WO2021072562A1 - Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales - Google Patents

Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales Download PDF

Info

Publication number
WO2021072562A1
WO2021072562A1 PCT/CL2020/050116 CL2020050116W WO2021072562A1 WO 2021072562 A1 WO2021072562 A1 WO 2021072562A1 CL 2020050116 W CL2020050116 W CL 2020050116W WO 2021072562 A1 WO2021072562 A1 WO 2021072562A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
oxides
commercial products
reduction
waste process
Prior art date
Application number
PCT/CL2020/050116
Other languages
English (en)
French (fr)
Inventor
Roberto Parra Figueroa
Eduardo Balladares Varela
Igor Wilkomirsky Fuica
Fernando Parada Luna
Víctor PARRA SÁNCHEZ
Hugo ROJAS ALBORNOZ
Original Assignee
Universidad De Concepcion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Concepcion filed Critical Universidad De Concepcion
Publication of WO2021072562A1 publication Critical patent/WO2021072562A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the technology is oriented to the mining area, more particularly, it corresponds to a zero waste process that uses the final slag from a copper smelter to produce commercial products.
  • Copper slag represents one of the main wastes from copper mining, and it is estimated that, for every ton of concentrate processed in a smelter, between 250 and 320 kg of copper and 300 to 650 kg of smelter slag are generated, which is equivalent to To say that for every ton of Cu produced, around 2 to 2.5 tons of slag are generated that today go to a landfill. According to data from Brook Hunt, in 2015 around 9 million tons of fine copper from smelting were produced (without considering the Chinese market), this implies that about 20 million tons of massive copper mining waste associated with the pyrometallurgical route of copper production from sulfur concentrates that accumulate annually, on which there is no solution to avoid the generation of this massive residue.
  • the copper pyrometallurgy faces the processing of copper concentrates having two process lines for the treatment of the slags that are produced. These slags are a material associated with the content of Fe present in the concentrate.
  • the first line corresponds to processing the smelting slags (possibly also those for conversion, depending on the smelting technology used) through a copper recovery treatment in furnaces that can be electric, or in so-called slag cleaning furnaces. , the latter being swingarm.
  • the product is a final slag that is transferred to the slag to form part of the massive mining waste, recovering the Cu present as a sulphide phase that is recirculated to the process.
  • the second process treats the slag in a slag flotation plant, recovering a fraction of copper in the form of copper concentrate, but in any case the remaining material will form part of a tailings deposit, generating equally way a massive mining waste.
  • an environmental liability is generated without the possibility of valuing the Fe that is present in the concentrate, nor the diversity of oxides, mainly S1O2, which is identified as a raw material for different industrial processes.
  • Leaching is another route under study for the recovery of copper from slag.
  • the leaching agents studied include hydrochloric acid, sulfuric acid / O 2 (air) (both at atmospheric pressure and at high pressure), ammonia, cyanide, ferric chloride, hydrogen peroxide and the chlorine / chloride system.
  • hydrochloric acid sulfuric acid / O 2 (air) (both at atmospheric pressure and at high pressure)
  • ammonia cyanide
  • ferric chloride ferric chloride
  • hydrogen peroxide hydrogen peroxide
  • the procedures applied at present act in the partial recovery of the copper contained in this type of slag and consist, in essence, in the recirculation of the copper to the pyrometallurgical process, incorporating it back into the converter in the slag blowing stage, being able to follow two different circuits: (a) forming part of the heaviest molten phase, constituted by the Cu-bearing species (matte, white metal and Cu blister) obtained by prolonging the sedimentation time of the molten slag in an electric furnace , controlled cooling, or (b) forming part of a solid concentrate after subjecting the slag to cooling / solidification, crushing, grinding and flotation.
  • Ballast better known as filler on rail lines.
  • Abrasive sand allows the removal of paint, external layers and corrosion from industrial metal structures.
  • EbonyGrit product created by Opta Minerals Inc., obtained as a secondary product of slag from the copper industry.
  • EbonyGrit is an abrasive sand generally composed of ferrosilicates (Fe 2 SiO 4 ) and oxides, and is formed when molten slag is rapidly cooled in water.
  • Construction material there are several studies that seek the reuse of slag in construction materials, especially as an additive for cements, replacing pozzolans and gypsum in a certain way, serving to improve road construction technology (Wang and Emery , 2004).
  • a process to extract iron from slag comprises: introducing the slag in a reactor; maintaining a CaO / SiO ratio 2 in the range of 2.0-3.3 in the slag; maintain the slag temperature at a level where it is molten; add a solid carbonaceous reducing agent to the slag at a rate sufficient to reduce FeO; mix said reducer in the slag with a rotary stirrer to improve said FeO reduction, and separate an iron support phase from the slag.
  • Figure 1 Initial condition of the slag composition and proposed value products to be produced, where (A) corresponds to the initial slag; (B) to acid blast furnace slags; (C) to basic blast furnace slags; and (D) to Portland Cement.
  • Figure 2 Images of the process for the production of pig iron and a cement additive, where (a) corresponds to the system to process the slag and (b) to the molten slag to obtain pig iron.
  • Figure 3 Graph of the evolution of gases, where (a) corresponds to CO (%) and (b) to CO 2 (%).
  • Figure 4 Graph of the evolution of oxide contents and appearance of Fe.
  • the present technology corresponds to a zero waste process that uses the final slags from a copper smelter to produce at least two commercial products, both of massive use such as pig iron and an additive for the cement industry.
  • These slags have in their structure mainly oxides of Fe and SiO 2 , being these components those that allow to produce pig iron associated with Fe, and the additive for cement, Portland or another, from SiO 2 and other minor oxides that are also found in its structure. This process makes it possible to improve the competitiveness of copper smelters a! transform slag (environmental liability) into products of commercial value.
  • the final slags generated in copper smelters are a molten mixture containing mainly iron silicates (around 70% by weight). This process allows reducing the iron oxides (Fe 3 O 4 and FeO x ) of these silicates, taking the slags in liquid state just when they are sent to the slag dump as the last stage of the copper smelting process. In this way, the slags enter the pig iron and cement additive production stage in liquid form, at a temperature typically between 1230 - 1270 ° C.
  • the pig iron production process considers the addition of carbon as a reducing agent to decompose fayalite into FeO x and SiO 2 , and the reduction of both magnetite (Fe 3 O 4 ) and wustite (FeO x ) to metallic iron. Carbon is added in the proportions that make it possible to obtain Fe after reduction with a carbon content close to saturation, typically between 3-4.2% by weight of C, or whatever is best required according to the particularities of the pig iron.
  • the process makes it possible to slag SiO 2 directly from the molten slag produced at the end of the reduction process using calcium oxide (CaO) and / or alumina (Al 2 O 3 ), to lower the melting point of the mixture and reach a composition that allows this mixture to be used as an additive for the manufacture of cement, where it can particularly be used in Portland type cements or directly Clinker for the production of Portlan cement.
  • CaO calcium oxide
  • Al 2 O 3 alumina
  • Table 1 Classical composition of a final slag from a copper smelter. Table 2. Composition of the oxide mixture after reduction.
  • this zero waste process comprises at least the following stages: a.- Loading / emptying of materials.
  • the final slag of the copper smelter from the slag cleaning furnace that is between 1230 - 1270 ° C must be emptied into a reactor / reduction furnace in the molten state to take advantage of the contained thermal energy.
  • a reducing agent such as carbon and / or coke must be charged in quantities given by the stoichiometry of the reduction reactions, which determines that the charge of the reducer corresponds to a mass proportion between 30 - 45% referred to the total mass.
  • the reducer must be charged to the reactor / reduction furnace before the liquid slag in order to prevent this solid reducer from floating on the slag (if it is loaded later), in which case the reduction reaction between the reducer and the slag is will be limited by low surface contact.
  • the reduction is facilitated by the injection of C through traditional injectors such as those used in slag cleaning processes in tilting furnaces, or any C injector or other hydrocarbon-type reducer.
  • the reducing agent and the oxide additions can be loaded into the reactor / furnace by means of a metal box suspended with a crane on the bottom of the reactor / reduction furnace with an automatic opening system, just as the different materials are loaded into the CONOX u converters. others.
