CN106133183A - 用于有机材料的蒸发源 - Google Patents

用于有机材料的蒸发源 Download PDF

Info

Publication number
CN106133183A
CN106133183A CN201480077377.5A CN201480077377A CN106133183A CN 106133183 A CN106133183 A CN 106133183A CN 201480077377 A CN201480077377 A CN 201480077377A CN 106133183 A CN106133183 A CN 106133183A
Authority
CN
China
Prior art keywords
evaporation source
distribution duct
evaporation
substrate
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480077377.5A
Other languages
English (en)
Other versions
CN106133183B (zh
Inventor
S·邦格特
J·M·迭戈兹-坎波
U·舒斯勒
A·鲁普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN106133183A publication Critical patent/CN106133183A/zh
Application granted granted Critical
Publication of CN106133183B publication Critical patent/CN106133183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

描述一种用于有机材料的蒸发源。所述蒸发源包括:蒸发坩锅,其中所述蒸发坩埚被配置成蒸发所述有机材料;分配管道,所述分配管道具有沿所述分配管道的长度而提供的一或多个出口,其中所述分配管道与所述蒸发坩锅流体连通,并且其中所述分配管道具有垂直于所述分配管道的长度的横截面,所述横截面是非圆形的,并且包括:出口侧,一或多个出口提供在所述出口侧处,其中所述横截面的所述出口侧的宽度是所述横截面的最大尺寸的30%或更小。

