CN106124581A - 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法 - Google Patents

同一体系构建两种比率电化学传感器检测抗肿瘤药物方法 Download PDF

Info

Publication number
CN106124581A
CN106124581A CN201610408213.7A CN201610408213A CN106124581A CN 106124581 A CN106124581 A CN 106124581A CN 201610408213 A CN201610408213 A CN 201610408213A CN 106124581 A CN106124581 A CN 106124581A
Authority
CN
China
Prior art keywords
electrode
antitumor drug
kinds
solution
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610408213.7A
Other languages
English (en)
Other versions
CN106124581B (zh
Inventor
桂日军
赵春芹
金辉
王宗花
徐显朕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201610408213.7A priority Critical patent/CN106124581B/zh
Publication of CN106124581A publication Critical patent/CN106124581A/zh
Application granted granted Critical
Publication of CN106124581B publication Critical patent/CN106124581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/27Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种同一体系构建两种比率电化学传感器检测抗肿瘤药物方法,该方法具体包括以下步骤:1)将抗肿瘤药物以及两种电化学活性物质加入磷酸盐缓冲液中形成混合液;2)以裸玻碳电极为工作电极,放置在含有混合液的电解质溶液中稳定一段时间后进行方波伏安法检测;3)将不同浓度的抗肿瘤药物的峰电流分别与另外两种电流峰位置不同的电化学活性物质的峰电流作比值得I1、I2,以I1、I2分别对抗肿瘤药物浓度构建线性方程,进而可发展为两种比率电化学传感器。本发明方法操作简单,条件温和,抗干扰,稳定性和灵敏度高,可用于血清中蒽环霉素类抗肿瘤药物的高效检测,在生物分析和临床诊断领域展现出重要的应用前景。