  • the oxides that act as fluxes correspond to a mixture of CaO and Al 2 O 3 , rich in CaO with a proportion preferably around 80% CaO and 20% Al 2 O 3 . They are added in proportions determined by the type of oxide mixture product that is required to be obtained. In the case of a blast furnace slag type product, this addition is of the order of 30% by mass of the oxides that will remain after reduction, which corresponds to 15-20% with respect to the copper slag loading. In the case of forming Clinker for Portland cement, this addition is of the order of 30-40% with respect to the slag load to be treated.
  • the slag coming from the slag cleaning furnace must be loaded using the same pot that contains it and which is transported by a crane. b.- Reduction of iron oxides.
  • a represents the CO (g) / C0 2 (g) ratio of the exhaust gases, which depends on the contact conditions between the oxides of the slag with the reducing C.
  • C dissolves in liquid Fe to the level corresponding to the composition of pig iron, between 3.5 - 4.2% by weight.
  • the bath must be kept above 1550 ° C under conditions that are standard for this type of pig iron production process.
  • the energy contribution occurs through the combustion of the same reducer that is added in excess to keep the system in thermal conditions. In the case of using an electric oven for reduction, the energy contribution must be provided through the electrodes.
  • this process by using the already molten slag has a substantial saving in energy (fuel) to maintain the thermal conditions of the reduction reactor.
  • the time required for each charge will depend on the size of the reactor. As an indicator of productivity, the processing of 100 tons of slag takes 60 to 75 minutes. c.- Slag formation.
  • This stage occurs in parallel to the reduction stage, that is, as the reduction of the oxides progresses, the remaining oxides become enriched in SiO 2 , a mixture with a very high melting point, so the addition of the CaO / Al 2 O 3 oxides act by lowering the melting point of the overall mixture; this action gives them the character of "fluxes". Therefore, the pig iron phase is produced, which by density separates from the liquid mixture of oxides (slag), which have a lower density and float on the pig iron. The gradual increase in the concentration of SiO 2 causes the slag to begin to have an increase in its melting temperature. A simplified but representative way to analyze this phenomenon is to consider the CaO - Al 2 O 3 - SiO 2 system as the basis.
  • Figure 1 shows a CaO - Al 2 O 3 - SiO 2 phase diagram where the path of composition change is indicated by the action of fluxes in the oxide mixture that is obtained once the reduction process has finished.
  • Point A of the diagram shows the composition of the slag, rich in SiO 2 , which must be slagged with the mixture of the oxides Al 2 O 3 and SiO 2 .
  • Point B corresponds to a typical high-homo acid slag composition
  • point C to basic blast furnace slag
  • point D is the representative composition of Clinker for Portland Cement.
  • stage (c) 3 clearly differentiated phases are obtained: the metallic phase (pig iron), the oxide phase and the gases.
  • the gaseous phase must be evacuated continuously from the reactor / reduction furnace, since it is also generated continuously due, mainly, to the formation of CO (g) and CO 2 (g) As a product of the reduction of the iron oxides.
  • the gases must be treated with a dust collection system, to ensure the complete oxidation of CO (g) to CO 2 (g).
  • the oxide phase must first be removed from the reactor / reduction furnace since, due to its lower specific gravity compared to pig iron, the first floats / supernatant on the metallized / metallic phase.
  • This mixture of liquid oxides usually called slag, it must then be cooled for solidification by bleeding from the oven at temperatures of the order of 1500 ° C and completely solidifying around 1250 ° C, a value that will depend on the composition of this phase.
  • This cooling can be done through a shot blasting or granulation system, similar to those used in the cooling processes of a high-homogeneous slag.
  • the cooling will be done in wells where a slow cooling is guaranteed that allows the precipitation of the different compounds.
  • the product can already have a commercial value, such as high-homo slag for a variety of applications and, particularly, as an additive in the manufacture of clinker for Portland cement.
  • An alternative after shot blasting is to crush and grind the slag to a final mix of 100% - 400 # (100% smaller than 38 microns). Crushing can be done in roller or hammer crushers, and grinding in a ball mill, all of these conventional equipment.
  • the pig iron phase on the other hand, must be molded into blocks according to the standard practice for this type of product. Then, the reactor / reduction furnace will be able to process a new batch / charge.
  • the zero waste concept of the process has an important component in defining the properties of the mixed oxide product that is destined for the cement industry. From Figure 1, it is clearly seen that the initial composition of the oxide mixture that remains after the removal of Fe oxides for pig iron production is in a straight line towards the composition of Portland cements. This condition allows to identify at least three compositional objectives by adding a proportion of CaO Al 2 O 3 in a proportion around 80% CaO and 20% Al 2 O 3 . This proportion makes it possible to reach a composition equivalent to a basic or acid slag, typical of the standard operation of a blast furnace, a material that is qualified as a co-product in the steel production process. Both options can be targeted by the product associated with the constituent oxides of the copper slag that is processed.
  • a third option is to get directly to the composition of Portland cement to produce Clinker, whose determination is of the order of 70% 3CaO SiO 2 , 20% 2CaO SiO 2 , 5% 3CaO Al 2 O 3 and the rest Al 2 O 3 -4CaO Fe203. Although in this case there is no tetracalcium ferroaluminate, the smaller proportion can be added in a later stage, as well as the CaSO4 that is a constituent of Portland cement.
  • the control of the production of the different compounds from the global composition is achieved by means of a controlled cooling of the molten phase in the order of 1 ° C / 5 min.
  • the process has at least 3 objective compositions for a product of silicates and calcium aluminates of commercial value.
  • Example 1 Production of pig iron and cement additive.
  • an Al 2 O 3 crucible with a volume of 1 liter was loaded with 1000 g of slag from a copper foundry with a composition such as that shown in Table 1.
  • This loaded crucible was placed in a cylindrical chamber furnace at 350 ° C starting the temperature rise in the furnace at a rate of 5 ° C / min.
  • high purity nitrogen without oxygen
  • began to be injected into the chamber which had a hermetic gas injection and extraction system to guarantee the control of the atmosphere inside the chamber and avoid over-oxidation of the slag.
  • the temperature was brought to 1280 ° C where a sample of the slag was taken to control, later! , that the melt had not altered with respect to the loaded one.
  • the oven was then brought to 1580 ° C at a heating rate of 3 ° C / min.
  • the reduction process began by injecting coke with a grain size of 1 to 2 mm directly into the bath.
  • the operation was monitored by measuring the composition of the gases using an infrared analyzer that provided the content of CO and CO 2 . Taking the gas flow that came out of the crucible and that was channeled in a totality of its volume, thanks to the hermeticity of the chamber, it was possible to evaluate the elimination of oxygen associated with the Fe oxides. In Figure 2 you can see images of the test.
  • the pig iron formed was recovered at the bottom of the crucible with a C composition of 2.8%.
  • the slag formed with a normalization of the CaO, Al 2 O 3 and S1O 2 components was located at point B of Figure 1. Beneficially, it was possible to obtain an additive for Portland Cement, equivalent to the high-homo slag that cement industries use as input.
  • Example 2 Production of pig iron and Portland type clinker.
  • Example 1 To obtain pig iron and Clinker, an experimentation equivalent to that presented in Example 1 was carried out, also considering 1000 g of slag from a copper foundry with the same composition (Table 1). The same procedure was followed until the slag melted under a neutral atmosphere with the hermetic system of the oven chamber to guarantee conditions that did not alter the chemical properties of the slag.
  • the reduction process had a dynamics equivalent to that shown in Figure 3 and Figure 4 according to the addition of coke for the reduction.
  • the addition of the fluxes (mixture of Al 2 O 3 and CaO) was carried out at the same time as the coke with an equivalent granulometry 100% less than 1 mm, where the proportion of fluxes was greater than in the case of Example 1.
  • the slagging of S1O 2 required the addition of a flux charge, a mixture of 10% Al 2 O 3 with 90% CaO, which represented between 60 - 70% by weight of the total charge to the furnace, being supplemented with 40-30% by weight of copper slag.
  • the composition that was obtained was a composition located in zone D of Figure 1, specifically it corresponded to 20-25% S1O 2 , 2-7% Al 2 O 3 and the complement was CaO.