Description

用于有机材料的蒸发源
技术领域
本发明的实施方式涉及有机材料沉积、用于沉积材料(例如,有机材料)的系统、用于有机材料的源、以及用于有机材料的沉积设备。本发明的实施方式具体涉及用于有机材料的蒸发源(例如,用于蒸发装置和/或制造装置的制造系统,尤其其中包括有机材料的装置)、用于有机材料的蒸发源阵列(例如,蒸发设备和/或用于制造装置的制造系统,尤其其中包括有机材料的装置)、以及蒸发源阵列。
背景技术
有机蒸发器是用于有机发光二极管(OLED)的生产的工具。OLED是一种特殊类型的发光二极管,其中发射层包括某些有机化合物的薄膜。有机发光二极管(OLED)在用于示出信息的电视屏幕、计算机显示器、移动电话、其他手持装置等的制造中使用。OLED也能用于一般空间照明。由于OLED像素直接发光并且不需要背光源,OLED显示器可达成的颜色、亮度和视角的范围大于传统LCD显示器的颜色、亮度和视角的范围。因此,OLED显示器的能耗大大低于传统LCD显示器的能耗。此外,OLED能够被制造至柔性基板上这一事实产生另外应用。例如,典型OLED显示器可以包含有机材料的层,这些有机材料的层位于两个电极之间,全都以形成具有可独立供能的像素的矩阵显示器面板的方式沉积在基板上。OLED一般放在两个玻璃面板之间,并且玻璃面板边缘密封以将OLED封装于玻璃面板中。
在制造此类示出装置中遇到许多挑战。在一个实例里,大量劳动密集步骤是将OLED封装在两个玻璃面板之间以避免可能装置污染所必需的。在另一实例里,显示器屏幕、以及因此玻璃面板的不同尺寸可能需要对用于形成示出装置的工艺和工艺硬件的实质重构(reconfiguration)。一般来说,期望在大面积基板上制造OLED装置。
带来各种挑战的大比例OLED显示器的制造中的一个步骤是基板的掩蔽(masking),例如,用于实现图案化层沉积。另外,已知系统通常具有小的总材料利用率,例如,小于50%。
OLED显示器或OLED照明应用包括若干有机材料堆叠(例如,在真空中蒸发)。有机材料通过阴影掩模以相继的方式沉积。为了高效率地制造OLED堆叠,需要以两种或更多种材料(例如,主体(host)和掺杂物)的共沉积或共蒸发,以便产生混合/掺杂的层。另外,必须要考虑到对极敏感的有机材料的蒸发存在要求。
对于例如OLED显示器的生产,通过使有机材料穿过阴影掩模沉积以实现显示器像素化。为了避免经蒸发源的热负载诱发的掩模的热膨胀造成的像素对位不准(misalignment),需要屏蔽和/或冷却有机源。
因此,一直需要新颖且改进的用于形成装置(例如,OLED示出装置)的系统、设备和方法。
发明内容
鉴于上述内容,提供一种根据独立权利要求1的用于有机材料的蒸发源,并且提供一种蒸发源阵列。本发明的其他优点、特征和方面是由从属权利要求、说明书和附图呈现。
根据一个实施方式,提供一种用于有机材料的蒸发源。蒸发源包括:蒸发坩锅,其中所述蒸发坩埚被配置成蒸发有机材料;分配管道,所述分配管道具有沿分配管道的长度而提供的一或多个出口,其中分配管道与蒸发坩锅流体连通,并且其中分配管道具有垂直于分配管道的长度的横截面,所述横截面是非圆形的,并且包括:出口侧,一或多个出口提供在所述出口侧处,其中横截面的出口侧的宽度是横截面的最大尺寸的30%或更小。
根据另一实施方式,提供一种用于有机材料的蒸发源阵列。蒸发源阵列包括:第一蒸发源;以及至少第二蒸发源,其中第一蒸发源的一或多个出口和第二蒸发源的一或多个出口具有25mm或更小的距离。例如,每一个蒸发源包括:蒸发坩锅,其中所述蒸发坩埚被配置成蒸发有机材料;分配管道,所述分配管道具有沿分配管道的长度而提供的一或多个出口,其中分配管道与蒸发坩锅流体连通,并且其中分配管道具有垂直于分配管道的长度的横截面,所述横截面是非圆形的,并且包括:出口侧,一或多个出口提供在所述出口侧处,其中横截面的出口侧的宽度是横截面的最大尺寸的30%或更小。
附图简述
因此,为了能够详细理解本发明的上述特征结构所用方式,上文所简要概述的本发明的更具体的描述可以参考各个实施方式进行。附图涉及本发明的实施方式,并且描述如下:
图1示出根据本文中描述的实施方式的用于在真空腔室中沉积有机材料的沉积装置的示意性俯视图;
图2A和图2B示出根据本文中描述的实施方式的蒸发源的多个部分的示意图;
图2C示出根据本文中描述的实施方式的另一蒸发源的示意图;
图3A至图3C示出分别根据本文中描述的实施方式的蒸发源或蒸发管的部分的示意横截面图;
图4示出分别根据本文中描述的实施方式的蒸发源或蒸发管的部分的示意横截面图;
图5A示出根据本文中描述的实施方式的蒸发管的部分的示意图;
图5B和图5C示出根据本文中描述的实施方式的屏蔽件中的开口阵列的部分的示意图;
图6示出根据本文中描述的实施方式的蒸发源的部分的示意图;
图7A和图7B示出分别根据本文中描述的实施方式的蒸发源或蒸发管的部分的横截面图;
图8A示出根据本文中描述的实施方式的另一蒸发源的示意图;
图8B示出根据本文中描述的实施方式的又一蒸发源的示意图;
图9A和图9B示出根据本文中描述的实施方式的用于在真空腔室中沉积有机材料的沉积装置以及在真空腔室中的不同沉积位置的根据本文中描述的实施方式的用于有机材料蒸发的蒸发源;以及
图10示出根据本文中描述的实施方式的具有群集系统部分、真空摇摆模块、传送腔室、另一传送腔室、另一真空摇摆模块和另一群集系统部分的制造系统。
实施方式详述
现将针对本发明的各种实施方式进行详细说明,本发明的一或多个实例示出于附图中。在以下对附图的描述中,使用相同元件符号指示相同元件。一般来说,只对各实施方式的不同之处进行描述。每个实例以解释本发明的方式来提供,而非意图来限制本发明。另外,作为一个实施方式的一部分而示出或叙述的特征,可用于或结合其他实施方式产生又一实施方式。预期的是,所述描述包括此类调整以及变化。
图1示出处于真空腔室110中的某个位置处的蒸发源100。根据可与本文所述其他实施方式相结合的一些实施方式,蒸发源配置为平移运动并且围绕轴线旋转。蒸发源100具有一或多个蒸发坩锅104以及一或多个分配管道106。图1中示出两个蒸发坩锅以及两个分配管道。分配管道106通过支撑件102支撑。另外,根据一些实施方式,蒸发坩锅104亦可通过支撑件102支撑。两个基板121是提供于真空腔室110之中。通常,用于掩蔽基板上的层沉积的掩模132可提供于基板与蒸发源100之间。有机材料是从分配管道106蒸发。
根据本文所述实施方式,在基本上竖直的位置以有机材料涂布基板。亦即图1所示包括蒸发源100的装置的俯视图。通常,分配管道是蒸气分配喷头,具体地是线性的蒸气分配喷头。因此,分配管道提供基本上竖直地延伸的线性源(line source)。根据可与本文所述其他实施方式相结合的实施方式,基本上竖直地被理解为特别是当表示基板方向时,允许与竖直方向的20°或小于20°的偏差,例如是10°或小于10°。这个偏差可能例如因为基板支撑件与竖直方向有一些偏差(这可产生更稳定的基板位置)造成。然而,在有机材料沉积的期间,基板方向视为基本上竖直的,这视为不同于水平基板方向。基板表面由此通过在对应于一个基板尺寸的方向延伸的线性源以及沿对应于另一基板尺寸的另一方向的平移运动进行涂布。
图1示出用于在真空腔室110中沉积有机材料的沉积装置200的实施方式。蒸发源100是提供于真空腔室110中的轨道(例如,环形轨道(如图9A所示))或线性导件220上。轨道或线性导件220被配置成用于蒸发源100的平移运动。因此,根据可与本文所述其他实施方式相结合的不同实施方式,可在蒸发源100中、在轨道或线性导件220处、在真空腔室110内、或它们的组合提供用于平移运动的驱动装置。图1示出阀205(例如,闸阀)。阀205允许对邻近真空腔室的真空密封(未示出于图1)。阀可在传送基板121或掩模132进出真空腔室110时打开。
根据可与本文所述其他实施方式相结合的一些实施方式,可在邻近真空腔室110之处提供另外真空腔室(例如,维护真空腔室210)。因此,真空腔室110和维护真空腔室210与阀207连接。阀207被配置为用于打开和关闭在真空腔室110与维护真空腔室210之间的真空密封。当阀207处于打开状态时,蒸发源100可传送至维护真空腔室210。此后,可将阀关闭以在真空腔室110与维护真空腔室210之间提供真空密封。如果阀207关闭,维护真空腔室210可排气并打开以便维护蒸发源100,而不破坏真空腔室110中的真空。
两个基板121是支撑在真空腔室110中相应的传送轨道之上。另外,提供用于在其上提供掩模132的两个轨道。由此,基板121的涂布可由相应掩模132掩蔽。根据典型实施方式,掩模132(亦即对应于第一基板121的第一掩模132以及对应于第二基板121的第二掩模132)提供于掩模框架131中,以将掩模132保持在预定位置中。
根据可与本文所述其他实施方式相结合的一些实施方式,基板121可由连接至对准单元112的基板支撑件126支撑。对准单元112可调整基板121相对于掩模132的位置。图1示出基板支撑件126连接于对准单元112的实施方式。因此,在有机材料的沉积期间,基板是相对于掩模132移动,以在基板与掩模之间提供合适对准。根据可与本文所述其他实施方式相结合的另一实施方式,掩模132和/或保持掩模132的掩模框架131可替代地或另外地连接至对准单元112。由此,掩模可相对于基板121定位,或者掩模132和基板121可相对于彼此定位。配置为用于调整基板121与掩模132相对于彼此的位置的对准单元112在沉积工艺期间能够使掩模合适对准,这有益于高质量或LED显示器的制造。
掩模与基板相对于彼此的对准的实例包括对准单元,对准单元允许在限定平面(基本上平行于基板的平面与掩模的平面)的至少两个方向上相对对准。例如,对准可至少在x方向和y方向执行,亦即限定上述平行平面的两个直角座标的方向。通常,掩模和基板可基本上彼此平行。具体来说,对准可进一步在基本上垂直于基板的平面与掩模平面的方向上执行。因此,对准单元被配置为至少用于x-y对准。可与本文所述其他实施方式相结合的一个特定实例是在x方向、y方向和z方向使基板与可在真空腔室110中保持固定的掩模对准。
如图1所示,线性导件220提供蒸发源100的平移运动的方向。在蒸发源100的两侧上提供掩模132。掩模132可由此在基本上平行于平移运动的方向上延伸。另外,位于蒸发源100的相对侧的基板121亦可在基本上平行于平移运动的方向上延伸。根据典型实施方式,基板121可穿过阀205来移动进出真空腔室110。因此,沉积装置200可包括用于传送各个基板121的相应传送轨道。例如,传送轨道可平行于图1所示基板位置延伸,并且可延伸于真空腔室110内外。
通常,提供另外轨道以支撑掩模框架131和掩模132。因此,可与本文所述其他实施方式相结合的一些实施方式可以在真空腔室110中包括四个轨道。为将其中一个掩模132移出腔室(例如,用以清洗掩模),掩模框架以及掩模可移动至基板121的传送轨道上。接着,掩模框架可在用于基板的传送轨道上进出真空腔室110。即使有可能提供使掩模框架131进出真空腔室110的不同传送轨道,但是如果仅有两个轨道,那么沉积装置200的拥有成本仍可降低。亦即,该基板的传送轨道延伸至真空腔室110内外,并且此外掩模框架131可通过合适的致动器或机器人移动至相应传送轨道之上。
图1示出蒸发源100的示例性实施方式。蒸发源100包括支撑件102。支撑件102配置用于沿线性导件220的平移运动。支撑件102支撑两个蒸发坩锅104以及提供于蒸发坩锅104之上的两个分配管道106。因此,蒸发坩锅中产生的蒸气就可向上移动并移动至分配管道的一或多个出口之外。根据本文所述实施方式,分配管道106亦可视为蒸气分配喷头,例如,线性蒸气分配喷头。
根据本文所述实施方式,蒸发源包括一或多个蒸发坩锅以及一或多个分配管道,所述一或多个分配管道的相应分配管道可与一或多个蒸发坩锅的相应蒸发坩锅流体连通。用于制造OLED器件的不同应用包括处理步骤,其中两种或更多种的有机材料同时蒸发。因此,如图1所示实例,两个分配管道以及对应蒸发坩锅可提供于彼此邻近之处。因此,蒸发源100亦可称为蒸发源阵列(例如,其中多于一种有机材料同时蒸发)。如本文中所述,蒸发源阵列本身可表示为两种或更多种有机材料的蒸发源。
分配管道的一或多个出口可为一或多个开口,或一或多个喷嘴(nozzle),可提供于例如一喷头(showerhead)或另一蒸气分配系统之中。蒸发源可包括蒸气分配喷头,例如,具有多个喷嘴或开口的线性蒸气分配喷头。本文中,喷头可理解为有开口的外壳(enclosure),使得喷头内的压力大于喷头外的压力(例如,至少大1个量级)。