Description

同一体系构建两种比率电化学传感器检测抗肿瘤药物方法
技术领域
本发明涉及电化学、生物学和医学等相关技术领域,具体涉及同一体系构建两种比率电化学传感器检测抗肿瘤药物方法。
背景技术
临床上经常用的蒽环霉素类抗肿瘤抗生素,如盐酸阿霉素(DoxorubicinHydrochloride,DOX),盐酸柔红霉素(Daunorubicin hydrochloride,DNR),道诺霉素(Daunomycin,DNM)和表盐酸阿霉素(Epirubicin,EPI),主要通过抑制癌细胞遗传物质核酸的合成,对各种生长周期的肿瘤细胞都具备杀灭作用。此类药物在临床上广泛用于治疗多种恶性肿瘤,既可用于治疗急慢性白血病和恶性淋巴瘤,也可用于治疗乳腺肿瘤、甲状腺肿瘤等实体瘤。然而,此类药物在治疗过程中往往产生抑制骨髓造血功能和延缓性心脏毒性等副作用,临床上需要监测其在体内的药物浓度,调整化疗方案,以达到理想的治疗效果。因此,测定体液中的抗肿瘤药物,尤其是血浆样品中抗肿瘤药物的浓度对于用药安全尤为重要。
有关蒽环霉素类抗肿瘤药物的检测方法已有相关研究报道,主要包括光谱法、色谱法、毛细管电泳法等,但这些传统的检测方法普遍存在操作复杂、选择性差和灵敏度低等缺陷。相比而言,电化学分析方法因其操作简单、检测快速、选择性和灵敏度高等优点,具备了广泛的应用潜力。传统的采用单一电信号构建的电化学分析方法因背景电流干扰,降低了对目标物测定的准确性。当前,发展一种简便、灵敏和高效的抗癌药物检测方法具有十分重要的现实意义。
发明内容
本发明的目的就是为了解决上述问题,提供一种同一体系构建两种比率电化学传感器检测抗肿瘤药物方法,该方法操作简单,条件温和,抗干扰,稳定性和灵敏度高。
为了实现上述目的,本发明采用如下技术方案:
一种同一体系构建两种比率电化学传感器,以裸玻碳电极为载体材料,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,电解液体系中直接添加两种电流峰位置与待测物质不同的电化学活性物质的溶液标样,从而构建出同一体系中待测物质与每一种电化学活性物质的两种比率电化学传感器。
同一体系构建两种比率电化学传感器检测抗肿瘤药物方法,步骤如下:
(1)电极预处理:将玻碳电极进行打磨、清洗处理;
具体步骤为:将玻碳电极打磨抛光成镜面,依次经无水乙醇、二次蒸馏水超声清洗,干燥后得到处理干净的玻碳电极。
(2)待测溶液的配制:在电解池中加入磷酸盐缓冲溶液,然后分别加入配制好的抗肿瘤药物,以及另外两种电流峰位置与抗肿瘤药物不同的电化学活性物质的溶液标样,将三者混合均匀后电解液溶液备用;
(3)溶液中抗肿瘤药物浓度检测:将处理好的玻碳电极作为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在配制好的电解质溶液中稳定一段时间后进行方波伏安法检测;
(4)数据的处理:将得到的不同浓度抗肿瘤药物的峰电流分别与另外两种电流峰位置不同的电化学活性物质的峰电流做比值得I1、I2,以I1、I2分别对抗肿瘤药物浓度作线性回归方程,绘制工作曲线。
(5)实际样品中抗肿瘤药物浓度检测:采用同步骤(1)-(3)对加有抗肿瘤药物的血清样品中的抗肿瘤药物进行检测,将得到的抗肿瘤药物峰电流分别与另外两电化学活性物质的峰电流作比值,代入线性回归方程即得样品中抗肿瘤药物浓度。
优选:所述步骤(1)中电极采用在麂皮上依次用0.3μm,0.05μm的氧化铝粉末打磨;所述超声清洗时间为20~60s;所述干燥为采用氮气流吹干。
优选:所述步骤(2)中磷酸盐缓冲液浓度为1~10mM,pH为5.5~7.4;抗肿瘤药物为盐酸阿霉素,盐酸柔红霉素,道诺霉素或表盐酸阿霉素;其它电化学活性物质为亚甲基蓝、硫堇、耐尔蓝或二茂铁,对应的溶剂前三种为蒸馏水,二茂铁为无水乙醇;抗肿瘤药物与其它电化学活性物质溶液标样浓度分别为100~400μM和400~8000μM。
优选:所述步骤(3)中三电极系统在电解质溶液中稳定时间为30~180s;方波伏安法检测时初始电位设置为-1.1~0.9V,终止电位为0.4~0.6V。
优选:所述步骤(5)中实际样品为用10mM PBS稀释10倍的健康人体血清,唾液,尿液;加入抗肿瘤药物的实际样品中药物的实际浓度为0.01~6μM。
上述传感器或方法在研究药物安全中的应用。
本发明方法原理:将裸玻碳电极放置在含有不同浓度的电化学活性蒽环霉素类抗肿瘤药物,以及含有与该类药物电流峰位置不同的一定浓度的其它两种电化学活性物质的检测液中,对抗肿瘤药物进行比率电化学信号检测。以两个具有电化学活性物质的氧还原信号作为内部参比进行内置校正,从而提高药物检测的精确性。
目前制备电化学传感器的常规方法是直接在电极上修饰电信号体系,这样存在操作复杂,电化学信号差的问题,特别是若要制备双重比率的电化学传感器,采用常规的方法,需要在电极上修饰多重电化学信号体系,这样信号很不稳定,检测结果不准确,灵敏度差,检测限高,本发明发明人通过多年的研究,建立了一种新型比率电化学传感器及其构建的方法,即在电解液中直接添加电信号物质,有效避免了在电极上复杂制备的过程,并且提高了检测结果的灵敏性,准确性等。采用本发明方法构建单比率或双重比率电化学传感器都十分方便,只要参比电信号物质的电流峰与待测物的电流峰差异大,且待测物的浓度变化不会显著影响参比电信号物质的电流峰即可,将电信号物质直接添加到电解液中。