Abstract

Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales que comprende: (a) carga/vaciado de materiales: adicionar a un reactor/horno un agente reductor, escoria y óxidos; (b) reducción de óxidos de hierro: mantener la temperatura sobre 1550°C para comenzar reacciones descomposición y reducción; en paralelo producir la disolución del agente reductor en el Fe líquido hasta obtener arrabio; (c) formación de escoria: ocurre en paralelo a la etapa de reducción, a una temperatura del baño sobre 1450°C y a medida que avanza la reducción de los óxidos se va produciendo la fase arrabio; y el aumento de la concentración de SiO2 permite que la escoria aumente su temperatura de fusión obteniendo tres fases, arrabio, óxidos y gases; (d) descarga de productos.

Description

UN PROCESO CERO RESIDUOS QUE UTILIZA LAS ESCORIAS FINALES DE FUNDICIÓN DE COBRE PARA PRODUCIR PRODUCTOS COMERCIALES
Sector Técnico
La tecnología está orientada al área minera, más particularmente, corresponde a un proceso cero residuos que utiliza las escorias finales de una fundición de cobre para producir productos comerciales. Técnica Anterior
Las escorias de cobre representan unos de los principales desechos de la minería del cobre estimándose que, por cada tonelada de concentrado procesado en una fundición, se generan entre 250 y 320 kg de cobre y 300 a 650 kg de escorias de fundición, lo que equivale a decir que por cada tonelada de Cu producido se generan alrededor de 2 a 2,5 toneladas de escorias que hoy van a un botadero. Según datos de Brook Hunt, el año 2015 se produjeron alrededor de 9 millones de toneladas de cobre fino proveniente de fundición (sin considerar el mercado chino), esto implica que se generan cerca de 20 millones de toneladas de residuos mineros masivos de cobre asociado a la ruta pirometalúrgica de producción de cobre a partir de concentrados sulfurados que se acumulan anualmente, sobre lo cual no existe solución para evitar la generación de este residuo masivo.
Por otra parte, la preocupación por el medio ambiente y la escases de recursos minerales se han convertido en factores importantes en los sectores de minería y metalurgia que impulsan la investigación con fines de sostenibilidad, así la escasa disponibilidad de materias primas de alta calidad ha obligado a los investigadores a cambiar su enfoque hacia el reciclaje, mientras que las regulaciones ambientales cada vez más estrictas los han impulsado a explorar nuevas fronteras para minimizar y/o eliminar la generación de desechos.
Actualmente, la pirometalurgia del cobre enfrenta el procesamiento de concentrados de cobre teniendo dos líneas de proceso para el tratamiento de las escorias que se producen. Estas escorias son un material asociado al contenido de Fe presente en el concentrado. La primera línea corresponde a procesar las escorias de fusión (eventualmente también las de conversión, dependiendo de la tecnología de fusión utilizada) mediante un tratamiento de recuperación de cobre en hornos que pueden ser eléctricos, o bien, en los denominados hornos de limpieza de escorias, siendo estos últimos basculantes. El producto es una escoria final que es trasladada al escorial para formar parte del residuo minero masivo, recuperando el Cu presente como una fase sulfurada que es recirculada al proceso. Por otra parte, el segundo proceso trata las escorias en una planta de flotación de escorias, recuperando una fracción de cobre en forma de concentrado de cobre, pero de todas maneras el material remanente va a formar parte de un depósito de relaves, generando de igual manera un residuo minero masivo. En ambos casos se genera un pasivo ambiental sin posibilidad de valorizar el Fe que está presente en el concentrado, ni tampoco la diversidad de óxidos, principalmente S1O2, que se identifica como materia prima para diferentes procesos industriales.
Por otro lado, se ha estudiado ampliamente la separación física del cobre de la escoria de fundición a través de la flotación por espuma (Sarrafi et al., 2004, Bruckard et al., 2004, Guo et al., 2016). Sarrafi et al. (2004) descubrieron que se podía lograr una recuperación de cobre del 72% usando mercaptobenzotiazol (MBT) como colector. También concluyeron que el enfriamiento lento de la escoria conduce a una mejor recuperación (hasta 85%) de cobre mediante flotación.
Indudablemente, las separaciones físicas siguen siendo una ruta factible de recuperación de elementos de valor, a pesar de ello, requieren el enfriamiento de la escoria fundida, lo que conduce a una pérdida del alto contenido de entalpia de la escoria fundida. Los costos de molienda por conminución también se agregan en este caso. Además, los concentrados deben procesarse nuevamente a alta temperatura para su refinación. El procesamiento en estado fundido para recuperar los componentes de valor, en cambio, es más eficiente energéticamente pero no hay desarrollos tecnológicos que tomen la escoria fundida para valorizarlas, recuperando el Cu presente en ellas como principal objetivo y buscando no generar un pasivo asociado a la escoria rica en óxidos de Fe y SiO2.
La lixiviación es otra vía objeto de estudio para la recuperación de cobre a partir de escorias. Los agentes lixiviantes estudiados comprenden al ácido clorhídrico, ácido sulfúrico/O2 (aire) (tanto a presión atmosférica como a alta presión), amoniaco, cianuro, cloruro férrico, peróxido de hidrógeno y el sistema cloro/cloruro. Sin embargo, ninguno de ellos ha llegado a la escala comercial de aplicación.
La posibilidad de valorizar las escorias de fundición mediante la recuperación de metales contenidos en ellas, puede ser una interesante alternativa para la industria metalúrgica. Diversos estudios proponen metodologías para la recuperación de Cu, Co y Zn (Arelan y Arelan, 2002; Banza et al., 2002; Yang et al., 2010b), Cu y Co (Rudnik et al., 2009), Si, Fe y Cu (Chen et al., 2011), Cu y Fe (Cao et al., 2012), Fe (Kim et al., 2013; Li et al., 2013), Cu, Zn y Fe (Nadirov et al., 2013) y Cu (Randa et al., 2015), entre otros. Sin embargo, los procedimientos aplicados en la actualidad actúan en la recuperación parcial del cobre contenido en este tipo de escorias y consisten, en esencia, en la recirculación del cobre al proceso pirometalúrgico, incorporándolo nuevamente al convertidor en la etapa de soplado a escoria, pudiendo seguir dos circuitos distintos: (a) formando parte de la fase fundida más pesada, constituida por las especies portadoras de Cu (mata, metal blanco y Cu blíster) que se obtiene al prolongar el tiempo de sedimentación de la escoria fundida en un homo eléctrico, enfriamiento controlado, o (b) formando parte de un concentrado sólido tras someter a la escoria a enfriamiento/solidificación, trituración, molienda y flotación.
Hasta el momento, la reutilización de escorias de fundición de cobre ha sido mínima, pero, debido a que es una preocupación latente para la industria minera debido al impacto medioambiental que produce, se han ideado y desarrollado diversos usos alternativos de la escoria para reducir el tamaño de los botaderos existentes hoy en día. A nivel mundial existen una serie de alternativas de usos para la escoria de fundición del cobre, siendo las principales:
Balasto: más bien conocido como relleno en las líneas férreas.
Arena abrasiva: permite remover la pintura, capas externas y corrosión de estructuras metálicas industriales.
EbonyGrit: producto creado por la empresa Opta Minerals Inc., obteniéndose como un producto secundario de la escoria proveniente de la industria del cobre. El EbonyGrit es una arena abrasiva compuesta generalmente por ferro-silicatos (Fe2SiO4) y óxidos, y se forma cuando la escoria fundida es enfriada rápidamente en agua.
Material de construcción: existen diversos estudios que buscan la reutilización de la escoria en materiales de construcción, especialmente como aditivo para cementos, reemplazando en cierta manera las puzolanas y yeso, sirviendo para el mejoramiento en la tecnología de la construcción de carreteras (Wang y Emery, 2004).
A continuación, se detallan algunas tecnologías vinculadas a productos obtenidos a partir de escorias metalúrgicas:
1.- Patente US 3,868,440 (Lindblad et al.) denominada “Recovery of metal valúes from copper slag". Se resguarda un proceso hidrometalúrgico para tratar material de escoria, especialmente de escoria de fundición de cobre, el cual comprende: mezclar vigorosamente el material de escoria con una parte de ácido sulfúrico y una parte de agua por cada parte del material de escoria, y permitir que la mezcla resultante reaccione para producir un material seco y sólido que contiene valores metálicos de la escoria en forma soluble en agua.
2.- Solicitud CN 107955878 A (Liu): “Method for efficiently decomposing and recycling valuable metal in copper slag". Se divulga un método para descomponer y reciclar metales valiosos en escoria de cobre. Después de que la escoria de cobre y la criolita se mezclan y se muelen con bolas, la mezcla se calcina; los productos de calcinación se trituran y se someten a una separación magnética, y luego se obtiene magnetita. Este método permite regular y controlar direccionalmente los recursos de hierro, incapaces de ser reutilizados en la escoria de cobre, para convertirse eficientemente en magnetita.
3.- Patente US 4,001,011 (Agarwal et al.) denominada “ Pyrometallurgical recovery of iron from iron silicate slags". Se protege un proceso para extraer hierro de la escoria que comprende: introducir la escoria en un reactor; mantener una relación CaO/SiO2 en el rango de 2, 0-3, 3 en la escoria; mantener la temperatura de la escoria a un nivel en el cual esté fundida; añadir un reductor carbonoso sólido a la escoria a una velocidad suficiente para reducir el FeO; mezclar dicho reductor en la escoria con un agitador giratorio para mejorar dicha reducción de FeO; y separar una fase de soporte de hierro de la escoria. 4.- Solicitud US 2007/283785 (Agrawal et al.) denominada: “ Process for recovery of iron from copper slag" . Se divulga un proceso para la recuperación de hierro a partir de escoria de cobre granulada generada durante la producción de cobre mediante un método pirometalúrgico. El proceso permite obtener hierro fundido de grado de molienda.
5.- Solicitud CN101100708A (Zhitong) denominada: “ Method forseparating iron and copper from copper smelter slag". Se protege un proceso para separar hierro desde escorias de cobre, el cual comprende: regulación de componentes de la escoria por adición de aditivo al hierro en la fase de enriquecimiento de magnetita; controlar la velocidad de enfriamiento y temperatura; adición de un agente modificador para mejorar la fase de magnetita y triturado para separar.
En base a estos antecedentes aún persiste la necesidad de encontrar alternativas para otorgar valor a las escorias del cobre en forma amigable con el medio ambiente y especialmente de uso masivo dado el volumen actual de generación de este pasivo.
Referencias
• Arsian, C. Arsian, F. “Recovery of copper, cobalt, and zinc from copper smelter and converter slags”. Hydrometallurgy. 2002, (67), 1-7.
• Banza, A. N., Gock, E., Kongolo, K. Base metáis recovery from copper smelter slag by oxidizing leaching and solvent extraction. Hydrometallurgy. 2002, (67), 1-3, 63-69.
• Bruckard, W. J., Somerville, M., Hao, F. “The recovery of copper, by flotation, from calcium-ferrite-based slags made in continuous pllot smelting trials”. Minerals Engineering. 2004, (17), 4, 495-504.
• Cao et al., (2012). "Study on green enrichment and separation of copper and iron components from copper converter slag”. Procedia Environmental Sciences 16, 740 - 746.
. Chen et al., (2011). Recovery of valuable metáis from copper slag by hydrometallurgy. Adv. Mat. Res. 402,
35-40. http://dx.doi.Org/10.4028/www.scientific.net/AMR.402.35.
• Liu, Z., Blanpain, B. and Guo, M. (2016). “Viscosity of Partially Crystallized BOF Slag”. In 7th International Symposium on High- Temperature Metallurgical Processing (eds J. Hwang, T. Jiang, P. C. Plstorius, G. R. Alvear F., O. Yücel, L. Cai, B. Zhao, D. Gregurek and V. Seshadri). doi:10.1002/9781119274643.ch33.
• Kim, Y., Hanif, A., Usman, M., Munir, M., Saleem, S., Kim, S. “Slag waste incorporation in hlgh early strength concrete as cement replacement: Envlronmental impact and influence on hydration & durability attributes”. Journal of Cleaner Production. (2018), 172, 3056- 3065.
• Liu, Ch., Zhang, Y-Z., Li, J., Li, J-G, Kang, Y. “Thermodynamii simulation on mineralogical composition of CaO-SiO2-Al2O3-MgO quatemary slag system”. SpringerPlus (2016) 5:1028. Doi 10.1186/S40064-016-2289-z.
• Nadirov et al., (2013). Recovery of valué metáis from copper smelter slag by ammonium chloride treatment. International Journal of Mineral Processing 124 (2013) 145-149.
• Panda, S., Mishra; S., Rao, D., Pradhan, N., Mohapatra, U., Angadi, S., Mishra, B. “Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies". Korean J. Chem. Eng., 2015. 32 (4), 667-676.
• Sarrafi, A., Rahmati, B., Hassani, H. R., Shirazi, H. H. A. “Recovery of copper from reverberatory fumace slag by flotation”. Minerals Engineering. 2004, (17) 3, 457-459.
• Rudnik, E., Burzynska, L., Gumowska, W. “Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag”. Minerals Engineering. 2009, (22) 9, 88-95.
• Wang, G., Emery, J. “Technology of slag utilization in highway construction”. Annual Conference Transportation Association of Cañada Québec City, Québec. 2004.
• Yang et al., (2010b). Selective leaching of base metáis from copper smelter slag. Hydro- metallurgy 103 (1-4), 25-29. http://dx.doi.Org/10.1016/j.hydromet.2010.02.009.
Breve descripción de las figuras
Figura 1 : Condición inicial de la composición de la escoria y productos propuestos de valor a producir, donde (A) corresponde a la escoria inicial; (B) a las escorias ácidas de alto horno; (C) a las escorias básicas de alto horno; y (D) al Cemento Portland.
Figura 2: Imágenes del proceso para la producción de arrabio y un aditivo de cemento, donde (a) corresponde al sistema para procesar la escoria y (b) a la escoria fundida para la obtención de arrabio.
Figura 3: Gráfica de la evolución de los gases, donde (a) corresponde a CO (%) y (b) a CO2 (%).
Figura 4: Gráfica de la evolución de contenidos de óxidos y aparición de Fe.
Divulgación de la Invención
La presente tecnología corresponde a un proceso cero residuos que utiliza las escorias finales de una fundición de cobre para producir al menos dos productos comerciales, ambos de uso masivo como es el arrabio y un aditivo para la industria del cemento. Estas escorias tienen en su estructura principalmente óxidos de Fe y SiO2, siendo estos componentes los que permiten producir arrabio asociado al Fe, y el aditivo para el cemento, Portland u otro, a partir del SiO2 y otros óxidos menores que también se encuentran en su estructura. Este proceso permite mejorar la competitividad de las fundiciones de cobre a! transformar la escoria (pasivo ambiental) en productos de valor comercial.
Las escorias finales generadas en las fundiciones de cobre son una mezcla fundida que contiene principalmente silicatos de hierro (en torno a 70% en peso). Este proceso permite reducir los óxidos de hierro (Fe3O4 y FeOx) de estos silicatos, tomando las escorias en estado líquido justo cuando son enviadas al botadero de escorias como última etapa del proceso de una fundición de cobre. De esta manera, las escorias entran líquidas a la etapa de producción de arrabio y del aditivo para cemento, a una temperatura típicamente entre 1230 - 1270°C.
El proceso de producción de arrabio considera la adición de carbón como reductor para descomponer la fayalita en FeOx y SiO2, y la reducción tanto de magnetita (Fe3O4) como de wustita ( FeOx) a hierro metálico. El carbono se adiciona en las proporciones que permitan obtener Fe después de la reducción con un contenido de carbono cercano a la saturación, típicamente entre 3 - 4,2% en peso de C, o el que mejor se requiera según las particularidades del arrabio.
Por otra parte, el proceso permite escorificar SiO2 directamente desde la escoria fundida que se produce al final del proceso de reducción usando óxido de calcio (CaO) y/o alúmina (Al2O3), para bajar el punto de fusión de la mezcla y alcanzar una composición que permita usar esta mezcla como aditivo para la elaboración de cemento, donde particularmente puede ser utilizado en los cementos del tipo Portland o directamente Clinker para la producción de cemento Portlan.
Considerando que una composición típica de la escoria a tratar proveniente de una fundición de cobre es la mostrada en la Tabla 1 , se puede estimar que la composición de la escoria final de la reducción tiene una composición tal como se presenta en la Tabla 2.
Tabla 1. composición clásica de una escoria final de una fundición de cobre.
Figure imgf000007_0001
Tabla 2. Composición de la mezcla de óxidos después de la reducción.
Figure imgf000008_0001
Para lograr una mezcla líquida a la temperatura de operación y que cumpla con la composición de un aditivo para cemento, o bien, la producción de Clinker para cemento Portland se debe adicionar óxidos del tipo Al2O3 y CaO al proceso en la etapa de reducción.
Específicamente, este proceso cero residuos comprende al menos las siguientes etapas: a.- Carga/vaciado de los materiales.
Se debe vaciar la escoria final de la fundición de cobre proveniente del horno de limpieza de escorias que se encuentra entre 1230 - 1270°C en un reactor/horno de reducción en estado fundido para aprovechar la energía térmica contenida. Previamente, se debe cargar un agente reductor tal como carbón y/o coque en cantidades dadas por la estequiometria de las reacciones de reducción, lo que determina que la carga del reductor corresponde a una proporción másica entre 30 - 45% referido a la masa total de escoria de cobre a tratar, es decir, por cada tonelada de escoria que ingresa fundida al proceso se adiciona entre 300 - 450 kg de carbón, cálculo que considera una cantidad en exceso de entre 5 - 20%, considerando ya el C que se disolverá en el Fe líquido.
El reductor debe cargarse al reactor/homo de reducción antes que la escoria líquida a fin de evitar que este reductor sólido flote sobre la escoria (si éste se carga después), caso en el cual la reacción de reducción entre el reductor y la escoria se verá limitada por el bajo contacto superficial.
Adicionalmente, la reducción se facilita por la inyección de C mediante inyectores tradicionales como los utilizados en los procesos de limpieza de escoria en hornos basculantes, o cualquier inyector de C u otro reductor del tipo de hidrocarburos.
El agente reductor y las adiciones de óxidos pueden cargarse al reactor/homo mediante una caja metálica suspendida con una grúa sobre el fondo del reactor/horno de reducción con un sistema de apertura automático, tal como se cargan los diferentes materiales en los convertidores CONOX u otros. Los óxidos que actúan como fundentes corresponden a una mezcla de CaO y Al2O3, rica en CaO con una proporción preferentemente en torno al 80% de CaO y 20% de Al2O3. Se adicionan en proporciones determinadas por el tipo de producto de mezcla de óxidos que se requiera obtener. En el caso de un producto tipo escorias de alto horno, esta adición es del orden de 30% de masa de los óxidos que quedarán después de la reducción, lo que corresponde a 15 - 20% respecto de la carga de la escoria de cobre. En el caso de formar Clinker para cemento Portland esta adición es del orden de 30 - 40% respecto de la carga de escoria a tratar.
La escoria proveniente del homo de limpieza de escorias, en cambio, debe cargarse usando la misma olla que la contiene y que es transportada por una grúa. b.- Reducción de óxidos de hierro.
Una vez que todos los materiales son cargados al reactor/horno de reducción comienzan a producirse una serie de reacciones, éstas son:
Descomposición y reducción de la fayalita:
Figure imgf000009_0001
Donde a representa la razón CO(g)/C02(g)de los gases de salida, la cual depende de las condiciones de contacto entre los óxidos de la escoria con el C reductor.
Estas reacciones ocurren en la mezcla de óxidos fundido (escoria) la cual contiene una serie de otros óxidos como CaO, Al2O3, SiO2, MgO, y en general al menos los mostrados en la Tabla 2, los cuales no participan de estas reacciones de reducción.
En paralelo a estas reacciones se produce la disolución del C en el Fe líquido hasta el nivel correspondiente a la composición del arrabio, entre 3,5 - 4,2% en peso. El baño se debe mantener sobre 1550°C en condiciones que resultan estándares para este tipo de procesos de producción de arrabio. El aporte energético se da a través de la combustión del mismo reductor que se agrega en exceso para mantener el sistema en las condiciones térmicas. En el caso de usar un horno eléctrico para la reducción el aporte energético debe ser proveído a través de los electrodos. Ventajosamente, este proceso al utilizar la escoria ya fundida tiene un sustancial ahorro en energía (combustible) para mantener las condiciones térmicas del reactor de reducción.
El tiempo requerido para cada carga dependerá del tamaño del reactor. Como indicador de productividad se tienen que el procesamiento de 100 ton de escoria tarda de 60 a 75 minutos. c.- Formación de escoria.
Esta etapa ocurre en paralelo a la etapa de reducción, es decir, a medida que avanza la reducción de los óxidos, los óxidos que quedan se van enriqueciendo en SiO2, mezcla de un muy alto punto de fusión por lo que la adición de los óxidos de CaO/Al2O3 actúan bajando el punto de fusión de la mezcla global; esta acción les da el carácter de “fundentes”. Por lo anterior, se va produciendo la fase arrabio que por densidad se separa de la mezcla líquida de los óxidos (escoria), que tienen menor densidad y flotan sobre el arrabio. El aumento paulatino de la concentración de SiO2 hace que la escoria comience a tener un aumento de su temperatura de fusión. Una forma simplificada pero representativa de analizar este fenómeno es considerar como base el sistema CaO - Al2O3 - SiO2. Para evitar la precipitación de sólidos la acción de una mezcla de CaO y Al2O3 como fundente es importante. En la Figura 1 se muestra un diagrama de fases CaO - Al2O3 - SiO2 donde se indica el camino de cambio de composición por la acción de los fundentes en la mezcla de óxidos que se obtiene una vez que el proceso de reducción ha terminado. El punto A del diagrama muestra la composición de la escoria, rica en SiO2, que debe ser escorificada con la mezcla de los óxidos Al2O3 y SiO2. El punto B corresponde a una composición típica de escorias ácidas de alto homo, el punto C a escorias básicas de alto horno y el punto D es la composición representativa de Clinker para Cemento Portland. Estas tres composiciones muestran que es posible generar 3 diferentes productos a partir de la fase escoria inicial, cada uno dependerá de la adición de los óxidos al proceso, los que actúan como fundentes para bajar la temperatura de fusión de la mezcla rica en SiO2.