根据可与本文所述其他实施方式相结合的实施方式,分配管道旋转可通过其上安装有至少一个分配管道的蒸发器控制壳的旋转提供。另外或替代地,分配管道旋转可通过沿环形轨道(参考例如图9A)的弯曲部分移动蒸发源提供。通常,蒸发坩锅亦安装于蒸发控制壳之上。因此,蒸发源包括分配管道和蒸发坩锅,两者(亦即共同)可安装为可旋转的状态。
根据本文所述的实施方式,有机材料的蒸发源或蒸发源阵列分别可针对至少两个需求来改进(可独立于彼此或以组合的方式提供)。首先,当沉积两种或更多种的有机材料在基板上时,蒸发一或多种有机材料的蒸发源可能受到有机材料混合不足困扰。因此,需要改进有机材料的混合的应用,例如两种不同有机材料沉积以提供一个有机层于基板上。一种对应应用可能例如掺杂层的沉积,其中提供主体材料以及一或多种掺杂剂。其次,如关于图1示例性地描述,许多应用需要在有机材料的沉积期间掩蔽基板。鉴于掩蔽步骤通常需要高度的准确性,掩模的热膨胀必须减少。本文所述实施方式能够改进掩模温度的稳定性和/或降低蒸发源在掩模位置产生的热负载。
根据可与本文所述其他实施方式相结合的一些实施方式,蒸发源包括分配管道(例如,蒸发管)。分配管道可具有多个开口,例如,所实施的喷嘴阵列。再者,蒸发源包括容纳有蒸发材料的坩锅。根据可与本文所述其他实施方式相结合的一些实施方式,分配管道或蒸发管可设计为三角形,因此能够使得开口或喷嘴阵列彼此尽可能地靠近。这允许达成不同有机材料的改进混合,例如,用于两种、三种或甚至是更多种的不同的有机物的共蒸发的情况。
根据可另外或替代地实施的又一实施方式,本文所述的蒸发源能够允许掩模位置处的温度改变(例如,能够低于5开尔文(Kelvin,K),或甚至低于1K)。从蒸发源至掩模传递的热量的减少可通过改进冷却配置提供。另外地或替代地,有鉴于蒸发源为三角形,朝向掩模进行热辐射的区域减少。此外,可提供金属板堆叠(例如,多达十个金属板)以降低由蒸发源至掩模的热传递。根据可与本文所述其他实施方式相结合的一些实施方式,可提供热屏蔽件或金属板,使出口或喷嘴具有孔口(orifice),并且热屏蔽件或金属板可连接至源的至少前侧,亦即面对基板的侧。
图2A至图2C示出根据本文所述实施方式的蒸发源的一些部分。如图2A所示,蒸发源可包括分配管道106和蒸发坩锅104。因此,分配管道可例如为具有加热单元715的细长管。蒸发坩锅可以是具有加热单元725的欲蒸发的有机材料的储槽(reservoir)。根据可与本文所述其他实施方式相结合的典型实施方式,分配管道106提供了线性源。例如,多个开口和/或出口(例如,喷嘴)是沿至少一条直线配置。根据替代实施方式,可提供沿至少一条直线延伸的细长开口。例如,细长开口可为狭缝。根据可与本文所述其他实施方式相结合的一些实施方式,所述直线是基本上垂直地延伸。例如,分配管道106的长度至少对应于在沉积装置中欲沉积的基板的高度。在许多情况中,分配管道106的长度将大于(至少大于10%或甚至20%)欲沉积的基板的高度。因此,可提供基板的上端和/或下端的均匀沉积。
根据可与本文所述其他实施方式相结合的一些实施方式,分配管道的长度可以是1.3米或大于1.3米,例如,2.5米或大于2.5米。根据一个配置,如图2A所示,蒸发坩锅104是提供于分配管道106的下端。有机材料是蒸发于蒸发坩锅104之中。有机材料蒸气在分配管道的底部进入分配管道106,并且通过分配管道中的多个开口基本上地侧向地引导(例如,朝向基本上垂直的基板)。
根据可与本文所述其他实施方式相结合的一些实施方式,出口(例如,喷嘴)被配置为具有水平±20°的主要蒸发方向。根据一些特定实施方式,蒸发方向可轻微地向上定向,例如,由水平至向上15°的范围中,例如,向上3°至7°。相对应地,基板可稍微地倾斜以基本上垂直于蒸发方向。因此,可减小不需要的颗粒(particle)的产生。出于说明目的,图2A中示出的蒸发坩锅104和分配管道106并不具有热屏蔽件。因此,可在图2A中示出的示意性透视图中看到加热单元715和加热单元725。
图2B示出蒸发源的一部分的放大示意图,其中分配管道106是连接至蒸发坩锅104。提供凸缘单元703,所述凸缘单元703配置用于提供蒸发坩锅104与分配管道106之间的连接。例如,蒸发坩锅和分配管道提供作为单独单元,这两单元可分开并连接或组装至凸缘单元,例如,用于蒸发源的操作。
分配管道106具有内部中空空间710。加热单元715被提供以加热分配管道。因此,分配管道106可加热至一定温度,使得蒸发坩锅104所提供的有机材料蒸气不凝结于分配管道106的壁的内部部分。两个或多个热屏蔽件717是提供于分配管道106的管的周围。热屏蔽件配置用于将加热单元所提供的热能往后朝中空空间710反射。因此,由于热屏蔽件717的热损失减少,加热分配管道所需能量就会降低(亦即加热单元715所提供的能量)。另外,传递至其他分配管道和/或至掩模或基板的热量可被降低。根据可与本文所述其他实施方式相结合的一些实施方式,热屏蔽件717可以包括两个或更多个热屏蔽件层,例如,五个或更多个热屏蔽件层,例如,十个热屏蔽件层。
通常,如图2B所示,热屏蔽件717包括位于分配管道106中的开口或出口712的位置处的开口。图2B中所示的蒸发源的放大示意图示出四个开口或出口712。开口或出口712可提供为沿一或多条直线延伸,这些直线基本上平行于分配管道106的轴线。如本文所述,分配管道106可提供为线性分配喷头,例如,本文中配置有多个开口。因此,如本文理解的喷头具有其中可提供或引导材料(例如,从蒸发坩锅)的外壳、中空空间或管。喷头可具有多个开口(或细长狭缝),使得喷头内的压力大于喷头外的压力。例如,喷头内的压力可以比喷头外的压力高至少一个量级。
操作期间,分配管道106在凸缘单元703处连接至蒸发坩锅104。蒸发坩锅104是配置为用以接收欲蒸发的有机材料,并将蒸发有机材料。图2B示出穿过蒸发坩锅104的外壳的横截面。提供再填开口(例如,位于蒸发坩锅上部部分),所述再填开口可使用插塞722、盖子、盖件或类似物以封闭蒸发坩锅104的外壳。
外部加热单元725提供于蒸发坩锅104的外壳中。外部加热单元可至少沿蒸发坩锅104的壁的一部分延伸。根据可与本文所述其他实施方式相结合的一些实施方式,可另外或替代地提供一或多个中心加热装置726。图2B示出两个中心加热装置726。中心加热装置726可包括导体729以向中心加热单元提供电力。根据一些实施方式,蒸发坩锅104可进一步包括屏蔽件727。屏蔽件727可配置成用于将外部加热单元725以及中心加热装置726(如果存在)所提供的热能往后反射至蒸发坩锅104的外壳中。因此,在蒸发坩锅104中可提供有机材料的高效加热。
根据本文所述一些实施方式,热屏蔽件(例如,屏蔽件717和屏蔽件727)可提供于蒸发源。热屏蔽件可降低从蒸发源的能量损失。因此,可使能耗下降。然而,另一方面,特别是对有机材料沉积来说,蒸发源产生的热辐射可降低,尤其是在沉积期间朝掩模和基板的热辐射。具体对于被掩蔽的基板上的有机材料沉积来说,并且甚至更具体地对于显示器的制造来说,基板和掩模的温度需要准确控制。因此,可降低或可避免蒸发源产生的热辐射。因此,本文所述一些实施方式包括热屏蔽件(例如,屏蔽件717和屏蔽件727)。
这些屏蔽件可包括若干屏蔽层以降低至蒸发源的外部的热辐射。作为另外选择,热屏蔽件可包括通过流体(例如,空气、氮气、水或其他合适冷却流体)主动冷却的屏蔽层。根据可与本文所述其他实施方式相结合的又一实施方式,提供于蒸发源的一或多个热屏蔽件可包括环绕蒸发源的相应部分(例如,分配管道106和/或蒸发坩锅104)的薄层金属。例如,薄层金属的厚度可以是0.1毫米(mm)至3mm,薄层金属可选自由铁系金属(SS)以及非铁系金属(铜(Cu)、钛(Ti)、铝(Al))组成的组中的至少一种材料,和/或薄层金属之间彼此可间隔开(例如,以0.1mm或大于0.1mm的缝隙间隔开来)。
根据一些实施方式(例如,示例性地示出于图2A至2B),蒸发坩锅104是提供于分配管道106下侧。根据可与本文所述其他实施方式相结合的又一实施方式,蒸气导管732可提供于分配管道106,蒸气导管732位于分配管道的中心部分或位于分配管道的下端与上端之间的另一位置。图2C示出具有分配管道106以及提供于分配管道的中心部分的蒸气导管732的蒸发源的实例。有机材料蒸气产生于蒸气坩锅104中,并通过蒸气导管732引导至分配管道106的中心部分。蒸气通过多个开口或出口712离开分配管道106。分配管道106是由支撑件102支撑,如关于本文所述其他实施方式所描述。根据可与本文所述其他实施方式相结合的又一实施方式,可沿分配管道106的长度的不同位置提供两个或更多个蒸气导管732。因此,蒸气导管732可连接至蒸发坩锅104或一些蒸发坩锅104。例如,每个蒸气导管732可以具有对应蒸发坩锅104。或者,蒸发坩锅104可与连接至分配管道106的两个或更多个蒸气导管732流体连通。
如本文所述,分配管道可为中空圆柱。因此,术语“圆柱”如一般可接受地理解为具有圆形底部形状、圆形顶部形状、以及将上部圆形与小的下部圆形连接的弯曲表面区域或壳。因此,本文所述实施方式通过热屏蔽件和冷却屏蔽布置提供对于掩模的降低的热传递。例如,从蒸发源至掩模的热传递可通过具有穿过热屏蔽件和冷却屏蔽布置的喷嘴来减低。根据可与本文所述其他实施方式相结合的又一另外或替代的实施方式,术语“圆柱”可进一步在数学意义上被理解为例如具有任意底部形状和相同上部形状、以及将上部形状与下部形状连接的弯曲表面区域或壳。因此,“圆柱”并不一定需要具有圆形的横截面。更具体地,横截面的形状可如参考图3A至图4以及图6A至图8B更详细地描述。
图3A示出分配管道106的横截面。分配管道106具有环绕内部中空空间710的壁322、326和324。壁322是提供于出口712所提供的蒸发坩锅的出口侧。根据可与本文所述其他实施方式相结合的一些实施方式,出口712可由喷嘴312提供。分配管道的横截面可描述为基本上三角形,亦即对应于三角形一部分的分配管道的主要部分,和/或分配管道横截面可为圆角(rounded corner)和/或截角(cut-off corner)的三角形。如图3A所示,例如位于出口侧的三角形的拐角是截角。
分配管道的出口侧的宽度(例如,图3A所示横截面图中的壁322的尺寸)以箭头352表示。另外,其他分配管道106的横截面的尺寸以箭头354和355所表示。根据本文所述实施方式,分配管道的出口侧的宽度是横截面的最大尺寸的30%或更小,例如,较大尺寸的箭头354和355所示尺寸的30%。有鉴于此,相邻分配管道106的出口712可以较小距离提供。所述较小距离改进相继蒸发的有机材料的混合。当参考图3C、图6A、图6B和图7时,将更好地理解这种情况。另外,另外或替代地,并独立于有机材料的混合的改进,分别面对沉积区域或基板的壁的宽度可以基本上平行的方式减少。相对应地,分别面对沉积区域或基板的壁的表面区域可以基本上平行的方式减少,例如,壁322可以减少。这降低了提供至支撑在沉积区域或略微在沉积区域前的掩模或基板的热负载。
根据可与本文所述其他实施方式相结合的一些实施方式,分配管道长度与分配管道中所有出口的面积的乘积除以分配管道的水力直径(hydraulic diameter)(亦即,通过公式N×A×L/D所计算出的数值)可以是7000毫米平方(mm2)或小于7000mm2(例如,1000mm2至5000mm2)。因此,N是分配管道中的出口的数量,A是一个出口的横截面积,L是分配管道的长度,且D是分配管道的水力直径。
图3B示出根据本文所述一些实施方式的分配管道106的更多细节。一或多个加热装置380提供于环绕内部中空空间710的壁。加热装置可以是安装于分配管道的壁的电加热器。例如,加热装置可以通过夹住或以其它方式来固定于分配管道106的加热线(例如,涂布的加热线)提供。
两个或多个热屏蔽件372可提供于一或多个加热装置380的周围。例如,热屏蔽件372可彼此隔开。可提供为其中一个热屏蔽件上的点的突起373将热屏蔽件彼此分开。因此,提供热屏蔽件372的堆叠。例如,可提供两个或更多个热屏蔽件(例如,五个或更多个热屏蔽件,或甚至是十个热屏蔽件)。根据一些实施方式,此堆叠是设计为在制成期间补偿源的热膨胀,因此喷嘴决不受到阻塞。根据可与本文所述其他实施方式相结合的又一实施方式,最外部屏蔽件可以是水冷的。