双重比率比单比率电化学传感器更具优势,可以自由选择参比电信号,且两种比率方法的同时存在为更准确地测定待测物的含量,提供了双重选择和技术保障。
本发明利用某些电活性信号分子作为参比电信号,如:亚甲基蓝(Methyleneblue,MB),硫堇(Thionin,Th),耐尔蓝(Nile blue,NB)或二茂铁(Ferrocene,Fc)等,与抗肿瘤药物分子具有不同的电流出峰位置,可构建出不同的比率电化学传感器用于抗肿瘤药物的检测。以裸玻碳电极为载体材料,电解液体系中添加MB或Fc作为参比电信号,逐渐增大添加蒽环霉素类抗肿瘤药物如DOX的浓度,进而构建出同一体系内基于DOX与MB,DOX与Fc的两种比率电化学传感器用于DOX检测的方法。
与现有技术相比,本发明方法操作简单,条件温和,抗干扰能力强,稳定性高;以亚甲基蓝,二茂铁,硫堇,耐尔蓝等电活性信号分子中两种具有不同电流峰位置的氧还原信号同时作为内部参比进行内置校正,能够显著提高电化学检测的精确性,实现对多种具有电化学活性的抗肿瘤药物的高灵敏检测,线性检测范围为0.01~6μM,检测限可达3nM。本发明涉及的比率电化学传感器可用于血清中蒽环霉素类抗肿瘤药物的高效检测,在生物分析和临床诊断领域展现出重要的应用前景。
附图说明
图1为基于同一电解液体系和裸玻碳电极(GCE)检测抗肿瘤药物(DOX)的两种比率电化学传感器的制备过程示意图;
图2为不同浓度DOX以及一定浓度二茂铁(Fc)和亚甲基蓝(MB)这三种电活性物质在电解液中测定的方波伏安曲线;
图3中a)以MB为参比信号比率电信号检测DOX的线性关系图;b)以Fc为参比信号比率电信号检测DOX的线性关系图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
实施例1
基于同一电解液体系和裸玻碳电极(GCE)检测抗肿瘤药物(DOX)的两种比率电化学传感器的制备过程如图1所示。具体的制备过程如下:首先,将玻碳电极在麂皮上依次用0.3,0.05μm的氧化铝粉末打磨成镜面,再依次用无水乙醇、二次蒸馏水超声清洗40s,氮气流吹干。其次,在电解池中加入pH为6.5的磷酸盐缓冲溶液,分别加入配制好的不同体积浓度为200μM的盐酸阿霉素水溶液,0.8mM的亚甲基蓝水溶液,3mM的二茂铁乙醇溶液标样,使溶液体积最终为10mL,将三者混合均匀后待用;然后,将处理好的裸玻碳电极作为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在上述配制的电解质溶液中稳定60s后,从-0.9V扫描至0.4V,记录相应的方波伏安曲线的峰电流值(如图2所示)。最后,将得到的不同浓度的盐酸阿霉素的峰电流与分别与亚甲基蓝,二茂铁的峰电流做比值得:I1=IDOX/IMB,I2=IDOX/IFc;以I1,I2分别对盐酸阿霉素浓度作线性回归方程(如图3所示),进而发展成两种比率电化学传感器用于10倍稀释的真实血清样品中盐酸阿霉素浓度的定量检测。
实施例2
首先,将玻碳电极在麂皮上依次用0.3,0.05μm的氧化铝粉末打磨成镜面,再依次用无水乙醇、二次蒸馏水超声清洗60s,氮气流吹干。其次,在电解池中加入pH为5.5的磷酸盐缓冲溶液,分别加入配制好的不同体积浓度为300μM的道诺霉素(DNM),1mM的硫堇(Th),4mM的二茂铁溶液标样,使溶液体积最终为10mL,将三者混合均匀后待用;然后,将处理好的裸玻碳电极作为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在上述配制的电解质溶液中稳定90s后,从-1.0V扫描至0.5V,记录相应的方波伏安曲线的峰电流值。最后,将得到的不同浓度的道诺霉素的峰电流与分别与亚甲基蓝,二茂铁的峰电流做比值得:I1=IDNM/ITh,I2=IDNM/IFc;以I1,I2分别对道诺霉素浓度作线性回归方程,进而发展成两种比率电化学传感器用于10倍稀释的真实血清样品中道诺霉素浓度的定量检测。
实施例3
首先,将玻碳电极在麂皮上依次用0.3,0.05μm的氧化铝粉末打磨成镜面,再依次用无水乙醇、二次蒸馏水超声清洗60s,氮气流吹干。其次,在电解池中加入pH为5.5的磷酸盐缓冲溶液,分别加入配制好的不同体积浓度为200μM的盐酸柔红霉素(DNR),1mM的耐尔蓝(NB),3mM的二茂铁溶液标样,使溶液体积最终为10mL,将三者混合均匀后待用;然后,将处理好的裸玻碳电极作为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在上述配制的电解质溶液中稳定120s后,从-0.9V扫描至0.5V,记录相应方波伏安曲线的峰电流值。最后,将得到的不同浓度的盐酸柔红霉素的峰电流与分别与耐尔蓝,二茂铁的峰电流做比值得:I1=IDNR/INB,I2=IDNR/IFc;以I1,I2分别对道诺霉素浓度作线性回归方程,进而发展成两种比率电化学传感器用于10倍稀释的真实唾液样品中道诺霉素浓度的定量检测。
实施例4
首先,将玻碳电极在麂皮上依次用0.3,0.05μm的氧化铝粉末打磨成镜面,再依次用无水乙醇、二次蒸馏水超声清洗60s,氮气流吹干。其次,将血清样品用pH为6.5的磷酸盐缓冲溶液稀释10倍,分别加入配制好的不同体积浓度为200μM的盐酸阿霉素,0.8mM的亚甲基蓝,3mM的二茂铁溶液标样,使溶液体积最终为10mL,将三者混合均匀后待用;然后,将处理好的裸玻碳电极作为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在上述配制的电解质溶液中稳定60s后,从-0.9V扫描至0.4V,记录相应方波伏安曲线的峰电流值。最后,将得到的不同浓度的盐酸阿霉素的峰电流与分别与耐尔蓝,二茂铁的峰电流做比值得:I1=IDOX/INB,I2=IDOX/IFc;以I1,I2分别对盐酸阿霉素浓度作线性回归方程,进而发展成两种比率电化学传感器用于10倍稀释的真实尿液样品中盐酸阿霉素浓度的定量检测。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种同一体系构建两种比率电化学传感器,其特征是:以裸玻碳电极为载体材料,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,电解液体系中具有两种电流峰位置与待测物质不同的电化学活性物质的溶液标样,从而构建出同一体系中待测物质与每一种电化学活性物质的两种比率电化学传感器。
2.同一体系构建两种比率电化学传感器检测抗肿瘤药物方法,其特征是:步骤如下:
(1)电极预处理:将玻碳电极进行打磨、清洗、干燥处理;
(2)待测溶液的配制:在电解池中加入磷酸盐缓冲溶液,然后分别加入配制好的抗肿瘤药物,以及另外两种电流峰位置与抗肿瘤药物不同的电化学活性物质的溶液标样,将三者混合均匀后得电解液溶液备用;
(3)溶液中抗肿瘤药物浓度检测:将处理好的玻碳电极作为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极构成三电极系统,在配制好的电解质溶液中稳定一段时间后进行方波伏安法检测;
(4)数据的处理:将得到的不同浓度抗肿瘤药物的峰电流分别与另外两种电流峰位置不同的电化学活性物质的峰电流做比值得I1、I2,以I1、I2分别对抗肿瘤药物浓度作线性回归方程,绘制工作曲线。
(5)实际样品中抗肿瘤药物浓度检测:采用同样方法对加有抗肿瘤药物的实际样品中的药物进行检测,将得到的抗肿瘤药物峰电流分别与另外两电化学活性物质的峰电流作比值,代入线性回归方程即得样品中抗肿瘤药物浓度。
3.如权利要求2所述的方法,其特征是:所述步骤(1)中将玻碳电极采用在麂皮上依次用0.3μm,0.05μm的氧化铝粉末打磨;所述清洗为依次经无水乙醇、二次蒸馏水超声清洗,所述超声清洗时间为20~60s;所述干燥为采用氮气流吹干。
4.如权利要求2所述的方法,其特征是:所述步骤(2)中磷酸盐缓冲液浓度为1~10mM,pH为5.5~7.4。
5.如权利要求2所述的方法,其特征是:所述步骤(2)中抗肿瘤药物为盐酸阿霉素,盐酸柔红霉素,道诺霉素或表盐酸阿霉素。
6.如权利要求2所述的方法,其特征是:所述步骤(2)中电化学活性物质为亚甲基蓝、硫堇、耐尔蓝或二茂铁,对应的溶剂前三种为蒸馏水,二茂铁为无水乙醇所述抗肿瘤药物与电化学活性物质溶液标样浓度分别为100~400μM和400~8000μM。
7.如权利要求2所述的方法,其特征是:所述步骤(3)中三电极系统在电解质溶液中稳定时间为30~180s。
8.如权利要求2所述的方法,其特征是:所述步骤(3)中方波伏安法检测时初始电位设置为-1.1~0.9V,终止电位为0.4~0.6V。
9.如权利要求1所述的方法,其特征是:所述步骤(5)中实际样品为用10mM PBS稀释10倍的健康人体血清,唾液,尿液;加入抗肿瘤药物的实际样品中药物的实际浓度为0.01~6μM。
10.权利要求1或2所述的传感器、权利要求3-9任一所述的方法在药物安全研究中的应用。
CN201610408213.7A 2016-06-12 2016-06-12 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法 Active CN106124581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610408213.7A CN106124581B (zh) 2016-06-12 2016-06-12 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610408213.7A CN106124581B (zh) 2016-06-12 2016-06-12 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法

Publications (2)

Publication Number Publication Date
CN106124581A true CN106124581A (zh) 2016-11-16
CN106124581B CN106124581B (zh) 2018-04-27

Family

ID=57270369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610408213.7A Active CN106124581B (zh) 2016-06-12 2016-06-12 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法

Country Status (1)

Country Link
CN (1) CN106124581B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389772A (zh) * 2017-06-21 2017-11-24 安徽师范大学 比率型电化学传感器及其制备方法和应用
CN107860805A (zh) * 2017-11-03 2018-03-30 青岛大学 一种比率电化学多巴胺适体传感器的制备方法
CN108181365A (zh) * 2017-12-22 2018-06-19 北京农业智能装备技术研究中心 活体检测水杨酸的微型比率型传感器及其构建方法与应用
CN108760866A (zh) * 2018-04-25 2018-11-06 安徽师范大学 双信号印迹电化学传感器及其制备方法和应用
CN109100407A (zh) * 2018-08-24 2018-12-28 江苏大学 一种基于比率原理阳光驱动便携式光电化学传感器的制备
CN109580745A (zh) * 2018-11-23 2019-04-05 华中师范大学 一种基于适配体的非标记电化学生物传感器及同时检测多种细胞因子的实时检测方法
CN109856101A (zh) * 2019-03-27 2019-06-07 青岛大学 一种可同时用作比率荧光和比率电化学传感的纳米杂化物的制备方法
CN110455896A (zh) * 2019-08-27 2019-11-15 青岛大学 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
CN111253422A (zh) * 2020-02-07 2020-06-09 商丘师范学院 一种检测血液中双氧水微电极及其制备方法
CN111683595A (zh) * 2017-11-01 2020-09-18 血糖监测技术公司 传感器的调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928542A (zh) * 2006-09-18 2007-03-14 厦门大学 纳米金电极的制备方法及其体外检测表阿霉素浓度的电化学方法
CN103472121A (zh) * 2013-09-09 2013-12-25 济南大学 一种同时检测宫颈癌标志物的夹心型电化学免疫传感器
CN104965073A (zh) * 2015-05-25 2015-10-07 东华大学 检测布洛芬的电化学核酸适配体生物传感器及其制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928542A (zh) * 2006-09-18 2007-03-14 厦门大学 纳米金电极的制备方法及其体外检测表阿霉素浓度的电化学方法
CN103472121A (zh) * 2013-09-09 2013-12-25 济南大学 一种同时检测宫颈癌标志物的夹心型电化学免疫传感器
CN104965073A (zh) * 2015-05-25 2015-10-07 东华大学 检测布洛芬的电化学核酸适配体生物传感器及其制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAN DU等: "Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres", 《ANALYTICAL CHEMISTRY》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389772B (zh) * 2017-06-21 2019-09-27 安徽师范大学 比率型电化学传感器及其制备方法和应用
CN107389772A (zh) * 2017-06-21 2017-11-24 安徽师范大学 比率型电化学传感器及其制备方法和应用
CN111683595A (zh) * 2017-11-01 2020-09-18 血糖监测技术公司 传感器的调节方法
CN107860805A (zh) * 2017-11-03 2018-03-30 青岛大学 一种比率电化学多巴胺适体传感器的制备方法
CN107860805B (zh) * 2017-11-03 2019-08-30 青岛大学 一种比率电化学多巴胺适体传感器的制备方法
CN108181365A (zh) * 2017-12-22 2018-06-19 北京农业智能装备技术研究中心 活体检测水杨酸的微型比率型传感器及其构建方法与应用
CN108760866A (zh) * 2018-04-25 2018-11-06 安徽师范大学 双信号印迹电化学传感器及其制备方法和应用
CN108760866B (zh) * 2018-04-25 2020-11-03 安徽师范大学 双信号印迹电化学传感器及其制备方法和应用
CN109100407A (zh) * 2018-08-24 2018-12-28 江苏大学 一种基于比率原理阳光驱动便携式光电化学传感器的制备
CN109580745A (zh) * 2018-11-23 2019-04-05 华中师范大学 一种基于适配体的非标记电化学生物传感器及同时检测多种细胞因子的实时检测方法
CN109580745B (zh) * 2018-11-23 2021-10-08 华中师范大学 一种基于适配体的非标记电化学生物传感器及检测方法
CN109856101A (zh) * 2019-03-27 2019-06-07 青岛大学 一种可同时用作比率荧光和比率电化学传感的纳米杂化物的制备方法
WO2020191798A1 (zh) * 2019-03-27 2020-10-01 青岛大学 一种可同时用作比率荧光和比率电化学传感的纳米杂化物的制备方法
US11073517B1 (en) 2019-03-27 2021-07-27 Qingdao University Method for preparing nanohybrid used for ratiometric fluorescence and ratiometric electrochemical sensing simultaneously
CN110455896A (zh) * 2019-08-27 2019-11-15 青岛大学 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
WO2021035653A1 (zh) * 2019-08-27 2021-03-04 青岛大学 金属有机骨架复合物比率电化学miR3123适体传感器的制备方法
US11099150B1 (en) 2019-08-27 2021-08-24 Qingdao University Method for preparing ratiometric electrochemical miR3123 aptasensor based on metal-organic framework composite
CN111253422A (zh) * 2020-02-07 2020-06-09 商丘师范学院 一种检测血液中双氧水微电极及其制备方法
CN111253422B (zh) * 2020-02-07 2022-06-14 商丘师范学院 一种检测血液中双氧水微电极及其制备方法

Also Published As

Publication number Publication date
CN106124581B (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
CN106124581B (zh) 同一体系构建两种比率电化学传感器检测抗肿瘤药物方法
Gholivand et al. A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode
Hatamluyi et al. A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples
Nigović et al. Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine
Pournaghi‐Azar et al. Simultaneous determination of paracetamol, ascorbic acid and codeine by differential pulse voltammetry on the aluminum electrode modified by thin layer of palladium
Vajdle et al. Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine
Javanbakht et al. A selective and sensitive voltammetric sensor based on molecularly imprinted polymer for the determination of dipyridamole in pharmaceuticals and biological fluids
Mohamed et al. Electroanalytical sensing of the antimicrobial drug linezolid utilising an electrochemical sensing platform based upon a multiwalled carbon nanotubes/bromocresol green modified carbon paste electrode
Xie et al. Sensitive, simultaneous determination of chrysin and baicalein based on Ta2O5-chitosan composite modified carbon paste electrode
CN103604849A (zh) 一种同时检测多巴胺、抗坏血酸和尿酸的电化学传感器
Qian et al. Separation/determination of flavonoids and ascorbic acid in rat serum and excrement by capillary electrophoresis with electrochemical detection
CN106404863A (zh) 一种活体在线检测植物玉米素的微电极生物传感器及其应用
Patil et al. Electrochemical characterization and determination of tramadol drug using graphite pencil electrode
Mielech-Łukasiewicz et al. Voltammetric determination of antifungal agents in pharmaceuticals and cosmetics using boron-doped diamond electrodes
Taei et al. Simultaneous electrochemical sensing of cysteine, uric acid and tyrosine using a novel Au-nanoparticles/poly-Trypan Blue modified glassy carbon electrode
Chen et al. Determination of glycosides and sugars in Moutan Cortex by capillary electrophoresis with electrochemical detection
CN104777243A (zh) 一种同时测定半夏中有机酸、核苷和麻黄碱的hplc方法
Skalová et al. Miniaturized voltammetric cell for cathodic voltammetry making use of an agar membrane
CN105223260B (zh) 痕量快速检测对羟基苯甲酸丁酯的电化学传感器及其制备方法
Festinger et al. Comparative study of boron-doped diamond, basal-plane pyrolytic graphite, and graphite flake paste electrodes for the voltammetric determination of rivaroxaban and dabigatran etexilate in pharmaceuticals and urine samples
Jemelková et al. Voltammetric and amperometric determination of doxorubicin using carbon paste electrodes
Naik et al. Electrochemical response of hydroxyurea by different voltammetric techniques at carbon paste electrode
CN106198694A (zh) 一种基于裸玻碳电极检测盐酸阿霉素的比率双信号电化学传感器
Shankar et al. Electrochemical detection of dopamine in presence of serotonin and ascorbic acid at tetraoctyl ammonium bromide modified carbon paste electrode: a voltammetric study
Teijeiro et al. Electrochemical analysis of anthramycin: hydrolysis, DNA‐interactions and quantitative determination

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant