体燃料与还原剂为重油,气体燃料与还原剂为煤气和/或天然气。
如上所述方法,优选地,在所述步骤S1中,所述混合均匀为自然混合与搅拌混合,搅拌方式为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌或机械搅拌中的一种或几种;在所述步骤S2中,所述沉降为自然沉降或旋转沉降或离心沉降;进行冷却沉降时的冷却方式为自然冷却或旋转冷却或离心冷却,所述分离时,用重力分选法是摇床分选、溜槽分选或者二者相结合。
混合熔渣生产的方法,与现有技术相比,本发明的特点是:
(1)本发明的由含镍与铁的混合熔渣生产的方法,既可以处理热态熔渣,充分利用熔融镍冶炼渣与熔融冶金渣(熔融铅冶炼渣、熔融高炉渣、熔融钢渣、熔融铁合金渣)中的一种或几种)物理热资源和热态冶金熔剂,又可以处理冷态炉渣,通过熔渣混合或冷态混合,实现了熔渣冶金改性;
(2)混合熔渣中的熔渣冶金反应,铁橄榄石解体,铁氧化物充分释放出来,实现长大与沉降,混合熔渣中的金属铁组分聚集、长大与沉降,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼铁或直接还原或熔融还原炼铁的原料;
(3)混合熔渣中的铜组分、镍钴组分、金、银组分分别富集于富铜镍相,并实现长大与沉降;其中,富铜镍相包括有铜、白冰铜、铜冰镍、富铜镍钴相、含铁组分中的多种,或部分铜、镍、钴组分进入富铁相;
(4)混合熔渣中的锌组分、铅组分分别富集于烟灰,加以回收;部分含铟组分、铋组分、含钾组分、含钠组分挥发进入烟尘进行回收;
(5)混合熔渣中的硅、钙与磷组分迁移、富集于硅酸盐矿物相,上浮;
(6)混合熔渣中自由氧化钙与氧化镁消失,混合熔渣实现调质;
(7)分离沉降在不同部位的富铜镍相、铁氧化物与上部的硅酸盐矿物相,实现混合熔渣中铜组分、镍钴组分、金银组分、铁组分、磷、钙与硅组分的高效回收,渣含铜<0.1wt%,低铜硅酸盐相与富铁组分可以通过高炉炼铁、直接还原或熔融还原炼铁,获得金属铁或铁水;
(8)可以处理固态含铜、铁物料;
(9)熔渣实现调质,上部尾渣利用限制因素消失,可作为水泥原料或建筑材料或代替碎石作骨料和路材或作为高炉炼铁与直接还原炼铁与熔融还原炼铁的原料或磷肥;
(10)本工艺采用混合熔渣,整个过程无需加热或少量补偿热量;本工艺采用混合熔渣,整个过程无需冶金熔剂或少量补偿冶金熔剂,可以处理冷态物料。本发明方 法可连续或间断的进行,满足工业生产需要。
(三)有益效果
本发明的有益效果是:
(1)本发明实现有色冶金炉渣与钢铁冶金炉渣中铜组分、铁组分、锌组分、铅组分、镍组分、钴组分、金、银、铋组分、钠组分、钾组分有价组分的综合利用,解决目前炉渣大量堆积,环境污染问题。
(2)本发明可以大规模处理镍冶炼渣、铁合金炉渣、钢渣、高炉渣、铅冶炼渣与含铜炉渣,可以解决重金属元素污染问题,实现重金属组分的回收。
(3)本发明可以处理冷态含铜、含铁物料。
(4)本发明的原料可以是出渣口中流出的液态熔融镍冶炼渣和熔融冶金渣(熔融铅冶炼渣、熔融高炉渣、熔融钢渣、熔融铁合金渣中的一种或几种),具有高温度、高热量的特点,充分利用了熔渣物理热资源;混合熔渣中含有大量的热态冶金熔剂,都是物理化学性质优良的熔渣体系,实现了冶金资源与热资源的高效利用;充分利用了混合熔渣高反应化学活性的特点,实现了熔渣冶金。
(5)本发明通过控制氧势,使熔渣中铜组、镍组分、钴组分、白冰铜、冰铜相、金组分与银组分富集到富铜镍相,实现聚集、长大与沉降,铁组分富集于富铁相,实现聚集、长大与沉降,铟组分、铋组分、钠组分、钾组分、铅组分与锌组分富集到烟灰中加以回收进入烟尘,其中,富铜镍相包括有铜、白冰铜、铜冰镍、铜镍钴相、含铁组分中的多种,或部分铜组分进入富铁相,富铁相包括金属铁、FeO相、铁橄榄石相中的多种,作为高炉炼铁或直接还原或熔融还原炼铁的原料。
(6)本发明方法中,加入冷态物料与熔融铜渣避免了熔渣温度过高,提高保温装置的寿命;加入冷态物料与熔融铜渣提高了原料处理量,不仅可以处理液态熔渣,而且可以处理少量冷态物料,原料适应性强;加入冷态物料实现了熔渣冶金反应释放的化学热与熔渣物理热的高效利用。
(7)本发明方法自然冷却过程中,熔渣中铜组分、镍组分、钴组分、金银组分分别富集于富铜镍相,并实现聚集、长大与沉降,熔渣中铁组分富集于富铁相,并实现聚集、长大与沉降,硅酸盐矿物相实现上浮;装有熔渣的保温装置置于旋转平台上旋转,加速富铜镍相、富铁相的聚集、长大与沉降;含氟物料的加入,加速富铜镍相、富铁相的长大与沉降。
(8)本发明方法采用人工分拣、磁选、重选或渣-金分离的方法,分别对分布在上部、中部与底部的低铁硅酸盐矿物相、富铁相、富铜镍相进行分离,实现熔渣中铜组分、镍组分、钴组分、金银组分、铟组分、铋组分、铁组分的高效回收,获得的含铁硅酸盐相与富铁组分的渣含铜<0.1wt%,由于富铜镍相、富铁相沉降在中、下部,因此,需分选炉渣量小,矿物可磨性增加,磨矿、磁选与重选成本低;后续的分离过程采用磁选或重选,分离的介质为水,分离过程中不会产生环境污染;尾矿作为水泥原料、建筑材料、代替碎石作骨料、路材使用。
(9)本发明通过富铜镍相沉降,含铁硅酸盐相与富铁组分的含铜量小于0.1%,作为高炉炼铁或直接还原或熔融还原的原料,获得金属铁与铁水。
(10)本发明既充分利用熔融渣物理热资源和热态冶金熔剂,又可以处理冷态炉渣,实现了熔渣冶金,熔渣中铜组分、镍组分、钴组分、金银组分富集于富铜镍相,并实现聚集、长大与沉降,铁组分富集于富铁相,实现聚集、长大与沉降,分离沉降在不同部位的富铜镍相和富铁相,实现熔渣中有价组分的高效回收;可以处理固态含铜物料,该方法工艺流程短、金属回收率高、生产成本低、原料适应性强、处 理量大、环境友好、经济收益高、可解决冶金资源与热能高效回收利用问题。
具体实施方式
本发明的一种由含镍与铁的混合熔渣回收有价组分的方法,具体包括以下步骤:
步骤1,炉渣混合:
将镍冶炼渣,加入保温转置或熔渣可流出的熔炼反应装置中,并加入铅冶炼渣(烟化炉炉渣和/或含铅熔炼渣)、高炉渣、钢渣和铁合金渣中的一种或多种,形成混合熔渣;
将混合熔渣加热至熔融状态,形成含镍与铁的反应熔渣;混合均匀,实时监测反应熔渣,通过调控同时保证如下(a)和(b)两个参数,获得反应完成后的熔渣,或将反应完成后的熔渣倒入保温装置;
(a)含镍与铁的反应熔渣的温度为1050~1500℃;
(b)含镍与铁的反应熔渣的碱度CaO/SiO2比值=0.15~1.5;
调控方法为:
对应(a):控制含镍与铁的反应熔渣的温度在设定温度范围的方法为:
当含铜与铁的反应熔渣的温度<设定温度范围下限1050℃时,通过反应装置自身的加热功能,或向熔渣中加入燃料或熔融镍冶炼渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣或熔融铁合金渣的一种或多种,喷入燃料时,同时喷入氧化性气体,使反应熔渣的温度达到设定温度1050~1500℃范围内,喷吹燃料时,同时喷吹氧化性气体;
当含镍与铁的反应熔渣的温度>设定温度范围上限1500℃时,向含镍与铁的反应熔渣中加入含镍冶炼渣、含铜物料、高炉渣、钢渣、铁合金渣、冶金熔剂、含铁物料或含氟物料中的一种或几种,使混合熔渣的温度达到设定温度1050~1500℃范围内;
对应(b):
当含镍与铁的反应熔渣中碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料和/或碱性含铁物料;
当含镍与铁的反应熔渣中碱度CaO/SiO2比值>1.5时,向反应熔渣中加入酸性物料和/或酸性含铁物料;
步骤2,分离回收:
反应完成后的熔渣,保温5~50min,沉降,渣-金分离,获得底部熔融态的富铜镍、中下部熔融态的富铁相与中上部熔融态的含铁硅酸盐矿物相,同时生成含锌组分与含铅组分,其中,铟、铋、镍、钴、金、银组分迁移到所述富铜镍相,部分镍钴组分迁移到富铁相;
采用以下方法中的一种对各相进行回收处理:
方法一:采用熔渣可流出熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行熔渣处理;
(2)熔融态富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(3)部分铅组分、锌组分、铟组分、铋组分、钠组分、钾组分挥发进入烟尘回收;
(4)富铁相进行水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼铁原料或直接还原炼镍铁原料或熔融还原炼镍铁原料或浮选提铜镍原料;浮选产物为铜精矿、镍精矿、含镍合金与铁精矿,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;所述直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一 种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.8~1.5。
其中,步骤(1)中的含铁硅酸盐矿物相,进行熔渣处理,采用方法A~G中的一种:
方法A:含铁硅酸盐矿物相作为水泥原料:
含铁硅酸盐矿物相水淬或空冷直接作为水泥原料或进一步处理成高附加值的水泥原料;
方法B:部分或全部含铁硅酸盐矿物相返回到含铜反应熔渣:
部分或全部含铁硅酸盐矿物相返回到含铜与铁反应熔渣,作为热态冶金熔剂,调整含铜反应熔渣成分,控制含铜与铁反应熔渣温度;
方法C:含铁硅酸盐矿物相浇筑微晶玻璃或作为矿渣棉;
方法D:含铁硅酸盐熔渣氧化后空冷或水淬,方法包括:
(1)向熔炼反应装置内的含铁硅酸盐熔渣中,吹入预热的氧化性气体,当熔渣氧化亚铁重量百分比含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(c)硅酸盐熔渣温度>1450℃;
对应(c)采用的控制方法:
当含铁硅酸盐熔渣温度<1450℃,喷入预热燃料与预热的氧化性气体,燃烧放热、补充热量,或装置自身加热,使硅酸盐熔渣温度>1450℃;
(2)氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
方法E:含铁硅酸盐熔渣处理生产高附加值的水泥熟料:
(1)向熔炼反应装置内的含铁硅酸盐熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
(2)向熔渣混合物料中吹入预热的氧化性气体,当氧化亚铁重量百分比含量<1%,完成熔渣的氧化,获得氧化后的熔渣,其中,氧化性气体的预热温度为0~1200℃;并在整个过程中,保证(d)熔渣混合物料温度>1450℃;温度控制方法同方法D步骤(1)中的硅酸盐熔渣温度控制方法;
(3)氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
方法F:含铁硅酸盐熔渣作为高炉炼铁原料或直接还原炼铁原料:
含铁硅酸盐熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
还原过程中,含锌组分与含铅组分挥发,以ZnO和PbO形式进入烟尘;
或将所述含铁硅酸盐矿物相的熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入0~1200℃的预热的氧化性气体,并保证其熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将上述氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
方法G:含铁硅酸盐熔渣熔融还原炼铁:
(1)熔炼反应装置内的含铁硅酸盐熔渣,或加入含铁物料,熔渣中加入还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时保证如下(a)和(b)两个参数,获得反应完成后的熔渣;
(a)反应熔渣的温度为1350~1640℃;
(b)反应熔渣的碱度CaO/SiO2比值=0.6~2.4;
调控方法为:
对应(a):
控制反应熔渣的温度在设定温度范围的方法为:
当反应熔渣的温度<设定温度范围下限1350℃时,通过反应装置自身的加热功能,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到设定温度范围内;
当反应熔渣的温度>设定温度范围上限1640℃时,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到设定温度范围内;
对应(b):
当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含铁物料;
当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料;
(2)向熔渣中喷吹预热后的氧化性气体进行熔融还原,形成还原后的熔渣,其中:氧化性气体的预热温度为0~1200℃,并在喷吹过程中,通过调控同时保证(a)和(b)两个参数:
(a)反应完成后的熔渣的温度为1350~1640℃;
(b)反应完成后的熔渣的碱度CaO/SiO2比值=0.6~2.4;
其中,设定温度范围和碱度调控方法同方法G步骤(1);
(3)分离回收:
采用以下方法中的一种:
方法Ⅰ:进行如下步骤:
(a)冷却:将还原后的混合熔渣倒入保温渣罐,冷却至室温,获得缓冷渣;
(b)分离:金属铁沉降到反应装置的底部,形成铁坨,人工取出铁坨;将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
(c)尾矿的回收利用,作为水泥原料、建筑材料、代替碎石作骨料、路材或磷肥使用;
方法Ⅱ:进行如下步骤:
(a)还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;
(b)还原后的熔渣,进行炉外熔渣处理,具体方式为:采用步骤2的分离回收方法一中的方法A~E中的一种或几种,进行熔渣处理;
(c)铁水,送往转炉或电炉炼钢;
(d)含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收;
(e)部分铟组分、铋组分、钠组分、钾组分挥发进入烟尘;
(f)还原产生的煤气在熔渣表面二次燃烧,提供了热量,而且由炉内流出的煤气可以作为烘干炉料与保温装置的热源;
方法二:采用熔渣可流出的熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)熔融态富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(2)熔融态富铁相层与含铁硅酸盐矿物相采用步骤2中的分离方法一步骤(4)中的富铁相层处理方法进行处理;
(3)部分含锌组分与含铅组分挥发,以氧化物形式进入烟尘回收;
(4)部分铟组分、铋组分、钠组分、钾组分挥发进入烟尘。
方法三:采用熔渣可流出的熔炼反应装置时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相,进行熔渣处理,具体处理方式为:采用步骤2的 分离回收方法一中的方法A~G中的一种或几种进行熔渣处理;或含有所述富铁相采用方法一中的步骤(4)进行处理;
(2)熔融态富铜镍相或倒入保温装置缓冷后,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(3)部分铟组分、铋组分、钠组分、钾组分挥发进入烟尘回收;
方法四:采用熔渣可转动的转炉与反应渣罐时,反应完成后的熔渣进行如下步骤:
(1)熔融态含铁硅酸盐矿物相与富铁相,进行熔渣处理,具体方式为:采用步骤2的分离回收方法一中的方法A~G中的一种或几种进行处理;
(2)熔融态富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
(3)部分铅锌组分、铟组分、铋组分、钠组分、钾组分挥发进入烟尘氧化物进入烟尘。
方法五:采用保温装置时,或采用熔渣可流出的熔炼反应装置,将熔渣倒入保温装置时,反应完成后的熔渣进行如下步骤:
(1)沉降冷却:反应完成后的熔渣冷却至室温,获得缓冷渣;富铜镍相沉降到反应装置的底部,形成富铜镍坨;含铁硅酸盐矿物相上浮;富铜镍相和含铁硅酸盐矿物中间的缓冷渣为富铁相,同时生成含锌组分与含铅组分;金银组分迁移到富铜镍相;
(2)分离:人工取出沉降在底部的富铜镍坨,往转炉或吹炼炉或作为铜钴镍分离的原料;中部的富铁相层作为高炉炼镍铁原料或直接还原炼镍铁原料或熔融还原炼镍铁原料或浮选提铜原料;在浮选过程中,浮选产物为铜精矿、镍精矿、镍合金与铁精矿,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;
所述直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉作为还原设备,利用气基或煤基还原技术,气基还原采用天然气和/或煤气,煤基还原采用无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,并控制还原温度为900~1400℃,控制碱度CaO/SiO2比值=0.8~1.5;
(3)人工取出上部的含铁硅酸盐矿物相,作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料或作为水泥原料、建筑材料、代替碎石作骨料、路材使用;
(4)部分铅组分、锌组分、铟组分、铋组分、钠组分、钾组分挥发进入烟尘。
如上所述的方法,优选地,所述的步骤1中,所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、铜冰镍吹炼”工艺吹炼后的吹炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣经贫化产生的贫化炉渣、顶吹熔炼产生的镍熔炼渣、顶吹熔炼产生的镍熔炼渣经电炉沉降产生的沉降渣中一种或多种;所述镍冶炼渣为熔融态或冷态,其中:熔融镍冶炼渣由镍冶炼炉出渣口获得,或将镍冶炼渣加热至熔融状态;
所述高炉渣、钢渣与铁合金渣为熔融态,或冷态,其中:熔融态炉渣(高炉渣、钢渣与铁合金渣)由出渣口获得,或将冷态炉渣(高炉渣、钢渣与铁合金渣)加热至熔融状态;所述钢渣为铁水预脱硫渣(脱硫渣、脱硅渣、脱磷渣)、转炉渣、电炉渣、VOD/VAD渣、VD渣、中间包弃渣;所述铁合金炉渣为铁合金生产过程中产生的炉渣,包括冶炼碳素锰铁产生的炉渣、冶炼铬铁产生的炉渣、冶炼镍铁产生的炉渣、冶炼钒铁产生的炉渣、冶炼硅铁产生的炉渣、冶炼铌铁产生的炉渣、冶炼钼铁产生的炉渣、冶炼硅锰合金产生的炉渣;
所述含铜物料是粗铜铜火法精炼渣、选铜尾矿、铜渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾矿、铅冶炼炉渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼铅烟 灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、锡尾矿中的一种或几种;其中,锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、鼓风炉渣、烟化炉渣、旋涡炉渣、电炉炼锌渣;含铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;所述铜渣是含铜熔炼渣、含铜吹炼渣、贫化弃渣、浮选尾渣、湿法炼铜渣中的一种或多种,含铜熔炼渣产生于铜的火法冶炼工艺的“造锍熔炼”过程;所述含铜吹炼渣产生于铜的火法冶炼工艺的“铜锍吹炼”过程;贫化弃渣为含铜熔炼渣与含铜吹炼渣贫化后弃渣,浮选尾渣为含铜熔炼渣与含铜吹炼渣选矿后尾渣。
如上所述的方中,优选地,熔炼反应装置为熔渣可流出的,具体为可转动的熔炼反应装置或带有渣口或铁口的熔炼反应装置;其中:
所述的保温装置为可倾倒的熔炼反应渣灌、保温地坑;
所述的可转动的熔炼反应装置为转炉、熔炼反应渣罐;
所述的带有渣口或铁口熔渣可流出的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉。
所述的步骤1中,通过调控同时保证如下(a)和(b)两个参数,同时保证反应熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物分别还原为金属铜、金属镍、金属钴和FeO,熔渣中金属铁含量<3%。可通过加入还原剂、含碳的含铁物料中的一种或两种进行调控,其中,所述还原剂和/或含碳的含铁物料的用量为熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物还原为金属铜、金属镍、金属钴和FeO的理论量110~140%;所述含碳的含铁物料为钢铁尘泥与烟灰、铁精矿含碳预还原球团、铁精矿含碳金属化球团、湿法炼锌挥发窑渣、焦炭炉尘泥与烟灰。
所述的步骤1与2中,所述的燃料与还原剂为固体、液体或气体中的一种或多种,以喷吹的方式喷入,载入气体为预热的氧化性气体,预热温度为0~1200℃;固体燃料与还原剂为煤粉、粉煤灰、焦粉、焦炭、烟煤或无烟煤中的一种或多种,形状为粒状或粉状或块状,粒状物料的粒度为5~25μm,粉状物料的粒度为≤150μm,液体燃料与还原剂为重油,气体燃料与还原剂为煤气和/或天然气中的一种或两种;所述的冶金熔剂为含CaO或SiO2的矿物,具体为石英砂、含金银石英砂、赤泥、脱钠后高钙赤泥、电石渣、白云石或石灰石中的一种或几种;
所述的含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、含镍冶炼渣、铅冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热(冷)轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;湿法的炼锌渣与尘泥需经脱水、干燥;所述的含氟物料是萤石、CaF2或含氟高炉渣中的一种或几种。
在上述的原料中,锌冶炼渣与烟尘、铅冶炼渣与烟灰含有铟与铋,赤泥中含有钠与钾,钢铁烟灰与尘泥含有铟,铋,银,钠与钾,以上物料都有铁,铅冶炼渣与锌冶炼渣都有铜,铜烟灰与尘泥含有铟与铋,因此在发明的方法中,铟、铋、钠、 钾、锌、铅会以氧化物的形式进入烟尘,从而进行回收。
所述的步骤1与2中,控制混合熔渣的温度在设定温度范围的方法中:
所述含铜物料、含铁物料和含氟物料均为球团或粉状物料或制粒;其中,粒状物料的粒度为5~25μm,粉状物料的粒度为≤150μm,粉状物料以喷吹的方式喷入,载入气体为预热的氩气、氮气、还原性气体(煤气和/或天然气)、氧化性气体中的一种或几种,预热温度为0~1200℃,所述的喷吹方式为采用耐火喷枪插入熔渣或置于含铜与铁的反应熔渣上部或侧面吹入;
含铜物料与含铁物料为热态或冷态,所述的热态物料是从冶金炉中直接产出的热态物料,热态物料温度为200~1550℃。
所述的步骤1中,控制混合熔渣的温度在设定温度范围的方法中:
当混合熔渣的温度>设定温度上限时,加入镍冶金渣、含铜物料、含铁物料、高炉渣、钢渣、铁合金渣、冶金熔剂或含氟物料中的一种或几种,目的是避免温度过高,保护耐火材料;加入含氟物料的另一个作用是降低粘度,加速熔渣中富铜镍相、富铁相聚集、长大与沉降,有利于硅酸盐上浮;
所述的步骤1中,熔渣反应过程中,熔渣中铜组分、镍组分、钴组分、金银组分富集于富铜镍相,并实现聚集、长大与沉降,铁组分从橄榄石释放出来,富集于富铁相,实现聚集、长大与沉降,熔渣中锌组分、铅组分分别进入烟尘,其中烟灰中以氧化锌与氧化铅形式回收,富铜镍相为铜、白冰铜、铜冰镍、铜镍钴相、含铁组分中的多种,或部分铜组分进入富铁相,富铁相包括金属铁、FeO相、铁橄榄石相中的多种;
所述步骤1与2中,调整碱度时,所述的碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中一种或几种;所述的碱性含铁物料为CaO/SiO2>11含铁物料、碱性烧结矿、钢渣、铁合金渣、碱性铁精矿、碱性预还原球团、碱性金属化球团、钢渣或高炉渣中一种或几种;
所述步骤1与2中,调整碱度时,所述步骤1与2中,调整碱度时,所述的酸性物料为硅石、含金银硅石、粉煤灰、煤矸石中的一种或多种;所述的酸性含铁物料为CaO/SiO2≤1的含铁物料、酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、高炉渣中的一种或几种;
所述的步骤1与2中,熔渣中富铜镍相、富铁相聚集、长大与沉降,有利于硅酸盐上浮;
所述的步骤1中,保证(a)和(b)两个参数的同时,使混合熔渣充分混合,混合方式为自然混合或搅拌混合,搅拌方式为以下方式中的一种:氩气搅拌、氮气搅拌、氩气-氮气混合气、还原性气体(煤气和/或天然气)、氧化性气体、电磁搅拌、机械搅拌中的一种或多种;
所述的步骤2中,直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑、感应炉作为还原设备,利用气基或煤基还原技术,气基为天然气和/或煤气,煤基还原为无烟煤、烟煤、褐煤、焦煤、焦粉、焦炭中的一种或几种,还原温度为900~1400℃,碱度CaO/SiO2比值=0.7~1.9,
所述的步骤1与2中,氧化性气体为预热的空气、氧气、富氧空气、氮气-空气、氩气-空气、氧气-氮气、氧气-氩气中的一种,预热温度为0~1200℃,所述的喷吹方式为采用耐火喷枪插入熔渣或置于含铜与铁的反应熔渣上部或侧面或底部吹入;
所述的步骤2中,分离时采用的冷却方式为自然冷却或旋转冷却或离心冷却, 沉降方式为自然沉降或旋转沉降或离心冷却;
进一步地,旋转与离心冷却的具体操作为:装有反应完成后的熔渣的装置置于旋转平台上,按照一定速度进行旋转,旋转速度依熔渣质量与保温装置高度或深度而定,旋转时间依熔渣质量与熔渣凝固情况而定;将装有反应完成后的熔渣的装置置于旋转平台上旋转,目的是加速富铜镍相、富铁相聚集、长大与沉降,有利于硅酸盐(富磷相)上浮,缩短沉降时间,改善沉降效果,提高生产效率;
所述的步骤2中,反应完成后的熔渣冷却过程中,由于密度不同与矿物大小不同,大部分富铜镍相、富铁相沉降于中下部;
所述的步骤2中,反应完成后的熔渣中铜组分、镍组分、钴组分、金银组分继续迁移、富集于富铜镍相,混合熔渣中铁组分分别继续迁移、富集于富铁相,并实现长大与沉降;
如上所述的方法中,最后获得的渣含铜≤0.1%,铁的回收率为≥91%,锌的回收率为≥92%,铅的回收率为≥93%,镍的富集率为≥92%,钴的富集率为≥92%,金的富集率为≥90%,银的富集率为≥90%。
为了更好的解释本发明,以便于理解,通过具体实施方式,对本发明作详细描述。其中,以下实施例中所用检测方法与原料未明确指出的,均可采用本领域常规技术,除非另有说明,本发明中所用的百分数均为重量百分数。
以下实施例1-10中的步骤(1)熔渣混合时,通过调控保证的(a)和(b)两个参数具体为:
(a)含铜与铁的反应熔渣的温度为1050~1500℃;
(b)含铜与铁的反应熔渣碱度CaO/SiO2比值=0.15~1.5;
实施例1
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣与由“铜冰镍吹炼”工艺吹炼炉出渣口加入直流电弧炉,同时加入冷态高炉渣、VOD/VAD渣和冶炼碳素锰铁产生的铁合金炉渣,液态高铅渣还原炉的含铅熔炼渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣电磁搅拌,实现自然混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1660℃,采用耐火喷枪插入反应熔渣中,以氮气为载入气,喷入常温粉状粒度≤150μm的铜渣、含铜烟灰、杂铜和含铜垃圾和含铜电路板,同时加入高炉瓦斯泥、电炉尘泥、转炉尘泥、普通铁精矿直接还原铁和高炉瓦斯灰,使温度降至1480℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值=2.8,向反应熔渣中加入硅石、粉煤灰和煤矸石混合物,使含铜与铁的反应熔渣碱度比值降至1.4;熔渣中金属铁含量为0.5%;
步骤2,分离回收采用方法一:
保温48min,熔渣自然沉降,渣-金分离,获得熔融态富铜镍相、富铁相与含铁硅酸盐矿物相,同时生成锌组分与铅组分,进行如下步骤:(1)熔融态含铁硅酸盐矿物相,进行炉外熔渣处理,采用方法F,硅酸盐熔渣空冷后,用作直接还原炼铁原料,采用回转窑进行直接还原,利用气基还原技术,气基还原剂为天然气和煤气,还原温度为900℃,碱度CaO/SiO2比值为0.8,还原后采用磁电炉熔分获得金属铁与熔渣,熔分温度为1550℃;产物为金属铁水与熔渣;(2)熔融态富铜镍相,送往转炉;(3)富铁相倒入保温装置,空冷后作为高炉炼铁原料;(4)锌组分铟组分、铅组分、铋组分、钾组分、钠组分挥发,以氧化物形式进入烟尘回收,渣含铜<0.1%,锌回收率为93%, 铟回收率为93%,铋回收率为94%,钠回收率为95%,钾回收率为96%,铅回收率为94%,铁回收率为95%,镍的富集率为93%,钴的富集率为95%,金的富集率为91%,银的富集率为92%。
其中,在本发明的所有实施例中,渣含铜是指富铜镍相分离后的渣相,具体为富铁相与硅酸盐矿物相中的含铜量,镍、钴的富集率是指在富铜镍相中的含量占原料中对应镍、钴总量的百分比,金、银的富集率是指富铜镍相与烟灰中金、银的含量占原料中金、银总量的百分比。
实施例2
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣与由“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣加入可倾倒的熔炼反应渣灌,同时加入由出渣口获得的熔融态冶炼铬铁产生的铁合金炉渣,形成混合熔渣;用富氧空气,喷吹天然气、粒度为20mm无烟煤与焦粒,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣电磁搅拌,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后熔渣;对应(a)含铜与铁反应熔渣温度1660℃,采用耐火喷枪插入反应熔渣中,以氩气为载气,喷入常温粉状粒度≤150μm铜渣、含铜烟灰、杂铜、钢铁烧结粉尘、烧结球团粉尘、出铁厂粉尘普通铁精矿、普通铁精矿直接还原铁和普通铁精矿烧结矿,使温度降至1480℃;(b)含铜与铁反应熔渣碱度CaO/SiO2比值为2.7,向反应熔渣中加入酸性烧结矿、酸性铁精矿和酸性预还原球团,使含铜与铁反应熔渣碱度比值降至1.3;熔渣中金属铁含量为2.9%;
步骤2,分离回收采用方法二:保温50min,反应完成后的熔渣旋转沉降,渣-金分离,获得熔融态富铜镍相、富铁相与含铁硅酸盐矿物相,同时生成锌组分、铅组分与铟组分,进行如下步骤:(1)熔融态硅酸盐矿物相与富铁相层,采用方法G进行炉外熔渣处理,熔渣熔融还原炼镍铁,步骤如下:(1-1)熔渣倒入可倾倒的转炉中,向熔渣中加入粒度为20mm无烟煤与烟煤,进行熔融还原,实时监测反应熔渣,通过调控保证如下(a)反应熔渣的温度为1350~1640℃,和(b)反应熔渣碱度CaO/SiO2比值=0.6~2.4两个参数,获得反应完成后的熔渣;对应(a):熔渣的温度为1480℃,在温度范围内;对应(b):反应熔渣中碱度CaO/SiO2比值为0.8时,在碱度范围内;(1-2)向反应完成后熔渣中喷吹预热200℃富氧空气进行熔融还原,形成还原后混合熔渣,并在喷吹过程中,通过调控同时保证(a)反应熔渣温度为1350~1640℃,和(b)反应熔渣碱度CaO/SiO2比值=0.6~2.4两个参数;(1-3)分离回收:(a)还原后混合熔渣,沉降渣-金分离,获得铁水与还原后熔渣;(b)还原后熔渣,采用步骤2方法一中法A处理做成高附加值水泥原料;(c)含镍铁水送往转炉或电炉炼钢;(d)含锌组分、含铅组分、铋组分与铟组分挥发,以氧化物形式进入烟尘;(e)含钠组分、含钾组分挥发,进入烟尘回收;
(2)熔融态富铜镍相,送往转炉;(3)锌组分、铅组分、铋组分与铟组分挥发,氧化物形式进入烟尘回收。最后渣含铜<0.1%,锌回收率为95%,铅回收率为93%,铟回收率为96%,铋回收率为96%,钠回收率为97%,钾回收率为98%,渣含铜<0.1%,铁回收率为97%;镍的富集率为92%,钴的富集率为96%,金的富集率为92%,银的富集率为92%。
实施例3
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣与由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣加入直流电弧炉,同时加入由转炉炼钢出渣口获得的钢渣,形成混合熔渣;用预热温度为600℃的氧气,喷吹粒度为20mm无烟煤、焦粒与煤粉,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使熔渣实现混合;实时监测熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1685℃,向反应熔渣中加入石英砂、赤泥、白云石和石灰石,同时加入含铜物料、含铅物料、普通铁精矿球团矿、轧钢氧化铁鳞和普通铁精矿含碳预还原球团,使温度降至1430℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值=3.0,向反应熔渣中加入酸性金属化球团、含铜熔炼渣和含铜吹炼渣的混合物,使含铜与铁的反应熔渣的碱度比值降至0.8;熔渣中金属铁含量为2.2%;
步骤2,分离回收采用方法二:保温35min,反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜镍相、富铁相层与含铁硅酸盐矿物相,同时生成含锌组分、含铅组分、含钠组分、含钾组分,进入烟尘,以氧化物形式回收,进行如下步骤:
(1)熔融态富铜镍相,送往转炉;
(2)熔融态富铁相层与硅酸盐矿物相采用以下方法进行分离处理:
作为直接还原炼镍铁原料;还原过程中,锌组分、铅组分、铋组分与铟组分挥发,进入烟尘;直接还原过程中,采用转底炉,还原温度为1200℃,碱度CaO/SiO2比值=1.0,粒度为≤150μm的无烟煤与煤粉;
(3)含钠组分、钾组分、锌组分、铟组分、铋组分与含铅组分挥发,进入烟尘回收。
渣含铜<0.1%,铁的回收率为97%,钠的回收率为93%,钾的回收率为95%,锌的回收率为97%,铅的回收率为93%,铟回收率为94%,铋回收率为94%;镍的富集率为96%,钴的富集率为97%,金的富集率为91%,银的富集率为93%。
实施例4
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将冷态的由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣加入等离子炉,同时加入由出渣口获得的转炉钢渣、电炉钢渣与冶炼镍铁获得的铁合金炉渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁反应熔渣,并使反应熔渣喷吹预热温度为400℃的氩气,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a)含铜与铁的反应熔渣的温度为1670℃,向反应熔渣中加入赤泥、硫酸烧渣、萤石、铅冰铜、含铅烟灰、含锌烟灰、砷冰铜和湿法炼锌渣,使温度降至1430℃;(b)含铜与铁的反应熔渣碱度CaO/SiO2比值为2.9,向反应熔渣中加入含铜吹炼渣,使含铜与铁反应熔渣碱度比值降至1.1;喷吹天然气,并用预热温度为800℃的空气喷吹粒度为20mm的焦粒,熔渣中金属铁含量为1.7%;
步骤2,分离回收采用方法四:保温19min,反应完成后熔渣自然沉降,渣-金分离,获得熔融态富铜镍相、富铁相层与含铁硅酸盐矿物相,和含锌与含铅组分,进行如下步骤:(1)熔融态富铜镍相,送往转炉;(2)熔融态富铁相层与含铁硅酸盐矿物相步骤2分离回收方法一中方法I,氧化改性磁选分离:①将熔渣倒入保温渣罐,向熔渣中喷入预热温度为900℃的富氧空气,实现磁铁矿的转化;②缓冷至室温,磁选分离,获得铁精矿与尾矿;(3)部分含锌组分、铋组分、铟组分与含铅组分挥发,进入烟尘回收,最后获得的渣含铜<0.1%,铁的回收率为94%,锌的回收率为92%,铅 的回收率为94%,铟回收率为95%,铋回收率为94%,镍的富集率为94%,钴的富集率为93%,金的富集率为90%,银的富集率为92%。
实施例5
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣、由“铜冰镍吹炼”工艺吹炼炉出渣口获得的熔融镍冶炼渣加入保温渣罐,同时加入冷态铁水预脱硫渣与由出渣口获得的转炉熔融钢渣,形成混合熔渣;用预热温度为800℃的空气,喷吹粒度为20mm烟煤与煤粉,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣温度为1450℃;(b):含铜与铁反应熔渣碱度CaO/SiO2比值为0.5,均在要求范围内;熔渣中金属铁含量为1.4%;
步骤2,分离回收采用方法五:将反应完成后的熔渣进行如下步骤:(1)沉降冷却:保温38min,反应完成后的熔渣自然冷却至室温,获得缓冷渣;富铜镍相沉降到反应装置的底部,形成富铜镍坨;含铁硅酸盐矿物相上浮;富铜镍相金属坨和硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌与含铅组分;(2)分离:人工取出沉降在底部的富铜镍坨,作为铜镍钴分离的原料;中部的富铁相层作为直接还原炼镍铁原料;(3)人工取出上部的含铁硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;(4)部分锌组分、铅组分、铋组分与铟组分挥发,以氧化物形式进入烟尘回收,渣含铜<0.1%,铁的回收率为91%,锌的回收率为94%,铅的回收率为95%;镍的富集率为95%,钴的富集率为93%,金的富集率为91%,银的富集率为92%。
实施例6
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺获得的冷态镍冶炼渣、由“铜冰镍吹炼”工艺吹炼渣经贫化炉获得的冷态镍冶炼渣加入交流电弧炉,同时加入冷态冶炼钒铁产生的铁合金炉渣和冶炼硅铁产生的铁合金炉渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁反应熔渣,并使反应熔渣喷吹预热温度为400℃的氩气-氮气混合气,混合;实时监测反应熔渣,通过调控同时保证(a)(b)两参数,获得反应完成后熔渣;对应(a):含铜与铁反应熔渣温度为1040℃,向反应熔渣中加入富氧空气、重油与熔融含铜吹炼渣,使温度升至1330℃;(b):含铜与铁熔渣碱度CaO/SiO2比值为0.1,向熔渣中加入转炉污泥、碱性预还原球团、脱钠后高钙赤泥,使含铜与铁熔渣碱度比值升至0.4;熔渣中金属铁含量为1.9%;
步骤2,分离回收采用方法一:保温19min,将反应完成后的熔渣自然沉降,渣-金分离,获得熔融态富铜镍、富铁相层和含铁硅酸盐矿物相,以及含锌与含铅组分,进行如下步骤:(1)熔融态含铁硅酸盐矿物相采用步骤2分离回收方法A,水淬直接作水泥原料;(2)熔融态富铜镍相,送往转炉;(3)富铁相层倒入保温装置冷却后,作为直接还原炼铁的原料;(4)部分含锌组分、含铅组分、含铟组分与含铋组分挥发,进入烟尘回收。渣含铜<0.1%,铁的回收率为92%,锌的回收率为94%,铅的回收率为95%,铟回收率为93%,铋回收率为94%,钠回收率为95%,钾回收率为96%;镍的富集率为94%,钴的富集率为92%,金的富集率为92%,银的富集率为94%。
实施例7
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣、由 “铜冰镍吹炼”工艺吹炼炉出渣口获得的熔融镍冶炼渣加入矿热炉,同时加入出渣口获得的冶炼铌铁产生的炉渣和冶炼钼铁产生的炉渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣喷吹氮气,实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1320℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值为0.8,均在要求范围内;喷吹天然气,熔渣中金属铁含量为2.1%。
步骤2,分离回收采用方法三:保温9min,将反应完成后熔渣自然沉降,渣-金分离得熔融态富铜镍相、富铁相、含铁硅酸盐矿物相及锌组分与铅组分,进行如下步骤:(1)熔融态富铜镍相,送转炉;(2)熔融态富铁相与硅酸盐矿物具体采用步骤2的分离回收方法一中的方法F,水淬后,作为直接还原炼铁的原料;(3)部分锌组分、铅组分、铋组分与铟组分挥发,以氧化物形式进入烟尘回收,渣含铜<0.1%,铁的回收率为92%,锌的回收率为93%,铅的回收率为93%,镍的富集率为94%,钴的富集率为96%,金的富集率为91%,银的富集率为93%。
实施例8
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由“造锍工艺”工艺熔炼炉出渣口获得的熔融镍冶炼渣、由“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣加入鼓风炉,同时加入由出渣口获得的高炉渣与电炉钢渣,形成混合熔渣;用预热温度为600℃的空气,喷吹粒度为20mm烟煤与煤粉,将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣的温度为1330℃;(b):含铜与铁的反应熔渣的碱度CaO/SiO2比值为1.0,均在要求范围内;熔渣中金属铁含量为1.3%;
步骤2,分离回收采用方法三:保温13min,将反应完成后熔渣自然沉降,渣-金分离,获得富铜镍相与中上部含铁硅酸盐矿物相,同时生成含锌与含铅组分,进行如下步骤:(1)熔融态含铁硅酸盐矿物相,倒入熔炼装置,进行炉外熔渣处理,具体采用步骤2分离回收方法B,将中上部熔渣全部返回到含铜与铁反应熔渣,作为热态冶金熔剂,调整含铜与铁反应熔渣成分,控制其温度;(2)熔融态富铜镍相、富铁相,送往转炉或吹炼炉;(3)部分锌组分、铅组分挥发,以氧化物形式进入烟尘回收,渣含铜<0.1%,铁的回收率为93%,锌的回收率为92%,铅的回收率为94%,钠回收率为94%,钾回收率为95%;镍的富集率为93%,钴的富集率为96%,金的富集率为93%,银的富集率为95%。
实施例9
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:将由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣与“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣加入侧吹回转炉,同时加入由出渣口获得的熔融态高炉渣和VD渣,形成混合熔渣;将混合熔渣加热至熔融状态,形成含铜与铁的反应熔渣,喷吹预热温度为400℃氩气,使熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;对应(a):含铜与铁的反应熔渣温度为1340℃;(b):含铜与铁的反应熔渣碱度CaO/SiO2比值为1.2,均符合要求;用空气喷吹粒度为20mm的焦粒,熔渣中金属铁含量为2.7%;
步骤2,分离回收采用方法二:保温35min,将反应完成后熔渣进行如下步骤: (1)熔融态含铁硅酸盐矿物相倒入熔炼装置,采用步骤2分离回收方法C,中上部熔渣浇筑微晶玻璃;(2)下部熔融态富铜镍相,送往转炉或吹炼炉;(3)部分锌组分、铅组分组分,以氧化物形式进入烟尘回收,渣含铜<0.1%,铁的回收率为94%,锌的回收率为95%,铅的回收率为93%;镍的富集率为97%,钴的富集率为93%,金的富集率为92%,银的富集率为93%。
实施例10
一种由含镍与铁的混合熔渣回收有价组分的方法,包括以下步骤:
步骤1,炉渣混合:
将由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣、“铜冰镍吹炼”工艺吹炼渣经贫化炉出渣口获得的熔融镍冶炼渣与由顶吹熔池熔炼产生熔炼渣经沉降电炉出渣口获得的熔融镍冶炼渣加入保温地坑,同时加入冷态钢渣,形成混合熔渣;用预热温度为1000℃的富氧空气,喷吹粒度≤150μm烟煤,将混合熔渣加热至熔融状态,形成含铜反应熔渣,并使反应熔渣实现混合;实时监测反应熔渣,通过调控同时保证(a)和(b)两个参数,获得反应完成后的熔渣;
对应(a):含铜反应熔渣的温度为1430℃;(b):含铜反应熔渣的碱度CaO/SiO2比值为1.3,均在要求范围内;熔渣中金属铁含量为1.5%;
步骤2,分离回收采用方法五:
将反应完成后的熔渣进行如下步骤:
(1)沉降冷却:保温42min,反应完成后的熔渣自然冷却至室温,获得缓冷渣;富铜镍相沉降到反应装置的底部,形成富铜镍坨;含铁硅酸盐矿物相上浮;富铜镍相金属坨和硅酸盐矿物中间缓冷渣为富铁相,同时生成含锌组分与含铅组分;
(2)分离:人工取出沉降在底部的富铜镍坨,作为铜镍钴分离的原料;中部的富铁相层浮选,获得镍精矿、铜精矿、镍合金与铁精矿;
(3)人工取出上部的含铁硅酸盐矿物相,获得硅酸盐尾矿,作为水泥原料使用;
(4)部分锌组分、铅组分挥发,以氧化物形式进入烟尘回收,渣含铜<0.1%,铁的回收率为92%,锌的回收率为94%,铅的回收率为93%;镍的富集率为95%,钴的富集率为96%,金的富集率为93%,银的富集率为94%。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种由含镍与铁的混合熔渣回收有价组分的方法,其特征在于,其包括如下步骤:
    S1、炉渣混合:将镍冶炼渣加入熔炼反应装置中,加入铅冶炼渣、高炉渣、钢渣和铁合金渣中的一种或多种,形成混合熔渣;将熔渣加热至熔融状态作为反应熔渣,混合均匀,实时监测反应熔渣,同时通过调控使混合后的反应熔渣同时满足条件a和条件b,获得反应后的熔渣,或将反应后的熔渣倒入保温装置;
    其中,所述条件a为控制反应熔渣的温度为1050~1500℃;
    所述条件b为控制反应熔渣的碱度CaO/SiO2比值=0.15~1.5;
    S2、分离回收:所述步骤S1反应后的熔渣,保温5~50min,渣金分离沉降,获得底部的富铜镍相、中下部的富铁相与中上部的含铁硅酸盐矿物相,同时生成含锌组分与含铅组分的烟尘,金银组分迁移、富集进入富铜镍相,含镍组分、含钴组分迁移进入富铜镍相与富铁相;对各相进行回收处理。
  2. 如权利要求1所述的方法,其特征在于,在所述步骤S1中,所述条件a调控的方法为:
    当所述反应熔渣的温度<1050℃,利用反应装置自身的加热,或向熔渣中加入燃料或熔融镍冶炼渣、熔融铅冶炼渣、熔融高炉渣、熔融钢渣或熔融铁合金渣的一种或多种,喷入燃料时,同时喷入预热的氧化性气体,使反应熔渣的温度达到1050~1500℃;
    当所述反应熔渣的温度>1500℃,向含铜与铁的的反应熔渣中加入镍冶炼渣、含铜物料、高炉渣、钢渣、铁合金渣、冶金熔剂、含铁物料或含氟物料中的一种或几种,混合均匀,使混合的反应熔渣的温度达到1050~1500℃;
    所述条件b调控的方法为:
    当所述反应熔渣中碱度CaO/SiO2比值<0.15时,向反应熔渣中加入碱性物料和/或碱性含铁物料;
    当所述反应熔渣中碱度CaO/SiO2比值>1.5时,向反应熔渣中加入酸性物料和/或酸性含铁物料。
  3. 如权利要求1所述的方法,其特征在于,所述反应装置为保温装置或可转动的熔炼反应装置或带有渣口或铁口熔渣可流出的熔炼反应装置;其中,所述保温装置为可倾倒的熔炼反应渣灌或保温地坑;
    所述可转动的熔炼反应装置为转炉、熔炼反应渣罐;
    所述带有渣口或铁口熔渣可流出的熔炼反应装置为等离子炉、直流电弧炉、交流电弧炉、矿热炉、鼓风炉、高炉、感应炉、冲天炉、侧吹熔池熔炼炉、底吹熔池熔炼炉、顶吹熔池熔炼炉、反射炉、奥斯麦特炉、艾萨炉、瓦钮可夫熔池熔炼炉、侧吹回转炉、底吹回转炉、顶吹回转炉。
  4. 如权利要求1所述的方法,其特征在于,在所述步骤S1中,满足所述条件a和b的同时,应同时满足,控制所述反应熔渣中铜氧化物、镍氧化物、钴氧化物和铁氧化物分别还原为金属铜、金属镍、金属钴和FeO,熔渣中金属铁含量<3%。
  5. 如权利要求1所述的方法,其特征在于,所述镍冶炼渣是“造锍熔炼”工艺产生的镍熔炼渣、铜冰镍吹炼”工艺吹炼后的吹炼渣、“铜冰镍吹炼”工艺吹炼后的吹炼渣经贫化产生的贫化炉渣、顶吹熔炼产生的镍熔炼渣、顶吹熔炼产生的镍熔炼渣经电炉沉降产生的沉降渣中一种或多种;所述镍冶炼渣为熔融态或冷态,其中:熔融镍冶炼渣由镍冶炼炉出渣口获得,或将镍冶炼渣加热至熔融状态;
    所述高炉渣、钢渣与铁合金渣为熔融态,或冷态,其中:熔融态炉渣由出渣口 获得,或将冷态炉渣加热至熔融状态;所述钢渣为铁水预脱硫渣、转炉渣、电炉渣、VOD/VAD渣、VD渣、中间包弃渣;所述铁合金炉渣为铁合金生产过程中产生的炉渣,包括冶炼碳素锰铁产生的炉渣、冶炼铬铁产生的炉渣、冶炼镍铁产生的炉渣、冶炼钒铁产生的炉渣、冶炼硅铁产生的炉渣、冶炼铌铁产生的炉渣、冶炼钼铁产生的炉渣。
  6. 如权利要求2所述的方法,其特征在于,所述含铜物料为粗铜铜火法精炼渣、选铜尾矿、铜渣、锌冶炼渣、锌冶炼烟灰与尘泥、铅锌尾矿、铅冶炼炉渣、铅冰铜、砷冰铜、粗铅火法精炼渣、铅冶炼铅烟灰与尘泥、铅酸电池、铜冶炼烟灰与尘泥、杂铜、含铜垃圾、含铜电路板、锡冶炼渣、锡尾矿中的一种或几种;其中,所述锌冶炼渣为湿法炼锌与火法炼锌产生的锌冶炼渣,包括浸出渣、铁矾渣、铜镉渣、针铁矿渣、赤铁矿渣、挥发窑渣、竖罐炼锌渣、烟化炉渣、鼓风炉渣、旋涡炉渣、电炉炼锌渣;含铅冶炼渣为烟化炉炉渣与含铅熔炼渣,“ISP铅锌鼓风炉还原”或“烧结矿鼓风炉还原”或“固态高铅渣还原”或“液态高铅渣还原工艺”还原工艺产生含铅熔炼渣,含铅熔炼渣通过烟化炉冶炼产生含铅烟化炉渣;所述铜渣是含铜熔炼渣、含铜吹炼渣、贫化弃渣、浮选尾渣、湿法炼铜渣中的一种或多种,含铜熔炼渣产生于铜的火法冶炼工艺的“造锍熔炼”过程;所述含铜吹炼渣产生于铜的火法冶炼工艺的“铜锍吹炼”过程;贫化弃渣为含铜熔炼渣与含铜吹炼渣贫化后弃渣,浮选尾渣为含铜熔炼渣与含铜吹炼渣选矿后尾渣;
    所述含铁物料是普通铁精矿、普通铁精矿直接还原铁,普通铁精矿烧结矿、普通铁精矿球团矿、普通铁精矿金属化球团、普通铁精矿含碳预还原球团、钢渣、锌冶炼渣、焦炭冶炼烟尘与尘泥、钢铁烟尘与尘泥、含镍冶炼渣、铜渣、铅冶炼渣、锌冶炼渣、锡冶炼渣、赤泥、脱钠后高钙赤泥、煤粉灰、硫酸烧渣中的一种或几种;所述钢铁烟尘与尘泥包括高炉瓦斯泥、转炉尘泥、电炉尘泥、热或冷轧污泥、烧结粉尘、球团粉尘、出铁厂集尘、高炉瓦斯灰、电炉除尘灰、轧钢氧化铁皮;
    所述含铜物料与含铁物料为热态或冷态,其中热态物料由冶金炉出料口或出渣口直接获得;湿法炼锌渣、湿法炼铜渣与尘泥需经脱水、干燥;
    所述的含氟物料是萤石、CaF2或含氟高炉渣中的一种或几种;
    所述燃料为固体、液体或气体燃料中的一种或多种;所述燃料以喷吹或投料的方式加入,所述喷吹时,采用载入气体为预热的氧化性气体,所述预热的温度为0~1200℃;
    所述的碱性物料为石灰粉、赤泥、脱钠后高钙赤泥、电石渣、白云石粉或生石灰粉中的一种或几种;所述的碱性含铁物料为CaO/SiO2>1含铁物料、碱性烧结矿、碱性铁精矿、碱性预还原球团、碱性金属化球团、钢渣或高炉渣中的一种或几种;所述酸性物料为硅石、含金银硅石、粉煤灰、煤矸石中的一种或多种;所述的酸性含铁物料为CaO/SiO2≤1的含铁物料、酸性烧结矿、酸性铁精矿、酸性预还原球团、酸性金属化球团、铜渣、铅冶炼渣、锌冶炼渣、镍冶炼渣、锡冶炼渣、铁合金渣、高炉渣中的一种或几种。
  7. 如权利要求1或2所述的方法,其特征在于,所述高炉渣、钢渣与铁合金渣为熔融态或冷态,所述钢渣为包括脱硫渣、脱硅渣、脱磷渣的铁水预脱硫渣、转炉渣、电炉渣、VOD/VAD渣、VD渣、中间包弃渣;所述铁合金炉渣为铁合金生产过程中产生的炉渣,包括冶炼碳素锰铁产生的炉渣、冶炼铬铁产生的炉渣、冶炼镍铁产生的炉渣、冶炼钒铁产生的炉渣、冶炼硅铁产生的炉渣、冶炼铌铁产生的炉渣、冶炼钼铁产生的炉渣。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述步骤S2分离回收中,进行如下处理:
    含有热态或冷态所述富铜镍相,送往转炉或吹炼炉或作为铜钴镍分离的原料;
    所述含锌组分与含铅组分挥发,以氧化物形式进入烟尘;
    含镍组分、含钴组分迁移进入富铜镍相与富铁相;
    含有所述含铁硅酸盐矿物相和/或所述富铁相,进行如下方法A-G中的任一种处理;
    方法A:水淬或空冷后,直接作为水泥原料;
    方法B:部分或全部所述熔融态含铁硅酸盐矿物相和/或所述富铁相返回到所述反应熔渣中作为热态冶金熔剂;
    方法C:所述含铁硅酸盐矿物相和/或所述富铁相用于浇筑微晶玻璃或作为矿渣棉;
    方法D:向熔炼反应装置内的含铁硅酸盐熔渣和/或所述富铁相中,吹入温度为0~1200℃的预热氧化性气体,并保证熔渣温度>1450℃;当熔渣氧化亚铁重量百分比含量<1%,获得氧化后的熔渣;所述氧化后的熔渣直接空冷或水淬,用作矿渣水泥、水泥调整剂、水泥生产中的添加剂或水泥熟料;
    方法E:用于生产高附加值的水泥熟料,方法如下:
    E-1、向含铁硅酸盐矿物相和/或所述富铁相的熔渣中,加入熔融钢渣、石灰、石灰石、铁合金炉渣、粉煤灰、碱性铁贫矿、铝土矿、熔融高炉渣、赤泥、脱钠后赤泥或电石渣中的一种或几种,充分混合,获得熔渣混合物料;
    E-2、向上熔渣混合物料中吹入预热温度为0~1200℃的氧化性气体,并保证熔渣混合物料温度>1450℃;当氧化亚铁重量百分比含量<1%,获得氧化后的熔渣;
    E-3、对所述氧化后的熔渣,进行空冷或水淬,制得高附加值的水泥熟料;
    方法F:所述含铁硅酸盐矿物相和/或所述富铁相的熔渣作为高炉炼铁原料或直接还原炼铁原料:含铁硅酸盐矿物相和/或所述富铁相熔渣空冷、水淬或缓冷后,用作高炉炼铁或直接还原炼铁原料,直接还原后,采用磁选分离或电炉熔分,磁选产物为金属铁与尾矿,电炉熔分,产物为铁水与熔渣;
    或将所述含铁硅酸盐矿物相和/或所述富铁相的熔渣倒入保温装置后,采用以下方法进行分离:熔渣改性后磁选分离:向保温装置中的熔渣,吹入0~1200℃的预热的氧化性气体,并保证其熔渣温度>1250℃,完成熔渣中磁铁矿的转化;将上述氧化后的熔渣缓冷至室温,破碎、磁选,产物为磁铁矿精矿与尾矿,尾矿作为建筑材料;
    方法G:所述含铁硅酸盐矿物相和/或所述富铁相进行还原炼铁,包括如下步骤:
    G-1、向熔融态含铁硅酸盐矿物相和/或所述富铁相熔渣中加入含铁物料、还原剂,进行熔融还原,实时监测反应熔渣,通过调控同时满足条件:反应熔渣的温度为1350~1640℃和反应熔渣的碱度CaO/SiO2比值=0.6~2.4,获得反应完成后的熔渣;
    其中,控制反应熔渣的温度的方法为:
    当反应熔渣的温度<1350℃,通过反应装置自身的加热,或向熔渣中加入燃料与预热的氧化性气体,使反应熔渣的温度达到1350~1640℃;
    当反应熔渣的温度>1640℃,向反应熔渣中加入冶金熔剂、含铁物料或含氟物料中的一种或几种,使反应熔渣的温度达到1350~1640℃;其中,所述冶金熔剂为含CaO或SiO2的矿物;
    控制反应熔渣的碱度的方法为:
    当反应熔渣中碱度CaO/SiO2比值<0.6时,向熔渣中加入碱性物料和/或碱性含 铁物料;
    当反应熔渣中碱度CaO/SiO2比值>2.4时,向熔渣中加入酸性物料和/或酸性含铁物料;
    G-2、所述G-1中熔融还原时还需向熔渣中喷吹0~1200℃预热后的氧化性气体进行熔融还原,形成还原后的熔渣;
    G-3、分离回收:采用以下方法中的一种:
    方法Ⅰ:将还原后的混合熔渣倒入保温渣罐,冷却至室温,获得缓冷渣;其中,金属铁沉降到反应装置的底部,形成铁坨,将剩余缓冷渣中含金属铁层,破碎至粒度20~400μm,磨矿,磁选分离出剩余金属铁与尾矿;
    方法Ⅱ:还原后的混合熔渣,冷却沉降,渣-金分离,获得铁水与还原后的熔渣;所述还原后的熔渣,按照方法A~E中的一种或几种方法进行熔渣处理;所述铁水,送往转炉或电炉炼钢;
    或含有所述富铁相层进行水淬或空冷或倒入保温装置缓冷或经人工分拣与重选结合获得,作为高炉炼镍铁原料或直接还原炼镍铁原料或熔融还原炼镍铁原料或浮选提铜镍原料;浮选产物为含铜精矿、镍精矿、镍铁合金与铁精矿,铁精矿作为高炉炼铁原料或直接还原炼铁原料或熔融还原炼铁原料;所述直接还原过程采用转底炉、隧道窑、车底路、竖炉、回转窑或感应炉,利用气基或煤基还原,气基还原采用天然气和/或煤气,煤基还原采用无烟煤、烟煤、褐煤、焦煤、焦粉或焦炭中的一种或几种,并控制还原温度为900~1400℃,控制碱度CaO/SiO2比值=0.8~1.5。
  9. 如权利要求8所述的方法,其特征在于,所述氧化性气体为预热的空气、氧气、富氧空气、氮气-空气、氩气-空气、氧气-氮气、氧气-氩气中的一种;
    所述还原剂与燃料为固体、液体或气体燃料中的一种或多种,以喷吹或投料的方式喷入,所述喷吹载入气体为预热的氧化性气体、氮气或氩气中的一种或多种,所述预热的温度为0~1200℃;所述固体燃料与还原剂为煤粉、焦粉、焦炭、粉煤灰、烟煤或无烟煤中的一种或多种,形状为粒状或粉状,粒状物料粒度为5~25mm,粉状物料粒度为≤150μm,所述液体燃料与还原剂为重油,气体燃料与还原剂为煤气和/或天然气。
  10. 如权利要求1所述的方法,其特征在于,在所述步骤S1中,所述混合均匀为自然混合或搅拌混合,其中所述搅拌混合的方式为氩气搅拌、氮气搅拌、氮气-氩气混合气搅拌、还原性气体搅拌、氧化性气体搅拌、电磁搅拌或机械搅拌中的一种或几种;
    在所述步骤S2中,所述沉降为自然沉降或旋转沉降或离心沉降;进行冷却沉降时的冷却方式为自然冷却或旋转冷却或离心冷却,所述分离时,用重力分选法是摇床分选、溜槽分选或者二者相结合。
PCT/CN2017/115651 2017-10-10 2017-12-12 一种由含镍与铁的混合熔渣回收有价组分的方法 WO2019071796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710935500.8A CN107663589A (zh) 2017-10-10 2017-10-10 一种由含镍与铁的混合熔渣回收有价组分的方法
CN201710935500.8 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019071796A1 true WO2019071796A1 (zh) 2019-04-18

Family

ID=61097194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115651 WO2019071796A1 (zh) 2017-10-10 2017-12-12 一种由含镍与铁的混合熔渣回收有价组分的方法

Country Status (2)

Country Link
CN (1) CN107663589A (zh)
WO (1) WO2019071796A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100981A (zh) * 2019-12-27 2020-05-05 宁夏晟晏实业集团能源循环经济有限公司 一种提高富锰渣冶炼锰烧结矿冶金性能的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108609875B (zh) * 2018-05-15 2020-09-29 鞍钢股份有限公司 一种利用转炉渣制备水泥混合料的方法
CN108728659B (zh) * 2018-06-20 2020-08-11 中国恩菲工程技术有限公司 镍渣贫化方法
CN110904340A (zh) * 2019-12-10 2020-03-24 武翠莲 一种离心去除含铁混合物中有害元素和杂质的方法
CN112322902B (zh) * 2020-09-18 2021-11-09 中南大学 一种铜冶炼渣的资源化回收方法
CN112375856B (zh) * 2020-10-28 2021-11-30 东北大学 一种转炉渣与镍渣和/或铜渣的熔融耦合改质提铁方法
CN112813218B (zh) * 2020-12-30 2022-09-30 北京中冶设备研究设计总院有限公司 基于真空感应炉镍铁渣冶炼硅铁的方法
CN112851152B (zh) * 2021-01-23 2022-10-21 登封市嵩基水泥有限公司 一种利用铅锌冶炼炉渣的水泥熟料、水泥及其制备方法
CN115141937A (zh) * 2021-03-29 2022-10-04 东北大学 一种铜镍冶炼熔渣混合贫化及铁组分长大的方法
CN113265534B (zh) * 2021-04-14 2023-03-31 嘉峪关宏电铁合金有限责任公司 一种低品铬铁渣再利用生产工艺
CN113215389B (zh) * 2021-05-08 2022-04-22 包头稀土研究院 含铁铌钛矿中富集铌钛的方法及含镍物质的用途
CN113736940B (zh) * 2021-07-26 2022-11-25 赛能杰高新技术股份有限公司 一种转底炉处理铜渣的方法
CN115959829A (zh) * 2022-12-27 2023-04-14 重庆科技学院 退役锂电池回收过程中产生铁铝渣和废炭渣的回收方法
CN117403057B (zh) * 2023-12-14 2024-03-08 中国恩菲工程技术有限公司 红土镍矿酸浸渣的处理方法、活性材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials
WO2006131372A1 (de) * 2005-06-08 2006-12-14 Sms Demag Ag Verfahren und vorrichtung zur gewinnung eines metalls aus einer das metall enthaltenden schlacke
CN101545054A (zh) * 2009-02-09 2009-09-30 牛庆君 从镍、铜、钴冶炼弃渣中回收镍、铜、钴的方法
CN106048122A (zh) * 2016-08-19 2016-10-26 东北大学 一种渣浴还原处理镍渣的方法
CN106755656A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金一步法回收的方法
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667712B (zh) * 2013-12-12 2015-08-12 中南大学 一种含铅及含铜废料同步熔池熔炼的方法
CN105219964A (zh) * 2015-10-07 2016-01-06 天祝宏达经贸有限责任公司 一种利用废弃镍、铜尾渣回收镍、铜的工艺方法
CN106755655A (zh) * 2016-12-10 2017-05-31 东北大学 一种混合熔渣冶金熔融还原的回收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials
WO2006131372A1 (de) * 2005-06-08 2006-12-14 Sms Demag Ag Verfahren und vorrichtung zur gewinnung eines metalls aus einer das metall enthaltenden schlacke
CN101545054A (zh) * 2009-02-09 2009-09-30 牛庆君 从镍、铜、钴冶炼弃渣中回收镍、铜、钴的方法
CN106048122A (zh) * 2016-08-19 2016-10-26 东北大学 一种渣浴还原处理镍渣的方法
CN106755656A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金一步法回收的方法
CN106755654A (zh) * 2016-12-10 2017-05-31 东北大学 一种熔渣冶金熔融还原生产的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100981A (zh) * 2019-12-27 2020-05-05 宁夏晟晏实业集团能源循环经济有限公司 一种提高富锰渣冶炼锰烧结矿冶金性能的方法
CN111100981B (zh) * 2019-12-27 2021-11-02 宁夏晟晏实业集团能源循环经济有限公司 一种提高富锰渣冶炼锰烧结矿冶金性能的方法

Also Published As

Publication number Publication date
CN107663589A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
CN107653381B (zh) 含锌与铁的熔渣熔融还原生产的方法
WO2019071796A1 (zh) 一种由含镍与铁的混合熔渣回收有价组分的方法
WO2019071788A1 (zh) 一种由含铜与铁的混合熔渣生产的方法
WO2019071793A1 (zh) 一种由含铜熔渣回收有价组分的方法
WO2019071798A1 (zh) 一种由镍冶炼熔渣生产的方法
WO2019071791A1 (zh) 锌冶炼炉渣熔融还原生产的方法
WO2019071794A1 (zh) 一种由含铜与铁的混合熔渣回收有价组分的方法
WO2019071797A1 (zh) 一种由含镍与铁的混合熔渣生产的方法
CN106191344B (zh) 一种混合熔渣熔融还原生产与调质处理的方法
WO2019071790A1 (zh) 由含锌与铁的混合熔渣回收有价组分的方法
WO2019071789A1 (zh) 由锌冶炼熔渣回收有价组分的方法
CN106048109B (zh) 一种混合熔渣熔融还原回收与调质处理的方法
WO2019071787A1 (zh) 一种由含镍冶炼熔渣回收有价组分的方法
WO2019071795A1 (zh) 一种由含铜熔渣生产的方法
CN108676942A (zh) 一种含铁和或锌铅铜锡等物料与熔融钢渣协同处理回收方法
CN106755654A (zh) 一种熔渣冶金熔融还原生产的方法
CN106755656A (zh) 一种熔渣冶金一步法回收的方法
CN106119447B (zh) 一种含稀土与铌混合熔渣熔融还原生产和调质处理的方法
CN106755651A (zh) 一种含稀土和/或铌熔渣冶金一步法回收的方法
CN106048106B (zh) 一种含稀土与铌混合熔渣熔融还原回收与调质处理的方法
CN103627835A (zh) 一种处理镍冶炼炉渣的方法
CN106755652A (zh) 一种含钛熔渣冶金一步法回收的方法
CN106755653A (zh) 一种含稀土或铌熔渣冶金熔融还原生产的方法
CN106755658A (zh) 一种含钛熔渣冶金还原生产的方法
CN106755655A (zh) 一种混合熔渣冶金熔融还原的回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928402

Country of ref document: EP

Kind code of ref document: A1