如示例性示出于图3B,图3B示出的横截面中示出的出口712具有喷嘴312。喷嘴312延伸穿过热屏蔽件372。由于喷嘴引导有机材料通过这个热屏蔽件堆叠,这会减少有机材料于热屏蔽件的凝结。喷嘴可加热至类似于分配管道106内的温度的温度。为了改进喷嘴312的加热,可提供接触于分配管道的加热壁的喷嘴支撑件部分412,如图4的实例所示。
图3C示出提供有两个互相靠近的分配管道的实施方式。因此,如图3C所示的具有分配管道配置的蒸发源可蒸发两种彼此互相靠近的有机材料。此种蒸发源因而能够表示为一种蒸发源阵列。如图3C所示,分配管道106的横截面形状能够将相邻分配管道的出口或喷嘴设置为互相靠近。根据可与本文所述其他实施方式相结合的一些实施方式,第一分配管道的第一出口或喷嘴以及第二分配管道的第二出口或喷嘴可具有25mm或小于25mm的距离(例如,由5mm至25mm)。更确切地,第一出口或喷嘴至第二出口或喷嘴的距离可以是10mm或小于10mm。
根据可与本文所述其他实施方式相结合的又一实施方式,可提供喷嘴312的管延伸部。有鉴于分配管道之间的小距离,这个管延伸部可小到足以避免其中的阻塞或凝结。可设计管延伸部,得两个或甚至三个源的喷嘴能够以在另一者之上的方式提供于一条直线中(亦即在一条直线中沿着可垂直延伸的分配管道延伸)。通过此种特殊设计,甚至是能够将两个或三个源的喷嘴配置在小的管延伸部上的一条直线中,从而能够达成充分混合。
图3C进一步示出根据本文所述实施方式的降低的热负载。图3C示出沉积区域312。通常,基板可提供于沉积区域中,用于基板上的有机材料的沉积。侧壁326与沉积区域312之间的角度395是示出于图3C中。如图所示,侧壁326以相对大的角度倾斜,即使热屏蔽件和冷却元件并未直接受到朝向沉积区域的热辐射,仍可散热。根据可与本文所述其他实施方式相结合的一些实施方式,角度395可以是15度或大于15度。因此,由箭头392所示的尺寸或区域相较于箭头394所示的尺寸或区域显著地较小。因此,箭头392所示的尺寸是对应分配管道106的横截面的尺寸,其中面对沉积区域的表面基本上平行或具有30度或小于30度或甚至15度或小于15度的角度。此对应区域(亦即提供直接的热负载于基板的区域)为图3C所示的大小乘以分配管道的长度。由箭头394所示的尺寸是整个蒸发源在相应的横截面中于沉积区域312上的投影。此对应区域(亦即沉积区域的表面上的投影的区域)为分配管道的长度乘以图3C所示的大小(箭头394)。根据可与本文所述的其他实施方式相结合的实施方式,与由箭头394所示的区域相比,由箭头392所示的区域可以是30%或小于30%。有鉴于上述描述,分配管道106的形状降低了向沉积区域进行热辐射的直接的热负载。因此,可改进基板以及提供于基板之前的掩模的温度稳定度。
图4示出根据本文所述实施方式的蒸发源的又一可选修改。图4示出分配管道106的横截面图。分配管道106的壁环绕内部中空空间710。蒸气可穿过喷嘴312离开中空空间。为了改进喷嘴312的加热,提供与分配管道106的加热壁接触的喷嘴支撑件412。环绕分配管道106的外屏蔽件402是用于进一步减少热负载的冷却的屏蔽件。再者,冷却的屏蔽件404是提供以另外降低分别导向沉积区域或基板的热负载。
根据可与本文所述其他实施方式相结合的一些实施方式,冷却的屏蔽件可提供为具有冷却流体(例如,水)的导管的金属板,此导管连接于此金属板或提供于金属板之中。另外或替代地,可提供热电冷却手段或其他手段,以冷却这些冷却的屏蔽件。通常,外屏蔽件(亦即环绕分配管道的内部中空空间的最外部屏蔽件)可以冷却。
图4示出可根据一些实施方式所提供的另一方面。图4示出成形的屏蔽件(shapershield)405。成形的屏蔽件通常从蒸发源的一部分朝基板或沉积区域延伸。因此,通过出口离开分配管道或管的蒸气的方向可受控制,亦即蒸气排放的角度可降低。根据一些实施方式,通过出口或喷嘴蒸发的有机材料的至少一部分被成形的屏蔽件所阻挡。因此,可控制排放角度的广度。根据一些实施方式,成形的屏蔽件405可类似于冷却的屏蔽件402和402受到冷却,以进一步降低朝向沉积区域的热辐射。
图5A示出蒸发源一部分。根据可与本文所述其他示例相结合的一些实施方式,蒸发源或蒸发源阵列是竖直的线性源。因此,三个出口712是竖直出口阵列的部分。图5A示出可通过固定元件573(例如,3螺丝钉或类似物)连接于分配管道的热屏蔽件572堆叠。再者,外屏蔽件404是其中具有开口的冷却的屏蔽件。根据可与本文所述其他实施方式相结合的一些实施方式,外屏蔽件设计可配置为能够允许蒸发源的元件的热膨胀,其中开口保持与分配管道的喷嘴对准,或者当达到操作温度时达成与分配管道的喷嘴的对准。图5B示出冷却外屏蔽件404的侧视图。冷却外屏蔽件可基本上沿分配管道的长度延伸。替代地,两个或三个冷却外屏蔽件可彼此靠近,以沿分配管道的长度延伸。冷却外屏蔽件通过固定元件502(例如螺丝钉)连接于蒸发源,其中此固定元件基本上位于沿长度延伸的分配管道的中心(±10%或±20%)。当分配管道热膨胀时,外屏蔽件的热扩展(thermal extension)的部分的长度减少。靠近于固定元件532的外屏蔽件404中的开口531可以是圆形的,并与固定元件具有较大距离的开口531可以是椭圆形的。根据一些实施方式,平行于蒸发管的长轴的方向的开口531的长度可增加,使得与固定元件的距离更大。通常,垂直于蒸发管的长轴的方向的开口531的宽度可以恒定。鉴于上述,当热膨胀时,外屏蔽件404可尤其沿蒸发管的长轴延伸。此平行于蒸发管的长轴的增加的大小可补偿或至少部分补偿热膨胀。因此,能够在较广温度范围中操作蒸发源,而不会使位于屏蔽404中的开口阻塞喷嘴。
图5C示出可同样提供于本文所述其他实施方式的本文所述实施方式的又一可选特征。图5C示出从壁322(参考图3A)的一侧来看的侧视图,其中屏蔽件572是提供于壁322。另外,侧壁326是示出于图5C中。如图5C所示,屏蔽件572或屏蔽件堆叠中的屏蔽件是沿蒸发管的长度分段。因此,屏蔽部分长度可以是200mm或小于200mm,例如,120mm或小于120mm,例如,60mm至100mm。因此,屏蔽部分(例如,屏蔽件堆叠)的长度减少,以降低其热膨胀。因此,屏蔽件中的开口(喷嘴可延伸通过开口且开口对应于出口712)的对准问题较不重要。
根据可与本文所述其他实施方式相结合的又一实施方式,两个或更多个热屏蔽件372可提供于内部中空空间710以及分配管道106的加热部分的周围。因此,由分配管道106的加热部分朝向基板、掩模或沉积装置的另一部分的热辐射可减少。根据图5所示实施方式,更多层的热屏蔽件572可提供于具有开口或出口的那侧。提供热屏蔽件堆叠。根据可与本文所述其他实施方式相结合的典型实施方式,热屏蔽件372和/或572彼此分开(例如,分开0.1mm至3mm)。根据可与本文所述其他实施方式相结合的一些实施方式,热屏蔽件堆叠如关于图5A至图5C所述那样设计,以在工艺期间补偿源的热膨胀,使得喷嘴决不阻塞。另外,最外部屏蔽件可以冷却(例如,水冷却)。因此,根据一些实施方式,外屏蔽件404(特别是在具有开口那侧)可为冷却的屏蔽件(例如,其中具有圆锥形的开口)。因此,即使喷嘴温度是约400℃,这种配置允许具有1℃的偏差ΔT的温度稳定度。
图6进一步示出蒸发源100。提供蒸发坩锅104以蒸发有机材料。加热装置(未示出于图6)提供以加热蒸发坩锅104。分配管道106与蒸发坩锅流体流通,使得蒸发坩锅所蒸发的有机材料可分散至分配管道106中。所蒸发的有机材料通过开口(未示出于图6)离开分配管道106。蒸发坩锅106具有侧壁326、相对于出口侧的壁324以及顶壁325。壁是通过安装于或连接于壁的加热装置380加热。根据可与本文所述其他实施方式相结合的一些实施方式,蒸发源和/或一或多个壁可分别由石英(quartz)或钛(titanium)形成。具体来说,蒸发源和/或一或多个壁可由钛所形成。蒸发坩锅104和分配管道106这两部分可彼此独立地加热。
进一步降低朝向沉积区域的热辐射的屏蔽件404是通过冷却元件680所冷却。例如其中具有冷却流体的导管是安装于屏蔽404。如图6所示,此外,成形的屏蔽件405可提供于冷却的屏蔽件404。根据可与本文所述其他实施方式相结合的一些实施方式,成形的屏蔽件亦可冷却(例如,水冷却)。例如,成形的屏蔽件可附接至冷却的屏蔽件或冷却屏蔽布置。例如,有机材料的沉积薄膜的厚度的均匀性可通过喷嘴阵列以及另外成形的屏蔽件(可放置于一或多个出口或喷嘴的旁边)调整。这种源的紧密设计允许使用在沉积装置的真空腔室中的驱动机制来移动源。在这种情况中,所有的控制器、电源以及另外的支撑件的功能在附接至源的空气盒中实行。
图7A和图7B进一步示出包括分配管道106的横截面的俯视图。图7A示出具有提供于蒸发器控制壳702上的三个分配管道706的实施方式。蒸发器控制壳配置用于维护其中大气压力并容纳选自由开关、阀、控制器、冷却单元、冷却控制单元、加热控制单元、电源和测量装置组成的组中的至少一个元件。因此,用于蒸发源阵列的蒸发源的操作的组件可在大气压力下靠近蒸发坩锅和分配管道提供,并且可与蒸发源一起移动穿过沉积装置。
图7A所示分配管道106是通过加热装置380加热。冷却的屏蔽件402是环绕分配管道106。根据可与本文所述其他实施方式相结合的一些实施方式,冷却的屏蔽件可环绕两个或多个分配管道106。蒸发于蒸发坩锅中的有机材料是分散于相应的分配管道106中,并可通过出口712离开分配管道。通常,多个出口沿分配管道106的长度分布。图7B示出类似于图7A的其中具有两个分配管道的实施方式。出口是通过喷嘴312提供。每个分配管道是与蒸发坩锅(未示出于图7A和图7B中)流体连通,并且其中分配管道具有垂直于分配管道的长度的横截面。此横截面并非圆形,并且包括提供有一或多个出口的出口侧,其中横截面的出口侧的宽度是横截面的最大宽度的30%或更小。
图8A示出本文所述的又一实施方式。提供三个分配管道106。蒸发器控制壳702邻近于分配管道且通过热绝缘体879连接于分配管道。如同上述,被配置用于维持其中大气压力的蒸发器控制器外壳是配置为容纳由开关、阀、控制器、冷却单元、冷却控制单元、加热控制单元、电源和测量装置组成的组中的至少一个元件。除了冷却的屏蔽件402,提供具有侧壁804的冷却的屏蔽件404。冷却的屏蔽件404和侧壁804提供U形的冷却热屏蔽件,以降低朝向沉积区域(亦即基板和/或掩模)的热辐射。箭头811、812和813分别示出离开分配管道106的蒸发的有机材料。由于基本上为三角形的分配管道,三个分配管道所形成的蒸发圆锥彼此靠近,这可改进来自不同分配管道的有机材料的混和。
如进一步示出于图8A中,提供成形的屏蔽件405(例如,连接于冷却的屏蔽件404或者是作为冷却的屏蔽件404的一部分)。根据一些实施方式,成形的屏蔽件405亦可被冷却以进一步降低朝沉积区域排放的热负载。成形的屏蔽件界定朝基板分布的有机材料的分布圆锥,亦即,成形的屏蔽件是配置用于阻挡至少一部份的有机材料。
图8B示出根据本文所述实施方式的又一蒸发源。示出三个分配管道,其中分配管道是通过加热装置(未示出于图8A中)所加热。蒸发坩锅(未示出)所产生的蒸气分别通过喷嘴312和512离开分配管道。为了使喷嘴的出口712更为靠近,外部喷嘴512包括管状延伸部分,管状延伸部分包括朝中心分配管道的喷嘴管延伸的短管。因此,根据一些实施方式,管状延伸部分512可弯曲(例如,60°至120°的弯曲,例如,90°的弯曲)。多个屏蔽572提供于蒸发源的出口侧壁。例如,至少五个或至少七个屏蔽件572提供于蒸发管的出口侧。屏蔽件402是提供于一或多个分配管道,其中提供冷却元件822。多个屏蔽件372提供于分配管道与屏蔽件402之间。例如,至少两个或甚至是至少五个屏蔽件372提供于分配管道与屏蔽件402之间。多个屏蔽件572以及多个屏蔽件372提供为屏蔽件堆叠,例如其中的屏蔽件彼此具有0.1mm至3mm的距离。
根据可与本文所述其他实施方式相结合的又一实施方式,又一屏蔽件812可提供于分配管道之间。例如,又一屏蔽件812可以是冷却的屏蔽件或冷却架。因此,分配管道温度可彼此独立地控制。例如,在通过邻近分配管道蒸发不同材料(例如,主体材料和掺杂剂)的情况下,这些材料区需在不同温度下蒸发。因此,又一屏蔽件812(例如冷却的屏蔽件)可降低蒸发源或蒸发源阵列中的分配管道之间的串扰。
本文所述实施方式大部分是涉及用于在基板基本上竖直地定向时沉积有机材料于基板上的蒸发源和蒸发装置。此基本上竖直地定向的基板使沉积装置(具体地是包括用于涂布若干有机材料层于基板上的若干沉积装置)具有小的占用面积。因此,可考虑到,本文所述装置配置用于大面积的基板处理或在大面积的载体中的多个基板的处理。这种竖直定向更使目前和未来的基板尺寸(亦即现在和未来的玻璃尺寸)产生具有良好可缩放性。另外,具备改进横截面形状的蒸发源、热屏蔽件与冷却元件的概念亦可提供于水平基板上的材料沉积。