Las condiciones de operación establecidas por el proceso exotérmico de reducción, así como por soporte térmico de la combustión del exceso de reductor permiten mantener la temperatura del baño sobre 1450°C, preferentemente entre 1500 - 1650°C, lo cual permite la formación de la fase escoria que una vez solidificada será el segundo producto del proceso. d.- Descarga de productos.
De la etapa (c) se obtienen 3 fases claramente diferenciadas: la fase metálica (arrabio), la fase óxidos y los gases. La fase gaseosa debe ser evacuada de manera continua desde el reactor/homo de reducción, ya que se genera también de manera continua debido, principalmente, a la formación de CO(g)y CO2(g)Como producto de la reducción de los óxidos de hierro. Los gases deben ser tratados con un sistema de captación de polvos, para asegurar la completa oxidación del CO(g) a CO2(g).
La fase óxidos debe removerse primero desde el reactor/horno de reducción dado que, debido a su menor gravedad específica comparada con la del arrabio, la primera flota/sobrenada sobre la fase metalizada/metálica. Esta mezcla de óxidos líquidos usualmente llamada escoria, debe ser luego enfriada para su solidificación sangrándose del homo a temperaturas del orden de 1500°C y solidificando completamente en tomo a 1250°C, valor que dependerá de la composición de estafase. Este enfriamiento se puede hacer mediante un sistema de granallado o granulación, similar a los usados en los procesos de enfriado de una escoria de alto homo. De igual forma y si se quiere controlar la cristalización de los productos muy particularmente para la producción de Clinker para cemento Portland el enfriamiento se hará en pozos donde se garantiza un enfriamiento lento que permite la precipitación de los diferentes compuestos. Con esta etapa, el producto puede ya tener un valor comercial, tal y cual lo son las escorias de alto homo para una diversidad de aplicaciones y, particularmente, como aditivo en la fabricación de Clinker para cemento Portland. Una alternativa posterior al granallado, es chancar y moler la escoria hasta obtener una mezcla final de 100% - 400# (100% de tamaño inferior a 38 micrones). El chancado puede efectuarse en chancadoras de rodillos o martillos, y la molienda en un molino de bolas, todos estos equipos convencionales.
La fase arrabio, en cambio, debe ser moldeada en lingotillos según la práctica estándar para este tipo de producto. Luego, el reactor/horno de reducción estará en condiciones de procesar un nuevo batch/carga.
El concepto cero residuos del proceso tiene una importante componente en la definición de las propiedades del producto de mezcla de óxidos que tiene un destino en la industria cementera. A partir de la Figura 1 , se aprecia claramente que la composición inicial de la mezcla de óxidos que queda después de la eliminación de los óxidos de Fe para la producción de arrabio está en una línea recta hacia la composición de los cementos Portland. Esta condición permite identificar al menos tres objetivos de composición al agregar una proporción de CaO Al2O3 en una proporción en tomo a 80% CaO y 20% de Al2O3. Esta proporción permite alcanzar una composición equivalente a una escoria básica o ácida, propias de la operación estándar de un alto horno, material que está calificado como un co-producto en el proceso productivo de acero. Ambas opciones pueden ser objetivo del producto asociado a los óxidos constitutivos de la escoria de cobre que se procesa. Una tercera opción es llegar directamente a la composición del cemento Portland para producir Clinker, cuya determinación es del orden de 70% 3CaO SiO2, 20% 2CaO SiO2, 5% 3CaO Al2O3 y el resto Al2O3-4CaO Fe203. Si bien en este caso no existe el ferroaluminato tetracálcico, la menor proporción se podrá agregar en una etapa posterior, así como el CaS04 que es constituyente del cemento Portland. El control de la producción de los diferentes compuestos a partir de la composición global se logra mediante un enfriamiento controlado de la fase fundida en el orden de 1°C/5 min.
De esta manera el proceso tiene al menos 3 composiciones objetivas para un producto de silicatos y aluminatos cálcicos de valor comercial. Ejemplos de aplicación
Ejemplo 1 : Producción de arrabio y aditivo para cemento. Para verificar la eficacia del proceso cero residuos en la obtención de arrabio y un aditivo para el cemento, primeramente, se cargó un crisol de Al2O3 de volumen 1 litro con 1000 g de escoria de una fundición de cobre con una composición como la mostrada en la Tabla 1 . Este crisol cargado se introdujo en un homo de cámara cilindrica a 350°C comenzando el aumento de temperatura en el horno a una tasa de 5°C/min. Al mismo tiempo que se inició el calentamiento se comenzó a inyectar nitrógeno de alta pureza (sin oxígeno) en la cámara, la cual contaba con un sistema de inyección y extracción de gases hermético para garantizar el control de la atmósfera al interior de la cámara y evitar sobre-oxidaciones de la escoria. La temperatura se llevó a 1280°C donde se tomó una muestra de la escoria para controlar, a posterior! , que la masa fundida no se había alterado respecto de la cargada. El horno se llevó entonces a 1580°C a una tasa de calentamiento de 3°C/min. Una vez alcanzada esta temperatura comenzó el proceso de reducción inyectando coke con granulometría 1 a 2 mm directamente en el baño. La operación se monitoreó midiendo la composición de los gases mediante un analizador infrarrojo que entregaba el contenido de CO y CO2. Teniendo el caudal de gas que salía del crisol y que era canalizado en una totalidad de su volumen, gracias a la hermeticidad de la cámara se logró evaluar la eliminación de oxígeno asociado a los óxidos de Fe. En la Figura 2 se pueden apreciar imágenes del ensayo.
Le evolución de los gases se muestra en la Figura 3 donde (a) corresponde a CO (%) y (b) a CO2 (%) y la evolución de los contenidos de óxidos y aparición de Fe en la Figura 4.
La adición del fundente (Al2O3 y CaO) se realizó en forma discontinua cada 5 minutos mediante una lanza con transporte neumático usando nitrógeno.
El arrabio formado se recuperó en el fondo del crisol con una composición de C de 2,8%. La escoria formada con una normalización de los componentes de CaO, Al2O3 y S1O2 se ubicó en el punto B de la Figura 1. Beneficiosamente, se logró obtener un aditivo para el Cemento Portland, equivalente a las escorias de alto homo que las industrias cementeras utilizan como insumo.
Ejemplo 2: Producción de arrabio y Clinker tipo Portland.
Para la obtención de arrabio y Clinker se realizó una experimentación equivalente a la presentada en el Ejemplo 1 , considerando también 1000 g de escoria de una fundición de cobre con la misma composición (Tabla 1). Se siguió el mismo procedimiento hasta la fusión de la escoria bajo atmósfera neutra con el sistema hermético de la cámara del homo para garantizar condiciones que no alteraran las propiedades químicas de la escoria. El proceso de reducción tuvo una dinámica equivalente a la mostrada en las Figura 3 y Figura 4 acorde a la adición de coke para la reducción. La adición de los fundentes (mezcla Al2O3 y CaO) se realizó al mismo tiempo que el coke con una granulometría equivalente 100% menor a 1 mm, donde la proporción de fundentes fue mayor que en el caso del Ejemplo 1. En efecto, la escorificación del S1O2 requirió de la adición de una carga de fundente, mezcla de 10% de Al2O3 con 90% de CaO, que representó entre 60 - 70% en peso de la carga total al horno, siendo complementada con 40 - 30% en peso de escoria de cobre. En este caso, la composición que se obtuvo fue una composición localizada en a la zona D de la Figura 1 , específicamente correspondió a 20 - 25% de S1O2, 2 - 7% Al2O3y el complemento fue CaO.
Finalmente se obtuvo arrabio con un contenido de 3,3% de C y la escoria fue enfriada lentamente alcanzando los componentes cristalizados propios de la estructura del Clinker.

Claims

Reivindicaciones
1 Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales CARACTERIZADO porque comprende al menos las siguientes etapas: a.- carga/vaciado de los materiales: primeramente, se debe adicionar a un reactor/homo de reducción un agente reductor y luego se debe vaciar la escoria en estado fundido de una fundición de cobre proveniente de un homo de limpieza de escorias que encuentra entre 1230 - 1270°C, donde el agente reductor se adiciona en una proporción másica entre 30 - 45% referido a la masa total de escoria de cobre a tratar; además se adicionan óxidos que actúan como fundentes entre 15 - 20 % respecto de la carga de escoria de cobre para obtener, un escoria que al solidificar tendrá las propiedades de una escoria de alto horno y entre 30 - 40 % respecto de la carga de escoria de cobre para obtener un clinker tipo cemento Portland; b.- reducción de óxidos de hierro: una vez que todos los materiales son cargados al reactor/horno de reducción que se debe mantener sobre 1550°C comienzan a producirse las reacciones descomposición de fayalita y las reacciones de reducción, y en paralelo se produce la disolución del agente reductor en el Fe líquido hasta obtener la composición del arrabio, entre 3,5 - 4,2% en peso; c.- formación de escoria: esta etapa ocurre en paralelo a la etapa de reducción, donde la temperatura del baño debe mantenerse sobre 1450°C y donde a medida que avanza la reducción de los óxidos, se va produciendo la fase arrabio; y el aumento paulatino de la concentración de SiO2 permite que la escoria comience a tener un aumento de su temperatura de fusión la cual es controlada por a la adición de los óxidos que actúan como fundentes; obtenido finalmente tres fases, arrabio, óxidos y gases; d.- descarga de productos: de la etapa (c) la fase gaseosa debe ser evacuada de manera continua desde el reactor/homo de reducción y tratados con un sistema de captación de polvos; la fase óxidos debe removerse primero desde el reactor/horno de reducción y ser enfriada para su solidificación sangrándose del homo a temperaturas del orden de 1500°C y solidificando completamente a 1250°C; y la fase arrabio debe ser moldeada en lingotillos.
2.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 , CARACTERIZADO porque el reductor es coque.
3.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 , CARACTERIZADO porque los óxidos que actúan como fundentes corresponden a una mezcla de CaO y Al2O3, rica en CaO con una proporción de 80% de CaO y 20% de Al2O3.
4.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 ,
CARACTERIZADO porque el reductor se adiciona al reactor/horno mediante inyectores tradicionales.
5.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 ,
CARACTERIZADO porque el reductor y los óxidos se cargan al reactor/horno mediante una caja metálica suspendida con una grúa sobre el fondo del reactor/horno de reducción con un sistema de apertura automático.
6.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 ,
CARACTERIZADO porque la escoria proveniente del horno de limpieza de escorias se carga al reactor/homo fundida usando la misma olla que la contiene y que debe ser transportada por una grúa.
7.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 ,
CARACTERIZADO porque en la etapa “c" , la temperatura del baño opera entre 1500 - 1650°C.
8.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 ,
CARACTERIZADO porque en la etapa “d” la fase gaseosa es del tipo CO(g) y CO2(g).
9.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 ,
CARACTERIZADO porque en la etapa “d” el enfriamiento de los óxidos líquidos se realiza mediante un sistema de granallado o granulación.
10.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicaciones 1 y 9, CARACTERIZADO porque, opcionalmente, en la etapa “d” posterior al granallado de los óxidos se debe chancar y moler la escoria hasta obtener una mezcla final de 100% de tamaño inferior a 38 micrones.
11 .- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 10, CARACTERIZADO porque el chancado de los óxidos se realiza en chancadores de rodillos o martillos, y la molienda en un molino de bolas.
12.- Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales según reivindicación 1 , CARACTERIZADO porque en la etapa “d” el enfriamiento de los óxidos líquidos se realiza en pozos para obtener de Clinker para cemento.
PCT/CL2020/050116 2019-10-16 2020-10-08 Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales WO2021072562A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2935-2019 2019-10-16
CL2019002935A CL2019002935A1 (es) 2019-10-16 2019-10-16 Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales

Publications (1)

Publication Number Publication Date
WO2021072562A1 true WO2021072562A1 (es) 2021-04-22

Family

ID=70006099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050116 WO2021072562A1 (es) 2019-10-16 2020-10-08 Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales

Country Status (2)

Country Link
CL (1) CL2019002935A1 (es)
WO (1) WO2021072562A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213844A (zh) * 2021-05-13 2021-08-06 西北矿冶研究院 一种含铜冶炼渣的充填尾砂固化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066350A1 (en) * 2005-12-09 2007-06-14 Council Of Scientific And Industrial Research A process for recovery of iron from copper slag
CN104694755A (zh) * 2015-02-06 2015-06-10 铜陵百荣新型材料铸件有限公司 利用铜渣和生产高钒铁的废渣制备硅钒铁合金的方法
CN106191344A (zh) * 2016-07-18 2016-12-07 东北大学 一种混合熔渣熔融还原生产与调质处理的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066350A1 (en) * 2005-12-09 2007-06-14 Council Of Scientific And Industrial Research A process for recovery of iron from copper slag
CN104694755A (zh) * 2015-02-06 2015-06-10 铜陵百荣新型材料铸件有限公司 利用铜渣和生产高钒铁的废渣制备硅钒铁合金的方法
CN106191344A (zh) * 2016-07-18 2016-12-07 东北大学 一种混合熔渣熔融还原生产与调质处理的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ERDENEBOLD U, CHOI H. -M, WANG J. -P: "Recovery of pig iron from copper smelting slag by reduction smelting", ARCH. METALL. MATER., vol. 63, no. 4, 2018, pages 1793 - 1798, XP055817346, DOI: 10.24425/amm.2018.125106 *
ERDENEBOLD URTNASAN, WANG JEI-PIL: "A Study on Reduction of Copper Smelting Slag by Carbon for Recycling into Metal Values and Cement Raw Material", SUSTAINABILITY, vol. 12, no. 1421, 17 January 2020 (2020-01-17), pages 3 - 9, XP055817343, DOI: https://doi.org/10.3390/su12041421 *
GARCIA MEDINA, L. E. ET AL.: "Uso de la escoria de cobre en el proceso de fabricacion de clinker para cemento Portland", MATERIALES DE CONSTRUCCIÓN, vol. 56, no. 281, 2006, pages 31 - 40, XP055817327, ISSN: 0465-2746 *
ORIZOLA GOMEZ, S: "Uso de escoria de cobre en cementos", TESIS INGENIERO CIVIL, November 2006 (2006-11-01), XP055817345 *
SALINAS CANDIA, C: "Estudio tecnico economico para un proceso ''zero waste'' en el procesamiento de escorias de cobre para la produccion de arrabio y cemento Portland", TESIS INGENIERO CIVIL, April 2020 (2020-04-01), pages 1 - 101, XP055817331 *
XIAN-LIN ZHOU, DE-QING ZHU, JIAN PAN, TENG-JIAO WU: "Utilization of Waste Copper Slag to Produce Directly Reduced Iron for Weathering Resistant Steel", ISIJ INTERNATIONAL, vol. 55, no. 7, 2015, pages 1347 - 1352, XP055817344, ISSN: 1347-5460, DOI: https-// doi.org/10.2355/isijinternational.55.1347 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213844A (zh) * 2021-05-13 2021-08-06 西北矿冶研究院 一种含铜冶炼渣的充填尾砂固化剂

Also Published As

Publication number Publication date
CL2019002935A1 (es) 2020-03-13

Similar Documents

Publication Publication Date Title
Wang The utilization of slag in civil infrastructure construction
CN106048108B (zh) 一种含钛混合熔渣熔融还原回收与调质处理的方法
CN106048107B (zh) 一种含钛混合熔渣熔融还原生产和调质处理的方法
Jones An overview of Southern African PGM smelting
CN107699699A (zh) 锌冶炼炉渣熔融还原生产的方法
CN107663589A (zh) 一种由含镍与铁的混合熔渣回收有价组分的方法
US9435005B2 (en) Method for processing slags of non-ferrous metallurgy
WO2019071798A1 (zh) 一种由镍冶炼熔渣生产的方法
ES2877505T3 (es) Escoria mejorada a partir de la producción de metales no ferrosos
CN107674985A (zh) 由锌冶炼熔渣回收有价组分的方法
CN108350523A (zh) 用直接还原法从含金属的硫化矿精矿提取金属的方法及再生和回收还原剂铁和助熔剂碳酸钠
CN107699701A (zh) 由含锌与铁的混合熔渣回收有价组分的方法
CN101851704A (zh) 铜冶炼中的转炉渣的干式处理方法及系统
CN103757170A (zh) 一种镍冶炼炉渣喷吹还原提铁的方法
Engström et al. Hot stage engineering to improve slag valorisation options
Jiang et al. Formation of spinel phases in oxidized BOF slag under different cooling conditions
Mombelli et al. Jarosite wastes reduction through blast furnace sludges for cast iron production
WO1997020954A1 (en) Simplified duplex processing of nickel ores and/or concentrates for the production of ferronickels, nickel irons and stainless steels
WO2021072562A1 (es) Un proceso cero residuos que utiliza las escorias finales de fundición de cobre para producir productos comerciales
Wang et al. Recovery of Cu-Fe-S matte from electroplating sludge via the sulfurization-smelting method
RU2359046C1 (ru) Способ переработки медных сульфидных материалов на черновую медь
CN115710634A (zh) 一种处理烧结除尘灰和连铸中间包废弃涂料的方法
Kokal et al. Metallurgical Uses—Fluxes for Metallurgy
Liao et al. Study on recovering iron from smelting slag by carbothermic reduction
CN110205432B (zh) 一种生产铁硫合金的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877702

Country of ref document: EP

Kind code of ref document: A1