图9A和图9B示出沉积装置500的又一实施方式。图9A示出沉积装置500的示意性俯视图。图9B示出沉积装置500的示意性横截面侧视图。沉积装置500包括真空腔室110。阀205(例如,闸阀)允许对邻近真空腔室的真空密封。阀可打开以传送基板121或掩模132进出真空腔室110。两个或更多个蒸发源100可提供于真空腔室110中。图9A所示实例示出七个蒸发源。根据可与本文所述其他实施方式相结合的典型实施方式,就蒸发源而言,可有益地提供三个蒸发源或四个蒸发源。当与亦可根据一些实施方式所提供的较多数量的蒸发源相比时,维持有限数量(例如,二至四个)的蒸发源的勤务工作可能较为容易。因此,此类系统的拥有成本(cost of ownership)可能较佳。
根据可与本文所述其他实施方式相结合的一些实施方式,例如图9A所示,可提供环形轨道530。环形轨道530可包括笔直部分534和弯曲部分533。环形轨道530提供蒸发源的平移运动以及蒸发源的旋转。如同上述,蒸发源可通常为线性源(例如,线性蒸气分配喷头)。
根据可与本文所述其他实施方式相结合的一些实施方式,环形轨道包括轨道或轨道布置、滚筒布置或磁性导件,以沿环形轨道移动一或多个蒸发源。
基于环形轨道530,一连串源可在平移运动情况下沿基板121移动(通常被掩模132所遮蔽)。环形轨道530的弯曲部分533提供蒸发源100的旋转。再者,弯曲部分533可提供以放置蒸发源于第二基板121之前。轨道530的笔直部分534提供沿着基板121的进一步的平移运动。因此,如同上述,根据可与本文所述其他实施方式相结合的一些实施方式,在沉积期间,基板121和掩模132基本维持固定。提供线性源的蒸发源(例如,具有直线的基本竖直地取向的线性源)沿着固定基板移动。
根据可与本文所述其他实施方式相结合的一些实施方式,真空腔室110中所示基板121可通过具有滚筒403和424的基板支撑件所支撑,并进一步通过连接于对准单元112的基板支撑件126支撑在固定沉积位置。对准单元112可调整基板121相对于掩模132的位置。因此,基板可相对于掩模132移动,以在沉积有机材料期间,提供基板与掩模之间的适当对准。根据可与本文所述其他实施方式相结合的又一实施方式,替代或另外地,掩模132和/或保持掩模132的掩模框架131可连接于对准单元112。因此,掩模可相对于基板121或掩模132定位,并且基板121可相对于彼此定位。
图9A和图9B所示实施方式示出提供于真空腔室110中的两个基板121。另外,特别对于包括一连串蒸发源100的实施方式,至少三个基板或至少四个基板可提供于真空腔室中。因此,即使对于具有大量的蒸发源的沉积装置500,仍可提供足够时间给基板的交换(亦即,传送新的基板进入真空腔室内并传送处理过的基板移出真空腔室),因而产量较高。
图9A和图9B示出第一基板121的第一运输轨道以及第二基板121的第二运输轨道。第一滚筒组件示出于真空腔室110的一侧上。第一滚筒组件包括滚筒424。另外,运输系统包括磁性导件524。类似地,具有滚筒和磁性导件的第二运输系统是提供于真空腔室的相对侧。载体421的上部部分是通过磁性导件524所引导。类似地,根据一些实施方式,掩模框架131可通过滚筒403和磁性导件503所支撑。
图9B示例性示出提供于环形轨道530的单独笔直部分534上的两个支撑件102。蒸发坩锅104和分配管道106是通过单独的支撑件102所支撑。因此,图5B所示出的两个分配管道106是通过支撑件102所支撑。支撑件102是在环形轨道的笔直部分534上受到导引。根据可与本文所述其他实施方式相结合的一些实施方式,可提供致动器、驱动装置、马达、驱动皮带(drive belt)和/或传动链(drive chain)以沿着环形轨道(亦即沿着环形轨道的笔直部分534以及沿着环形轨道的弯曲部分533(参考图9A))移动支撑件102。
根据本文所述沉积装置的实施方式,线性源(例如,线性蒸气分配喷头)的平移运动以及线性源(例如,线性蒸气分配喷头)的旋转的组合实现高蒸发源效率以及对有机发光二极管显示器制造的材料的高利用率,其中需要基板的遮蔽的高准确性。由于基板和掩模能够维持固定,源的平移运动能够造成高遮蔽准确性。旋转移动使得基板能够在另一基板涂布有机材料时进行基板交换。当空闲时间(亦即蒸发源蒸发有机材料而没有涂布基板的时间)显著减少时,能够显著改进对材料的利用。
本文所述实施方式尤其涉及有机材料沉积(例如,用于OLED显示器制造以及用于大面积的基板)。根据一些实施方式,大面积的基板或支撑一或多个基板的载体(亦即大面积的载体)可以具有至少0.174平方米(m2)的尺寸。通常,载体尺寸可为约1.4m2至8m2,并通常为约2m2至约9m2,或甚至是高达12m2。通常,基板所支撑的矩形面积(根据本文所述实施方式的保持布置、装置和方法所提供的)用于本文所述大面积的基板的尺寸的载体。例如,对应于单个大面积的基板的面积的大面积的载体可为对应于约1.4m2的基板(1.1米(m)×1.3m)的第5代,对应于约4.29m2的基板(1.95m×2.2m)的第7.5代,对应于约5.7m2的基板(2.2m×2.5m)的第8.5代,或甚至是对应于约8.7m2的基板(2.85m×3.05m)的第10代。甚至可类似地实现更高代(例如,第11代以及第12代)以及对应基板面积。根据可与本文所述其他实施方式相结合的典型实施方式,基板厚度可为0.1至1.8mm,并可针对这种基板厚度调整保持布置(并具体是保持元件)。然而,具体来说,基板厚度可为约0.9mm或小于0.9mm(例如,0.5mm或0.3mm),并且此基板的厚度可以采用保持布置(并具体是保持元件)。通常,基板可由适于材料的沉积的任何材料制成。例如,基板可由选自由玻璃(例如,钠钙玻璃、硼硅酸盐玻璃等等)、金属、聚合物、陶瓷、化合物材料、碳纤维材料或任何其他材料或可通过沉积工艺来涂布的材料的组合组成的组中的材料制成。
为了实现良好的可靠度以及良率,本文所述实施方式在有机材料的沉积期间维持掩模和基板为固定状态。提供用于均匀涂布大面积的基板的可移动线性源。相较其中分别于沉积后需要交换基板(包括掩模与基板相对于彼此的新的对准步骤)的操作,空闲时间减少。在空闲时间中,源正浪费材料。因此,使第二基板在沉积位置并立即相对于掩模对准减少空闲时间并且增加材料利用。
本文所述实施方式还包括了提供降低朝沉积区域(亦即基板和/或掩模)的热辐射的蒸发源(或蒸发源阵列),使得掩模维持处于基本上恒定的温度(在5℃或更低的温度范围内,或甚至在1℃或更低的温度范围内)。再者,分配管道的形状或出口侧的宽度小的分配管道降低掩模上的热负载,且由于邻近分配管道的出口可提供于邻近之处(例如,25mm或小于25mm的距离),这进一步改进不同有机材料的混合。
根据可与本文所述其他实施方式相结合的典型实施方式,蒸发源包括至少一个蒸发坩锅和至少一个分配管道(例如,至少一个线性蒸气分配喷头)。然而,蒸发源可包括两个或三个、最终甚至是四个或五个蒸发坩锅以及对应分配管道。因此,可在一些坩锅中的至少两个坩锅之中蒸发不同有机材料,使得不同有机材料形成一有机层于基板上。另外或替代地,可在一些坩锅中的至少两个坩锅中蒸发类似的有机材料,可使沉积速率上升。特别是当有机材料能时常仅在相对小的温度范围内(例如,20℃或甚至低于20℃)进行沉积时,可使沉积速率上升,蒸发速率可由此因坩锅中的温度的上升而不大幅上升。
根据本文所述实施方式,在层的沉积期间,蒸发源、沉积装置、蒸发源和/或沉积装置的操作方法、以及蒸发源和/或沉积装置的制造方法配置用于竖直沉积,亦即基板是支撑在基本上竖直的方向(例如,垂直±10°)。另外,线性源、蒸发源的平移运动和旋转(特别是围绕基本上竖直的轴线的旋转)(例如,平行于基板方向和/或线性源的直线延伸的方向旋转)的组合,造成约80%或高于80%的高材料利用率。此相较于其他系统具有至少30%的提高。
在处理腔室(亦即其中用于层的沉积的真空腔室)中可移动且可旋转的蒸发源造成高材料利用率的连续或几乎连续的涂布。一般而言,本文所述的实施方式通过使用180°旋转机制的扫描源方式涂布两个交替的基板,造成高度蒸发源效率(>85%)以及高度材料利用率(至少50%或大于50%)。因此,源的效率考量到由于蒸气束延伸超过大面积基板的尺寸(为了使得欲被涂布的基板的整个面积能够均匀涂布)所造成的材料的损失。材料的利用另外考量到蒸发源的空闲时间(亦即是蒸发源不能将蒸发的材料沉积于基板上的时间)之中所产生的损失。
另外,本文所述并涉及竖直基板方向的实施方式允许沉积装置具有小的占用面积,并且更具体地是包括用于涂布若干有机材料层于基板上的若干沉积装置。因此,可考虑到,本文所述装置是用于大面积的基板的处理或在大面积的载体中的多个基板的处理。竖直定向进一步造成目前和未来所产生的基板尺寸(亦即现在和未来的玻璃尺寸)的良好可缩放性。
图10示出用于制造元件的系统100(特别是包括有机材料于其中的元件)。例如,元件可以是电子元件或半导体元件(例如,光电元件且特别是显示器)。本文所述的蒸发源可有益地使用于关于图10所述的系统之中。可通过系统1000提供大产量的系统的改进的载体的操作和/或掩模的操作。根据可与本文所述其他实施方式相结合的典型实施方式,这些改进可有益地使用于有机发光二极管元件的制作且因而能更包括使用于如图1至图9B所述的蒸发源、沉积装置以及其组件。本文所述的实施方式特别是有关于材料的沉积,例如,用于制造显示器以及在大面积的基板上沉积材料。根据一些实施方式,大面积基板或支撑一或多个基板的载体(亦即是大面积载体)可具有至少0.174m2的尺寸。通常,载体的尺寸可以是约1.4m2至约8m2,更通常约2m2至约9m2,或甚至高达12m2。通常,基板所支撑的矩形面积(根据本文所述实施方式的保持布置、装置以及方法所提供)是用于本文所述的大面积基板的尺寸的载体。例如,对应于单个大面积的基板的面积的大面积载体可以是对应于约1.4m2的基板(1.1m×1.3m)的第5代,对应于约4.29m2的基板(1.95m×2.2m)的第7.5代,对应于约5.7m2的基板(2.2m×2.5m)的第8.5代,或甚至是对应于约8.7m2的基板(2.85m×3.05m)的第10代。甚至可类似实现更高代(例如,第11代以及第12代)以及对应的基板面积。根据可与本文所述其他实施方式相结合的典型实施方式,基板的厚度可以是0.1至1.8mm,且可针对这样的基板厚度调整保持布置(并具体是保持元件)。然而,特别是基板的厚度可以约0.9mm或小于0.9mm(例如,0.5mm或0.3mm),且此基板的厚度可采用保持布置(并具体是保持元件)。通常,基板可由适用于材料沉积的任何的材料所制成。例如,基板可由选自由玻璃(例如,钠钙玻璃、硼硅酸盐玻璃等等)、金属、聚合物、陶瓷、化合物材料、碳纤维材料或任何其他材料或可通过沉积工艺涂布的材料的组合组成的组中的材料制成。
根据一些实施方式的涂布器或沉积系统概念(例如,用于大量生产的有机发光二极管)提供竖直群集方式,因此例如可提供至所有腔室的“随机”通路(access)。因此,通过提供添加所需数量的模块的灵活性,此种概念对于彩色滤光片上红绿蓝(RGB)以及白色的沉积皆是有效的。此灵活性亦可使用于产生冗余性(redundancy)。一般而言,对于有机发光二极管显示器的制造,可提供两种概念。另一方面,制造具有发红光、绿光和蓝光的RGB(红色绿色蓝色)显示器被。另一方面,彩色滤光片上白光的显示器是被制造,其中白光是被发射出且通过彩色滤光片产生颜色。即使制造彩色滤光片上白光的显示器需要较少数量的腔室,两种概念是可实行且具有其优点以及缺点。
根据可与本文所述其他实施方式相结合的实施方式,OLED器件的制作通常包括对基板的掩蔽以用于沉积。此外,大面积基板在其处理期间通常通过载体支撑。掩蔽操作和载体操作可能是相当关键的,尤其对于OLED器件相对于温度的稳定度,掩模、载体等的清洁性。因此,本文所述实施方式在真空环境或限定气体气氛(例如,保护气体)下提供载体返回路径以及载体与掩模的改进清洗选择。
根据可与本文所述其他实施方式相结合的又一实施方式,掩模清洗可以通过原位清洗(例如,通过可选等离子体清洗),或通过提供掩模交换接口以进行外部掩模清洗,而不需制造系统的排气处理腔室或传送腔室。
图10所示的制造系统1000包括负载锁定腔室1120,负载锁定腔室1120连接于水平基板操作腔室1100。基板可由玻璃操作腔室1102传送至真空摇摆模块1160,其中基板是装载于载体上的水平位置。将基板载入于载体上的水平位置之后,真空摇摆模块1160在竖直或基本上竖直的方向上旋转具有基板提供在其上的载体。具有基板提供在其上的载体接着传送通过第一传送腔室610以及具有竖直方向的至少另一传送腔室(611-615)。一或多个沉积装置200可连接于传送腔室。另外,其他基板处理腔室或其他真空腔室可连接于一或多个传送腔室。在处理基板后,具有基板在其上的载体是由传送腔室615以竖直方向传送至另一真空摇摆模块1161之中。另一真空摇摆模块1161是从竖直方向朝水平方向旋转具有基板在其上的载体。此后,基板可卸载至另一水平玻璃操作腔室1101之中。经处理的基板(例如在所制造的元件在其中一个薄膜封装腔室1140或1141中封装后)可通过负载锁定腔室1121从处理系统1000卸载。
在图10中,提供第一传送腔室610、第二传送腔室611、第三传送腔室612、第四传送腔室613、第五传送腔室614以及第六传送腔室615。根据本文所述实施方式,在制造系统中可以包括至少两个传送腔室,通常在制造系统之中可以包括至少2至8个传送腔室。若干沉积装置(例如,图11中的9个沉积装置200)各自具有真空腔室110,并且各自示例性地被连接于其中一个传送腔室。根据一些实施方式,沉积装置中的真空腔室中的一或多个通过闸阀205来连接于传送腔室。
对准单元112可提供在真空腔室110处。根据可与本文所述其他实施方式相结合的又一实施方式,真空维护腔室210可连接于真空腔室110(例如,通过闸阀207)。真空维护腔室210能够在制造系统1000中维护沉积源。
根据一些实施方式,如图10所示,一或多个传送腔室610-615是沿直线提供,以便提供直列运输系统部分。根据可与本文所述其他实施方式相结合的一些实施方式,提供双轨运输布置,其中传送腔室包括第一轨道1111和第二轨道1112以沿第一轨道和第二轨道中的至少一者传送载体(亦即是支撑基板的载体)。传送腔室中的第一轨道1111和第二轨道1112在制造系统1000中提供双轨运输布置。
根据可与本文所述其他实施方式相结合的又一实施方式,一或多个传送腔室610-615被提供为真空旋转模块。第一轨道1111和第二轨道1112可以旋转至少90°,例如,90°、180°或360°。轨道上的载体是在将传送至沉积装置200的真空腔室中的至少一者或下述其他真空腔室中的至少一者中的位置旋转。传送腔室配置用于旋转竖直地定向的载体和/或基板,其中例如,传送腔室中的轨道围绕竖直的旋转轴旋转。这由图10中的箭头表示。
根据可与本文所述其他实施方式相结合的一些实施方式,传送腔室是在10毫巴(mbar)压力下旋转基板的真空旋转模块。根据可与本文所述其他实施方式相结合的又一实施方式,又一轨道是提供于两个或更多个传送腔室(610-615)之中,其中提供载体返回轨道。根据典型实施方式,可在第一轨道1111与第二轨道1112之间提供载体返回轨道1125。载体返回轨道1125能够使空的载体在真空条件下由另一真空摇摆模块1161来返回至真空摇摆模块1160。将载体在真空条件下并可选地在受控惰性气氛(例如,氩气(Ar)、氮气(N2)或其组合)下返回以使得载体减少暴露于环境空气下。这就可减少或避免接触湿气。因此,在制造系统1000中制造器件期间减少载体脱气。这可提高所制造的器件质量和/或载体可处于操作中而不清洁延长时间。
图10还进一步示出第一预处理腔室1130和第二预处理腔室1131。机器人(未示出)以及另一操作系统可提供于基板操作腔室1100之中。机器人或另一操作系统可由负载锁定腔室1120将基板装载至基板操作腔室1100中,并将基板传送至一或多个预处理腔室(1130、1131)中。例如,基板的预处理腔室可包括选自由以下项组成的组中的预处理工具:基板的等离子体预处理、基板清洗、基板的UV和/或臭氧处理、基板的离子源处理、基板的RF或微波等离子体处理、以及它们组合。在基板的预处理后,机器人或另一操作系统通过基板操作腔室将基板由预处理腔室运出至真空摇摆模块1160之中。为了在大气条件下允许用于装载基板的负载锁定腔室1120能够排气和/或在基板操作腔室1100中操作基板,闸阀205被提供于基板操作腔室1100与真空摇摆模块1160之间。因此,基板操作腔室1100、以及视需求而定的一或多个负载锁定腔室1120、第一预处理腔室1130以及第二预处理腔室1131可在闸阀205打开之前排空,并且基板被传送至真空摇摆模块1160之中。因此,在基板装载到真空摇摆模块1160中前,对基板的装载、处置和处理可在大气条件下执行。
根据可与本文所述其他实施方式相结合的实施方式,在基板装载到真空摇摆模块1160中前,对基板的装载、处置和处理是在基板水平定向或基本上水平地定向时执行。如图10所示并根据本文所述又一实施方式的制造系统1000组合沿水平方向的基板搬运、沿竖直方向的基板旋转、沿竖直方向的材料在基板上沉积、在材料沉积后沿水平方向的基板旋转以及沿水平方向的基板卸载。
示出于图10的制造系统1000以及本文所述其他制造系统包括至少一个薄膜封装腔室。图11示出第一薄膜封装腔室1140和第二薄膜封装腔室1141。一或多个薄膜封装腔室包括封装装置,其中已沉积层和/或已处理层(特别是OLED材料)是封装于(亦即夹于)已处理的基板与又一基板之间,以保护已沉积的材料和/或已处理的材料免于暴露于环境空气和/或大气条件之中。通常,薄膜封装可通过将材料夹于两个基板(例如,玻璃基板)之间所提供。然而,其他封装方法(例如,使用玻璃、聚合物或金属板的层合,或盖玻璃的激光熔化)可替代地通过提供于其中一个薄膜封装腔室中的封装腔室进行。具体来说,OLED材料层可能经受暴露于环境空气和/或氧气以及湿气下。因此,制造系统1000(如图10所示)可在通过负载锁定腔室1121卸载已处理的基板之前封装薄膜。
示出于图10的制造系统1000以及本文所述其他制造系统可进一步包括层检查腔室1150。层检查工具(例如,电子和/或离子层检查工具)可提供于层检查腔室1150中。层的检查可以在制造系统1000中的一或多个沉积步骤或处理步骤之后进行。因此,其中具有基板的载体可由沉积或处理腔室移动至通过闸阀205连接于层检查腔室1150的传送腔室611。欲被检查的基板可被传送至层检查腔室中并在制造系统之中进行检查(亦即没有由制造系统移除基板)。线上的层检查可在一或多个沉积步骤或处理步骤之后提供。沉积步骤或处理步骤可在制造系统1000中执行。
根据可与本文所述的其他实施方式相结合的又一实施方式,制造系统可包括载体缓冲器1421。例如,载体缓冲器可连接于第一传送腔室610,第一传送腔室610连接于真空摇摆模块1160和/或最后一个传送腔室(亦即第六传送腔室615)。例如,载体缓冲器可连接于与其中一个真空摇摆模块连接的其中一个传送腔室。由于基板装载到真空摇摆模块中和从真空摇摆模块中卸载,若载体缓冲器1421是提供于真空摇摆模块附近则是有益的。载体缓冲器配置用于提供一或多个载体(例如,5至30个)的存储。在制造系统的操作期间,可在另一载体需要被置换的情况中(例如,用于维护(例如清洗))使用缓冲器内的载体。
根据可与本文所述其他实施方式相结合的又一实施方式,制造系统可进一步包括掩模隔板1132(亦即掩模缓冲器)。掩模隔板1132配置用于提供需要为特定沉积步骤存储的替代掩模和/或掩模的存储。根据制造系统1000的操作方法,掩模可通过具有第一轨道1111和第二轨道1112的双轨运输布置由掩模隔板1132传送至沉积装置200。因此,在不使沉积装置排气、不使传送腔室排气和/或不使掩模暴露于大气压力下的情况下,沉积装置中的掩模可以是为了维护(例如,清洗)、为了沉积图案改变而交换。
图10进一步示出掩模清洗腔室1133。掩模清洗腔室1133通过闸阀1205来连接于掩模隔板1132。因此,可在掩模隔板1132与用于清洗掩模的掩模清洗腔室1133之间提供真空紧密密封。根据不同实施方式,掩模可以在制造系统1000中通过清洗工具(例如,等离子体清洗工具)进行清洗。等离子体清洗工具可提供于掩模清洗腔室1133中。另外或替代地,另一闸阀1206可提供于掩模清洗腔室1133,如图10所示。因此,当只有一个掩模清洗腔室1133需要排气时,掩模可由制造系统1000卸载。通过从制造系统卸载掩模,可在制造系统持续完全地操作时提供一外部掩模清洗。图10示出邻近于掩模隔板1132的掩模清洗腔室1133。亦可邻近于载体缓冲器1421提供对应的或类似的清洗腔室(未示出)。通过提供邻近于载体缓冲器1421的清洗腔室,载体可在制造系统1000中受到清洗,或者可通过连接于清洗腔室的闸阀由制造系统卸载。
器件(例如,OLED显示器)可以在如图10所示制造系统1000中如下制造。这仅仅是示例性的制造方法,并且许多其他器件可以通过其他制造方法制造。基板可通过负载锁定腔室1120装载到基板操作腔室1100之中。在基板被装载到真空摇摆模块1160前,可以在预处理腔室1130和/或1131中提供基板的预处理。基板是装载到真空摇摆模块1160中的载体之上,并且从水平方向旋转至竖直方向。此后,基板通过传送腔室610至615传送。传送腔室615中提供的真空旋转模块旋转,使得具有该基板的载体可传送至图11中的传送腔室615的下侧提供的沉积装置。为使根据本段落的显示器制造的描述易于理解,在下文中省略其中一个传送腔室的其中一个真空旋转模块来进行的进一步的旋转步骤和通过一或多个传送腔室来进行的传送步骤。在沉积装置中,进行电极沉积,以便在基板上沉积器件阳极。载体从电极沉积室移出,并且移入其中一个沉积装置200,这些沉积装置被连接于传送腔室610,两个沉积装置配置用于沉积第一空穴注入层。为了在不同基板上沉积空穴注入层,连接于传送腔室610的这两沉积装置可例如替代地使用。接着,载体被传送至连接于传送腔室612(图10)的下部腔室,因此可通过图10的传送腔室612之下提供的沉积装置200沉积第一空穴传输层。此后,载体被传送至提供于图10的传送腔室613的下侧的沉积装置200,使得发蓝光层可沉积于第一空穴传输层之上。接着,载体被传送至连接于传送腔室614的下端的沉积装置,以便沉积第一电子传输层。在后续步骤中,在发红光层可提供在传送腔室612的上侧的沉积装置中并且发绿光层可沉积在图10中的传送腔室614的上侧提供的沉积腔室中前,可将另外的空穴注入层沉积在例如图10的传送腔室611的下侧提供的沉积装置中。另外,电子传输层可提供于发光层之间和/或发光层之上。在制造结束时,可将阴极沉积在图10的传送腔室615之下的沉积装置中。根据又一实施方式,另外一或多个激子阻挡层(或空穴阻挡层)或一或多个电子注入层可沉积在阳极与阴极之间。在阴极沉积后,载体被传送至另一真空摇摆模块1161,其中具有该基板的载体从竖直方向朝水平方向旋转。此后,基板在另外基板操作腔室1101中从载体上卸载,并传送至用于封装沉积的层堆叠的薄膜封装腔室1140/1141的一者。此后,制造元件可通过负载锁定腔室1121来卸载。
有鉴于上述,本文所述实施方式可提供多个改进,特别是下文所提及的至少一或多个改进。通过竖直群集方式,对所有腔室的“随机”通路可提供于此种系统中(亦即是具有群集沉积系统部分的系统)。通过提供添加模块(亦即沉积装置)的数量的灵活性,此系统概念皆可实现于RGB以及彩色滤光片上白光的沉积。此概念亦可被用于形成冗余性。通过减少或不需要在例行维护或掩模交换的期间使基板操作或沉积腔室排气,可提供高系统工作时间(uptime)。可通过可选的等离子体清洗的原位清洗或通过提供掩模交换接口的外部清洗提供掩模的清洗。在一个真空腔室中使用扫描源的方式,以180°转动机制交替或同时地涂布两个或更多个基板(系列源的配置),可提供高沉积源效率(>85%)以及高度的材料使用率(>50%)。由于整体载体返回轨道,载体是停留于真空中或在受控气体环境之下。沉积源的维持和预处理可提供于分开的维持真空腔室或源存储腔室中。使用制造系统的所有者的现有玻璃操作设备,通过使用真空摇摆模块,可更易于进行水平玻璃操作(例如,水平气体玻璃操作)。可提供真空封装系统的接口。在添加用于基板检查(在线层分析)的模块、掩模以及载体存储方面具有高度的灵活性。系统具有小的占用面积。另外,可对于电流以及未来的玻璃尺寸提供良好的可缩放性。
虽然上述内容针对的是本发明的实施方式,但是在不脱离本发明的基本范围的情况下,也可构想本发明的其他和另外实施方式,并且本发明的范围由所附权利要求书确定。

Claims (15)

1.一种用于有机材料的蒸发源,所述蒸发源包括:
蒸发坩锅,其中所述蒸发坩锅被配置成蒸发所述有机材料;
分配管道,所述分配管道具有沿所述分配管道的长度而提供的一或多个出口,其中所述分配管道与所述蒸发坩锅流体连通,并且其中所述分配管道具有垂直于所述分配管道的长度的横截面,所述横截面是非圆形的,并且包括出口侧,一或多个出口提供在所述出口侧处,其中所述横截面的所述出口侧的宽度是所述横截面的最大尺寸的30%或更小。
2.如权利要求1所述的蒸发源,其中垂直于所述分配管道的长度的所述横截面具有对应于三角形一部分的主要部分,具体来说垂直于所述分配管道的长度的所述横截面是具有圆角和/或截角的三角形。
3.如权利要求1至2中任一项所述的蒸发源,其进一步包括:
第一加热装置,所述第一加热装置用于加热所述蒸发坩锅;以及
第二加热装置,所述第二加热装置被配置成独立于所述第一加热装置来加热,并且配置用于加热所述分配管道。
4.如权利要求3所述的蒸发源,其中所述第一加热装置是位于所述蒸发坩锅之外、并尤其与所述蒸发坩锅的坩锅壁接触的电加热器;和/或其中所述第二加热装置是位于所述分配管道之外、并尤其与所述分配管道的管道壁接触的电加热器。
5.如权利要求1至4中任一项所述的蒸发源,其进一步包括:
两个或更多个热屏蔽件,所述两个或更多个热屏蔽件环绕所述分配管道,并且彼此间隔开来。
6.如权利要求5所述的蒸发源,其中所述两个或更多个热屏蔽件通过突起或点彼此间隔开来,所述突起或点提供在所述两个或更多个热屏蔽件中的至少一者处或上。
7.如权利要求1-6中任一项所述的蒸发源,其中所述一或多个出口是沿蒸发方向延伸的喷嘴。
8.如权利要求7所述的蒸发源,其中所述蒸发方向是基本水平的。
9.如权利要求5至6中任一项所述的蒸发源,其中所述一或多个出口是穿过所述两个或更多个热屏蔽件沿蒸发方向延伸的喷嘴。
10.如权利要求7至9中任一项所述的蒸发源,其中所述出口侧的宽度是垂直于所述蒸发方向。
11.如权利要求1至10中任一项所述的蒸发源,其进一步包括:
蒸发器控制壳,所述蒸发器控制壳被配置成维持其中大气压力,其中所述外壳是由支撑件支撑,并且被配置成容纳至少一个元件,所述至少一个元件选自由以下项组成的组:开关、阀、控制器、冷却单元、冷却控制单元、加热控制单元、电源、以及测量装置。
12.如权利要求1至11中任一项所述的蒸发源,其中所述分配管道包含钛或石英,尤其是钛。
13.如权利要求1至12中的任一项所述的蒸发源,其中所述分配管道是包括所述一或多个出口的蒸气分配喷头,具体来说所述蒸气分配喷头是提供所述有机材料的线性源的线性蒸气分配喷头。
14.一种用于有机材料的蒸发源阵列,所述蒸发源阵列包括:
如第1至13中任一项所述的蒸发源的第一蒸发源;以及
如第1至13中任一项所述的蒸发源的至少第二蒸发源,
其中所述第一蒸发源的所述一或多个出口和所述第二蒸发源的所述一或多个出口具有25mm或更小的距离。
15.如权利要求14所述的蒸发源阵列,其中所述分配管道可在蒸发期间绕旋转轴旋转;并进一步包括:
一或多个支撑件,所述一或多个支撑件用于所述分配管道,其中所述支撑件可连接至第一驱动装置或者包括所述第一驱动装置,其中所述第一驱动装置被配置成用于使所述一或多个支撑件和所述分配管道进行平移运动。
CN201480077377.5A 2014-03-21 2014-03-21 用于有机材料的蒸发源 Active CN106133183B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/055741 WO2015139776A1 (en) 2014-03-21 2014-03-21 Evaporation source for organic material

Publications (2)

Publication Number Publication Date
CN106133183A true CN106133183A (zh) 2016-11-16
CN106133183B CN106133183B (zh) 2020-03-03

Family

ID=50382442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480077377.5A Active CN106133183B (zh) 2014-03-21 2014-03-21 用于有机材料的蒸发源

Country Status (7)

Country Link
US (1) US20170092899A1 (zh)
EP (1) EP3119919A1 (zh)
JP (1) JP6466469B2 (zh)
KR (1) KR101983213B1 (zh)
CN (1) CN106133183B (zh)
TW (1) TWI653350B (zh)
WO (1) WO2015139776A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637091A (zh) * 2017-02-24 2017-05-10 旭科新能源股份有限公司 用于薄膜太阳能电池制造的高温蒸发炉
CN107299322A (zh) * 2017-08-07 2017-10-27 旭科新能源股份有限公司 一种立式低温蒸发束源炉
CN109715846A (zh) * 2016-12-14 2019-05-03 应用材料公司 沉积系统
CN111902563A (zh) * 2018-03-28 2020-11-06 应用材料公司 真空处理设备以及用于处理基板的方法
CN111945116A (zh) * 2020-08-14 2020-11-17 云谷(固安)科技有限公司 一种蒸镀设备和蒸镀方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6937549B2 (ja) * 2016-06-10 2021-09-22 株式会社ジャパンディスプレイ 発光素子の製造装置
CN108456855B (zh) * 2017-02-17 2024-09-03 京东方科技集团股份有限公司 坩埚、蒸镀准备装置、蒸镀设备及蒸镀方法
JP2019518862A (ja) * 2017-04-28 2019-07-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 複数の材料を基板上に堆積するための真空システムおよび方法
CN106987809A (zh) * 2017-05-17 2017-07-28 大连交通大学 一种有机真空蒸发源
US11795541B2 (en) * 2017-11-16 2023-10-24 Applied Materials, Inc. Method of cooling a deposition source, chamber for cooling a deposition source and deposition system
JP2020521039A (ja) * 2018-05-04 2020-07-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 蒸発した材料を堆積させるための蒸発源、真空堆積システム、及び蒸発した材料を堆積させるための方法
CN109817842B (zh) * 2019-01-16 2021-10-01 京东方科技集团股份有限公司 一种真空干燥装置、显示用基板的制备方法
TWI719388B (zh) * 2019-01-16 2021-02-21 臺灣永光化學工業股份有限公司 負型感光性樹脂組成物及其用途
JP7409799B2 (ja) * 2019-07-29 2024-01-09 キヤノントッキ株式会社 ノズルユニット,坩堝,蒸発源及び蒸着装置
US11732345B2 (en) * 2020-06-04 2023-08-22 Applied Materials, Inc. Vapor deposition apparatus and method for coating a substrate in a vacuum chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904958A (en) * 1998-03-20 1999-05-18 Rexam Industries Corp. Adjustable nozzle for evaporation or organic monomers
US20060288939A1 (en) * 2003-08-04 2006-12-28 Kyung-Soo Yi Evaporation source for evaporating an organic electroluminescent layer
US20090308316A1 (en) * 2008-06-16 2009-12-17 Jae-Wan Park Transfer apparatus and organic deposition device with the same
EP2204467A1 (en) * 2008-12-23 2010-07-07 Applied Materials, Inc. Method and apparatus for depositing mixed layers
DE102010041376A1 (de) * 2009-09-25 2011-04-07 Von Ardenne Anlagentechnik Gmbh Verdampfereinrichtung für eine Beschichtungsanlage und Verfahren zur Koverdampfung von mindestens zwei Substanzen
US20120064728A1 (en) * 2010-09-15 2012-03-15 Jeong-Ho Yi Substrate depositing system and depositing method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288307B1 (ko) * 2011-05-31 2013-07-22 주성엔지니어링(주) 증발 증착 장치 및 증발 증착 방법
KR20130068926A (ko) * 2011-12-16 2013-06-26 주식회사 원익아이피에스 증발원 및 이를 구비한 진공 증착 장치
JP2013211137A (ja) * 2012-03-30 2013-10-10 Samsung Display Co Ltd 真空蒸着方法及びその装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904958A (en) * 1998-03-20 1999-05-18 Rexam Industries Corp. Adjustable nozzle for evaporation or organic monomers
US20060288939A1 (en) * 2003-08-04 2006-12-28 Kyung-Soo Yi Evaporation source for evaporating an organic electroluminescent layer
US20090308316A1 (en) * 2008-06-16 2009-12-17 Jae-Wan Park Transfer apparatus and organic deposition device with the same
EP2204467A1 (en) * 2008-12-23 2010-07-07 Applied Materials, Inc. Method and apparatus for depositing mixed layers
DE102010041376A1 (de) * 2009-09-25 2011-04-07 Von Ardenne Anlagentechnik Gmbh Verdampfereinrichtung für eine Beschichtungsanlage und Verfahren zur Koverdampfung von mindestens zwei Substanzen
US20120064728A1 (en) * 2010-09-15 2012-03-15 Jeong-Ho Yi Substrate depositing system and depositing method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715846A (zh) * 2016-12-14 2019-05-03 应用材料公司 沉积系统
TWI676694B (zh) * 2016-12-14 2019-11-11 美商應用材料股份有限公司 用以沈積一或多層之處理系統及用於其之方法
CN106637091A (zh) * 2017-02-24 2017-05-10 旭科新能源股份有限公司 用于薄膜太阳能电池制造的高温蒸发炉
CN106637091B (zh) * 2017-02-24 2019-08-30 旭科新能源股份有限公司 用于薄膜太阳能电池制造的高温蒸发炉
CN107299322A (zh) * 2017-08-07 2017-10-27 旭科新能源股份有限公司 一种立式低温蒸发束源炉
CN111902563A (zh) * 2018-03-28 2020-11-06 应用材料公司 真空处理设备以及用于处理基板的方法
CN111945116A (zh) * 2020-08-14 2020-11-17 云谷(固安)科技有限公司 一种蒸镀设备和蒸镀方法

Also Published As

Publication number Publication date
TWI653350B (zh) 2019-03-11
KR20160135353A (ko) 2016-11-25
TW201602373A (zh) 2016-01-16
WO2015139776A1 (en) 2015-09-24
US20170092899A1 (en) 2017-03-30
KR101983213B1 (ko) 2019-05-28
JP2017509796A (ja) 2017-04-06
EP3119919A1 (en) 2017-01-25
CN106133183B (zh) 2020-03-03
JP6466469B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
CN106133184A (zh) 用于有机材料的蒸发源
CN106133183A (zh) 用于有机材料的蒸发源
JP6741594B2 (ja) キャリアによって支持された基板上に一又は複数の層を堆積させるためのシステム、及び当該システムを使用する方法
KR101927925B1 (ko) 유기 재료를 위한 증발 소스, 유기 재료를 위한 증발 소스를 갖는 진공 챔버에서 유기 재료를 증착하기 위한 증착 장치, 및 유기 재료를 증발시키기 위한 방법
EP3245313B1 (en) Evaporation source.
US20210269912A1 (en) Evaporation source for organic material, deposition apparatus for depositing organic materials in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
JP6833610B2 (ja) 有機材料用の蒸発源、有機材料用の蒸発源を有する装置、有機材料用の蒸発源を含む蒸発堆積装置を有するシステム、及び有機材料用の蒸発源を操作するための方法
TW201946312A (zh) 真空處理系統及操作一真空處理系統之方法
JP6533601B2 (ja) 蒸発源
JP2019214791A (ja) 有機材料用の蒸発源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant